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Abstract: An adaptive control scheme for mechanical manipulators proposed. The control loop 
consists of a network for learning the robot’s inverse dynamics and on-line generating the control 
signal. Some simulation results were provided to evaluate the design. A supervisor was used to 
improve the performances of the system during the adaptation transients. The supervisor exerts two 
supervisory actions. The first one consists of updating the free-design adaptive controller parameters so 
that the value of a quadratic loss function maintained sufficiently small. The second supervisory action 
consists of an on-line adjustment of the sampling period within an interval centered at its nominal 
value.  
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INTRODUCTION 

 
 The problem of designing adaptive control laws for 
rigid robot manipulators has interested researchers for 
many years. The development of effective adaptive 
controllers represents an important step towards high-
precision robotic applications. In recent years, adaptive 
control results for robotic systems have included 
rigorous stability analysis (for instance[1-4]). On the 
other hand, over the last few years the possible use of 
learning networks within a control systems environment 
has been considered ([5-6] and references therein). Thus, 
it is important the achievement of good transient 
performances when synthesizing adaptive control laws. 
Particular useful tools for that purpose are the on-line 
updating of the free parameters of the adaptation 
algorithm and the on-line generation of the sampling 
period so that the tracking error be improved during the 
transient. In this paper, an adaptive control scheme for 
mechanical manipulators is presented that takes 
advantage of the relationships between adaptive and 
neural controllers. The control loop basically consists of 
a simple neural network which learns the robot’s 
inverse dynamics, so that the control signal can be on-
line generated. The synthesized controller involves the 
use of a supervisor to improve the transient 
performances since such a strategy was proved to be 
useful in classical problems of adaptive control to 
improve the adaptation transients. The proposed 

supervisory scheme consists of two major actions, 
namely: 
* An on-line updating procedure of one of the free-

design parameters of the estimation algorithm. An 
optimization horizon including a set of samples 
including past measurements and eventually, 
tracking error predictions is considered.  

* The sampling period is generated from an updating 
sampling law as dependent of the tracking error 
rate.  

 
Problem formulation: The vector equation of motion 
of an n-link robot manipulator can be written as: 
τ = M(Θ) Θ + V(Θ, Θ ) + G(Θ) + F(Θ, Θ ) (1) 
which is is an nx1 vector of joint torques; Θ, Θ  and Θ  
are the nx1 vectors of joint positions, speed and 
accelerations, respectively; M( Θ ) is the nxn mass 
matrix of the manipulator; V( Θ , Θ ) is an nx1 vector 
of centrifugal and Coriolis terms; G ( Θ ) is an nx1 
vector of gravitational terms and F( Θ , Θ ) is an nx1 
vector of friction terms.  
 The equations of motion (1) form a set of coupled 
nonlinear ordinary differential equations which are 
quite complex, even for simple manipulators. One of 
the most widely used techniques to design a trajectory 
following control system for such a device is the  
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Fig. 1: Model-based feedback linearization control 

scheme 
 
so-called computed-torque control using feedback 
linearization. The method basically consists in 
introducing a nonlinear model-based feedback to 
compensate for all the nonlinearities present in the 
robot (Fig. 1). If the model of the system is accurately 
known, this nonlinear inner loop decouples and 
linearizes the robot’s dynamics in such a way that a 
linear outer loop can be used to efficiently control the 
resulting linear system to track a desired trajectory 
Θ d, Θ d, Θ d. A frequently used computed-torque 
control scheme is shown in Fig. 1 where N (. , .) is a 
nonlinear block which includes nonlinear effects on the 
plant. From the block diagram, the nonlinear, model-
based control law is found to ( )ΘΘ+Θ ,F̂)(Ĝ  be: 

τ̂ = ( )ΘM̂ τ’ + ( )ΘΘ ,V̂ +  

where )(M̂ Θ , ),(V̂ ΘΘ , )(Ĝ Θ , ( )ΘΘ,F̂ are 

estimates of M( Θ ), V( Θ , Θ ), G( Θ ), F( Θ , Θ ), 
respectively, where ˆ τ  is identical to τ  in (1) with the 
parameters being replaced by their estimates and Θ ’ 
has been calculated as: 

′τ = Θ d + Kv E + Kp E (2) 
with Kv and Kp being nxn constant diagonal matrices 
and the servo error E defined as E = Θ d .Θ− The error 
torque becomes: 
˜ τ k = τ k − ˆ τ k  

( ) ( ) ( ) ( ) dd M~EM~M~EM̂ ΘΘ−Θ+ΘΘ+Θ=  (3)  
(2) using (3) and then substituting in the second-order 
differential equation obtained from (4) the closed- loop 
dynamics equation is found to be: 

)(M̂EKEKE 1
pv Θ=++ −

 
[ ]),(F~)(G~),(V~)(M~ ΘΘ+Θ+ΘΘ+ΘΘ  (4) 
where the modeling parametrical errors are ; 

( )ΘM~ =M( Θ )- )(M̂ Θ  

),(V),(V~ ΘΘ=ΘΘ - V̂ (Θ, ) 
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Fig. 2: Computed-torque control scheme 
 

)(G~ Θ =G( Θ )- )(Ĝ Θ   (5) 

),(F~ ΘΘ =F ( ΘΘ, )- ),(F̂ ΘΘ  
 If all the robot’s parameters are perfectly known, 
the closed loop equation (5) takes the following linear 
and decoupled form since the terms in the right-hand 
side brackets of (5) become zero: 

0EKEKE pv =++
 (6) 

 So that it becomes clear that a simple suitable 
selection of Kp and Kv can easily regulate the evolution 
of the servo error. However, although some parameters 
of a robot are easily measurable, some other effects, 
such as friction, mass distribution or payload variations 
cannot, in general, be accurately modeled and thus the 
assumption of obtaining negligible modeling errors is 
quite unrealistic in practice. In these conditions, it looks 
apparent that some sort of adaptive parameter 
estimation mechanism should be included in the control 
loop, so that equation (5) became approximately linear 
and uncoupled and the servo errors could be 
asymptotically eliminated. 
 
Adaptive control scheme: The equations of motion 
(1), although quite complex and nonlinear in general, 
can be expressed in a linear in the parameters form, 
since all the potentially unknown parameters (link 
masses, lengths, friction coefficients, etc.) appear as 
coefficients of known functions of the generalized 
coordinates. In an adaptive control system design 
context, one usually takes the advantage of the above 
property of linearity in the parameters by rewriting (1) 
as: 
M( Θ ) Θ + V( Θ , Θ ) + G( Θ ) + F( Θ , Θ ) 
= W( Θ , Θ , Θ ) P (7) 
where P is an rx1 vector containing the robot’s 
unknown parameters and W( Θ , Θ , Θ ) is an nxr 
matrix of known nonlinear functions, often referred to 
as regression matrix. In the same way, the rx1 estimated 
parameters vector P̂  fulfill: 
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ˆ M  (�) Θ + ˆ V ( Θ , Θ ) + ˆ G ( Θ ) + ˆ F  ( Θ , Θ ) 
ˆ M = W ( Θ , Θ , Θ ) ˆ P  (8) 

and thus: 
M~ ( Θ ) Θ + ˜ V ( Θ , Θ )+ ˜ G ( Θ )+ F~  ( Θ , Θ ) M~ ( Θ ) 
= W ( Θ , Θ , Θ ) ˜ P  (9) 
where the parameter estimation error ˜ P  has been 
defined as ˜ P = P - ˆ P . Figure 2 and 3 show the 
adaptive control scheme. The design is a neural 
extension of the computed-torque control strategy. A 
two-layered learning network with nxr inputs and n 
outputs is used to learn the manipulator’s inverse 
dynamics, so that the control law can be on-line 
generated. The network’s inputs are known nonlinear 
functions of the system response (more concretely, the 
elements wij of the regression matrix W (Θ, Θ , Θ ) are 
defined in eqn. (7)), while its outputs are estimates of 
the input torques: 

kˆ)t(ˆ τ=τ  = 
kj

r

1j
ij

n

1i

p̂),,(w∑∑
==

ΘΘΘ        (10) 

for t [ )1kk t,t +∈  which is a piecewise constant signal 
from the zero-order sampling and hold device. Defining 
the connection weights vector and the estimated torques 
vector as: 
ˆ P = ˆ p 1, ˆ p 2 , ..., ˆ p r[ ]T

;
ˆ τ = ˆ τ 1, ˆ τ 2 , ..., ˆ τ n[ ]T

  
Eqn. 10 can be expressed in a familiar matrix form: 

ˆ τ k  ( t ) = ˆ τ k  = W ( Θ , Θ , Θ ) kP̂  (11) 

for t ∈ t k , t k +1[ ) where ˆ P k  is a parameter vector 
which is estimated in a discrete-time way, i. e. , it is 
only updated at sampling instants by the adaptation 
algorithm. The inverse dynamics is learned as follows: 

ˆ P k+ 1 = ˆ P k +
F kW k

T E τ k

c k + W k F k W k
T

 (12) 

(
T
kkkk

kk
T
kk

k
k

1k
WFWc
FWWF

F1F
+

−
λ

=+ ) (13) 

where Eτk is the prediction error vector, defined as 

=τ kE k
~τ−  = kkˆ τ−τ , W Tk ( . ) is the regression 

matrix used for updating the parameters and F k is an 

adaptation gain matrix which satisfies T
00 FF = > 0. 

The parameter sequence kλ ( )1,0∈ a  is the 
forgetting factor used to update the adaptation gain  
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Fig. 3: Proposed neural control scheme 
 
matrix and ck ∈  (0, ∞ ) is a scalar for all k ≥  0 . Both 
free parameters of the algorithm have to satisfy the 
given stability constraints in order to achieve closed-
loop stability. The matrix sequence obtained from (13) 
is positive definite (at the limit it can become 
semidefinite) and time- decreasing. The norms taken in 
(13) are the Euclidean norms. The above approach is 
then used in the simulated example to evaluate the 
supervision efficiency. If the manipulator’s inverse 
dynamics is correctly learned by the neural network, 
both nonlinear dynamics cancel each other according to 
the block diagram shown in Fig. 3. Thus, the closed-
loop system turns linear and the closed-loop tracking 
properties are adjusted with a suitable selection of the 
proportional and derivative gain matrices Kp, Kv. This 
is the same effect obtained using the conventional 
adaptive control approach described in the previous 
section. 
 
Supervisor design 
A. Heuristic motivation: Note, by inspection, that the 
learning rule associated with the adaptation algorithm 
(13)-(14) has an adaptation rate highly dependent on the 
size of the ck- updating parameter which is a free- 
design parameter provided that it is positive and 
bounded. The adaptation rate is very low when the ck-
sequence takes very large values compared to the 
square of the regressor norm. A second action of the 
supervisor is concerned with the on-line choice of the 
sampling period within an interval centered around a 
nominal sampling period. The boundary of the variation 
domain of the sampling period is established according 
to ´a priori´ knowledge about guaranteeing closed- loop 
stability and a prefixed bandwidth. Other considerations 
as, for instance, the upper limit of the sampling rate or 
the achievable performance of the application at hand. 
The overall supervisor is designed for: 
* An on-line calculation of a free parameter of the 

adaptation algorithm 
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* A calculation of a time-varying sampling period 
dependent on the time variation of the tracking 
error:  

It is based upon three main rules, namely: 
 
Rule 1: If the tracking error is increasing with respect 
to preceding samples then decrease (increase ) the last 
value of the sequence of the free - design parameter 
provided that the previous action at the preceding 
sample was to increase ( decrease ) the value of such a 
sequence. [In other words, if the tracking performance 
is deteriorating then make an action to correct the 
supervision philosophy of the last action exerted on the 
value of the free parameter f the algorithm]. 
 
Rule 2: If the tracking error is decreasing with respect 
to preceding samples then decrease (increase) the last 
value of the sequence of the free design parameter 
provided that the previous action was to decrease ( 
increase) it . [In other words, if the tracking 
performance is being improved then do not modify the 
last action exerted on the value of the free parameter]. 
 
Rule 3: Compute a time- varying updated sampling 
period as being inversely proportional to the absolute 
value of the tracking error time-derivative within a 
predefined interval: 
[T min , T max] = [T 0 − ∆ T, T 0 + ∆ T ] 

centred around a prefixed nominal sampling period T0 . 
Thus, the sampling period decreases as the tracking 
error absolute value grows faster and vice versa,. In 
Rule 3, 0T/T∆  has to be small since the discrete 
parameterization of the plant is time- varying under 
time- varying sampling. Thus, small variations of the 
sampling period lead to small deviations of the plant 
parameterization from time- invariance and the 
estimation algorithm is still valid in practical situations. 
This is the philosophy used in this paper to design the 
admissibility domain of the sampling period. Another 
useful variation would be, for instance, to use a time- 
varying whose length decreases asymptotically 
converging to the nominal sampling period; i.e., 
[ ])k(T,)k(T maxmin  is designed so that 
T min ( k )→ T 0 , T max ( k )→ T 0   as k→ ∞ . 
 On the other hand, Rule 3 can also be modified by 
involving higher- order time - derivatives of the 
tracking error. The above three actions are completed 
with the design philosophies:  
1. The sizes of the modifications in the successive 

values of the ck - sequence of the parameter 
adaptive algorithm are related to the ‘amplitudes‘ 

of the improvement or deterioration of the transient 
performances within the stability constraints for ck 
in (13) of its values being positive and bounded.  

2. It is better to analyze the transient tracking errors 
over a finite horizon of preceding samples and 
eventually, also on a finite horizon of its future 
predictions over each current sample in order to 
include both a correcting and a predictive-
correction effects of registered tracking errors to 
calculate the current value of the sequence of free- 
design parameters. The use of a unique sample in 
the supervisory loop would lead, in general, to 
unsuitable actions when measurement failures arise 
or when abrupt changes in the control input appear 
art isolated sampling instants .  

 
B. Supervisory action on a free - design parameter 
of the adaptation algorithm: Define the loss function  

J k
ε = σ k − i

i = k − N 1

k + N 2

∑ E i
T Q i E i

,  
for each current k - th sample as supervisory criterion 
where E (.) =[ E 1 (.) , E 2 (.) , E 3 (.) ] 

T is the tracking 
error vector, N 1 and N2 are , respectively, the sizes of 
the correction and prediction horizons [ k - N 1, k ) and 
[ k , k + N2 ] associated with the current k - th sample , 
Q ( . ) is a (at least) positive semidefinite weighting 
matrix and 10 ≤σ<  is the forgetting factor of the loss 
function . Note that E j for j > k are predicted tracking 
errors in the loss function for each k - th sample. In this 
paper, the free design parameter in (13) is c k  which has 
to belong to an admissibility interval compatible with 
the stability constraint, i. e. it has to be positive and 
bounded . The horizon sizes, weighting matrix and 
forgetting factor of the loss function are chosen by the 
designer according to the next design criteria: 
a. How relatively important each robot articulation is 

compared to the remaining ones. This idea is 
relevant top the choice of the Q(.)- matrix. In Fig. 4, 
the third articulation could be considered more 
important, if suited, since it has to follow a 
reference related to the final trajectory for each 
specific application. If the matrix is chosen as 
diagonal with positive identical diagonal entries 
then all the articulations are considered equally 
relevant and then all the tracking error components 
are introduced with identical weights in the 
supervisory loss function.  
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b. The relative weight in the loss function given to the 
more recent measured errors and their next 
immediate predictions is large compared to the 
older ones and subsequent future ones, 
respectively. 

c. The relative weight in the loss function given to the 
past tracking errors (correction horizon) compared 
to the predicted errors ( prediction horizon) . The 
supervisory action over c k  is described in the 
following algorithm: 

 
C. Supervision of c k  
Step 0: Define 

c min , c max[ ]  
with c min > 0 , c max > c min >0  as the admissibility domain 
for the free parameter c k  of the adaptation algorithm 
(13) . Define also the loss function J according to the 
above supervisory design criteria (a) to (c). 
Initialize k →  0. 
 
Step 1: For each current k-th sampling instant, Make 
c k = ρ k W k F k W k

T + c  

c k =

c min if c k ≤ c min

c k if c k ∈ c min , c max( )

c max if c k ≥ c max

 

 
 

 
 

 
ρ k = ρ k −1 + Min(g k , Int. part[

J k − J k −1
J k −1

]). Sign[ ρk − 2 −ρ k −1 ]. ∆ρ

g k =
K − c 

W k F k W k
T ∆ ρ  

with sign (0 ) = 0. 
 
Step 2: Apply the parameter -estimation algorithm of 
Eqn. (13) and Generate the torque Eqn. ( 2 ). 
 
Step 3: k → k  and then Go to Step 1.  
End 
 If the loss function value decreases the supervisory 
policy has to be kept . The saturation g k for the 
modification of Θ  k in Step 1 guarantees that ck is 
upper-bounded by a predefined positive design constant 
K . The small positive constant c  is used to avoid 
division by zero in the parameter estimation (13) when 
the measurement regressor is zero. The supervisory 
learning rule also ensures, apart from the above 
mentioned saturation, that the eventual corrections on 
the choice of the parameters increase as the efficiency 
deteriorates.  
D. Error prediction: The measurements of the loss 
function in the prediction horizon are calculated by 

extrapolations of preceding predictions or real 
measurements by using a Taylor series expansion 
approximations with finite differences using sampled 
values according to: 

f k+ 1 ≅
T i f k

(i)

i !
i = 0

∞

∑ = f k + (f k − f k −1 ) +
1
2

( f k − f k −1 + f k + 2 )
  

with T being the sampling period for any signal f ( t ) 
and the i- th derivative f k

( i)
 being defined recursively 

from 
f k

(1) =
f k − f k− 1

T  for i ≥ 1 . Note that even in the case 
when the predictions are very rough, this is not very 
relevant for the supervisory algorithm efficiency 
because of the saturation effect included in Step 1. In 
this context, it is suitable to have acceptable predictions 
of the signs of the next tracking errors for each current 
sample rather than good estimations of their real values 
. A simple estimation procedure as the proposed one 
can be sufficient as shown through simulations in 
Section 5. 3. It is also important to find an efficient 
balance between the sizes of the correction and 
prediction horizons Numerical experimentation 
involving different sizes of the correction and 
prediction horizons will help the designer in the choice 
of their more convenient values. 
  
E. Supervisory action on the sampling rate (i. e. On - 
line updating rule for the time-varying sampling 
period kT  ) : The sequence of sampling instants { t  k , 
k ≥ 0} is generated as kk1k Ttt +=+  with t 0  = 0 

and  T k  as follows: 

T k =

T min if T k ≤ T min

T k =
C T k −1

ε k − ε k−1

if T∈ [T min ,T max ]

T max if T k ≥ T max

 

 

 
 
 

 

 
 
 

 (14)  

where a discrete approximation
)t(

TCT
k

1k
k ε

= −  is used 

by monitoring the tracking error rate and C > 0 is an 
arbitrary real constant. The admissibility interval 
[ ]maxmin T,T  of the sampling period is selected 
according to considerations of stability, bandwidth and 
the requirements on performance of each particular 
application. The above sampling law is tested in the 
simulations to evaluate the performance improvement 
of the sampling rate updating for the transient 
adaptation. The above sampling law as well as other 
five updating sampling laws listed below are then 
comparatively tested in the simulations to evaluate the 
various improvements caused by the sampling rate 
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adaptation over the basic free-parameter adaptation. 
The  supervisory  technique  can  be  also  applied to the  
 
forgetting factor by making it time-varying with 
λ k ∈ 0 , 1( ] to ensure closed-loop stability of the 
adaptive scheme. A useful technique is to modify the 
Supervision Algorithm of Section 4.2 to on-line 
estimate the forgetting factor which has to belong to the 

admissibility domain λ min , λ max[ ]= δ , 1 − δ[ ) for 
some constant δ ∈ (0 , 1)  with the change 
c → λ > 0 and Step 2 is modified with the 
replacement c k → λ k = ρ k λ k −1 + λ  with ρ k  being 
computed as above and  

λ k =

λ min if λ k ≤ λ min

λ k if λ k ∈( λ min , λ max )

λ max if λ k ≥ λ max

 

 

  

 

 
 

 
Subsequently, the free parameter of the adaptive 
algorithm kc   is chosen according to the rule 
 
λ k W k F k W k

T

T r (1− λ k −δ )   
with  
 
T r ≥ Trace ( F 0 ) ≥ Trace ( F k )  > 0. The trace of the 
adaptation matrix remains upper- bounded by a 
prefixed finite bound T r  for all time in spite of the fact 
that the adaptation gain matrix is not necessarily time- 
decreasing. 
 
F. Closed-loop stability: The following result, whose 
proof is omitted, proves that both the basic 
(supervision-free) system and the supervised ones are 
stable. 
 
Theorem 1 (Stability results): The following two 
items hold: 
i. In the absence of supervision, the estimated 
parameters are bounded if their initial conditions are 
bounded and the initial adaptation covariance matrix is 
positive definite. Also, the closed-loop system is 
globally Lyapunov' s stable so that the output, input, 
estimation error and tracking error are all bounded 
provided that the reference trajectory is bounded. 
 
ii. If the algorithm free-parameter ck (or, alternatively, 
the forgetting factor) is supervised by the given rule 

while respecting its positivity and boundedness (while 
belonging to the range (0, 1]) then (i) holds. If the 
sampling period is supervised (with the free-parameter 
being supervised or not) during a finite time interval 
within its admissibility domain then the (i) still holds.  
 
Simulation example: We consider the control of the 
simple planar mechanical manipulator with three 
revolute joints. For simplicity, it will be assumed that 
the masses m1 and m2 of elements 1 and 2 are 
concentrated at the distal end of each link, while mass 
m3 is distributed according to a diagonal inertia tensor I 
= Block Diagonal [

zzyyxx I,I,I ]. Moreover, we assume 
that the center of mass of link 3 is located at the 
proximal end of the link, that is, it coincides with the 
center of mass of m2. The simplified planar 
manipulator with three degrees of freedom can reach 
arbitrary positions and orientations in the plane. The 
elements of the dynamic equation (1) for this robot are 
found to be: 
M( Θ )= 
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++++++++

zzzzzz

zz32zz22132zz

zz22132zz221
2
2

2
132

,
1zz

III
I2l)mm(I]cll2l)[mm(I
I]cll2l)[mm(I]cll2ll)[mm(1lmI
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V( Θ , Θ ) = 
( ) ( )

( )


















θ+
θ+θθ+−

0
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2
122132
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G( Θ ) = 

(m1 + m2 + m3 )gl1c1 + (m 2 + m3 )gl2c12

(m 2 + m3 )gl2c12

0

 

 

 
 

 

 

 
 

  
where ci, si represent cos Θ i and sin Θ i, respectively 
and c12 represents cos ( Θ 1+ Θ 2). Concerning the 
friction terms, a combination of viscous and Coulomb 
friction is assumed: 

F( Θ , Θ ) = 
















θ+θ
θ+θ
θ+θ

)(sgnkv
)(sgnkv
)(sgnkv

3333

2222

1111

  

where vi and ki are the viscous and Coulomb friction 
coefficients, respectively. In all the subsequent 
examples the following values for the robot’s 
parameters will be assumed (SI units): m1=4.6; 
m2=2.3; m3=1.0; Izz=0.1; l1=l2=0.5 ; v1=v2=v3=0.5 ; 
k1=k2=k3=0.5. Different levels and forms of 
supervision follow: 
A. Supervision of the free parameterc k : Neural 
control is applied to a mechanical manipulator. In this 
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case the robot starts at position ( )321 q,q,q = (0º, 
30º, 20º) and the control objective is to reach the 
position ( )321 q,q,q = (10º,-50º,- 20º) in 0.5 
seconds, following smooth cubic trajectories, defined 
by: 
q 1(t) = 10 + 0.12 t2 - 0.016 t3, t ≤ 0. 5; q1(0) = 10, t 
≥ 0.5  
q2(t) = -50 - 0.12 t2 + 0.016 t3, t  0.5; q2(0) = -50, t 

 0.55  
q3(t) = -20 + 0.72 t2 - 0.096 t3, t ≤  0.5; q3(0) = -20, t 
≥  0.5 
 It is assumed that that the link masses m1, m2, m3, 
as well as the mass distribution Izz and the viscous 
friction coefficient v1 of the manipulator are unknown. 
A two-layered neural network with twelve inputs and 
three outputs will be used to learn the robot’s inverse 
dynamics and to on-line generate the control signal. In 
particular, the values 5c =  , 5c min =  , 

7
max 105c ×=  and c 0 = 5× 10 6  have been chosen in 

the learning rule (13) . In the absence of supervisor, 
c = c 0 = 5× 10 , for all k  0 . The Θ weighting 

matrix of the loss function J
ε
 is Q ( . ) = Diag [ 0.2 , 0.2 

, 0.2 ] for the samples of the prediction horizon   and  
Q ( . ) = Diag [ 0.9 , 0.9 , 0.9 ] for those of the 
correction horizon ; 5.0=σ ; K=10 ( Step 2 of the 
Supervisory Algorithm of Section 4.b) ; 5c = , 
 20 =ρ and 1.0=ρ∆ . The correction and prediction 
horizons are chosen with 5N 1 = and 2N 2 =  . The 
network’s connection weights have been initialized 
without using a priori information as 
ˆ p 10 = 10 , ˆ p 20 = 5 , ˆ p 30 = 1 , ˆ p 40 = 1 . The values for 
the proportional and derivative gain matrices Kp = Kv 
= Diag (100, 100, 100). 
 
B. Supervision of the sampling period: An important 
feature is not allowing large sampling rate variations 
(i.e. to choose an admissibility domain for the sampling 
period of small measure around its nominal value) so as 
to obtain a sampling law with small sampling period 
variations. Acceptable values of the maximum and 
minimum  values  of  the  admissibility   interval  of the  
 
 
 

sampling period are until ± 20 % of its nominal value. 
The nominal sampling period is 0T  0.6× 310 − secs.  

with variation domain T min , T max[ ]= 0.5 , 0.7[ ] with 
C=1. If the adaptive sampling rate operates within a 
neighborhood of a suitable nominal sampling period 
then the bandwidth and closed-loop stability 
requirements are satisfied. 
 
C. Combined supervisory of the free algorithm 
parameter and the sampling period: The (unknown) 
parameters are defined as in the above example and 
estimated with initial conditions [6, 4, 0.2, 0.8] . The 
adaptation gain matrix is initialized to Diag [ 10 4, 10 4, 
10 4, 10 4 ]. Results are displayed on Fig. 4.  
 
D. Summary of the performance efficiency: 
Exhaustively worked examples led to the following 
conclusions. The free-design parameter supervision and 
the use of a tracking error time-variation dependent 
adaptive sampling are successful to improve the 
transient performances. It is important to select properly 
the bounds for the sampling period according to the 
stability, bandwidth and applications requirements from 
´a priori´ knowledge on the system.  
 

 
Fig. 4: Combined supervision performance 
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