
American Journal of Applied Sciences 3 (11): 2114-2121, 2006
ISSN 1546-9239
© 2006 Science Publications

Corresponding Author: Mihyar Hesson, Al Ain University of Science and Technology, Al-Ain, P.O. Box: 64141, U.A.E. Tel:
971-3-761-1185, Fax: 971-3-761-1198

2114

Computer Simulator: An Educational Tool for Computer Architecture

Mihyar Hesson

Al Ain University of Science and Technology, Al-Ain, P.O. Box: 64141, U.A.E.

Abstract: The great advancement in computer architecture and cache memory design and technology
had a considerable influence on the way computer architecture was taught in universities. This
requires students to be able to visualize the detailed activities that take place within a computer
processor and its interaction with memory system. Computer simulators could effectively be used to
enhance the understanding and comprehension of cache memory operation. The main objective of this
project was to design and implement a computer simulator that was used as an educational tool. This
paper presents design specifications, implementation and the functional and structural components of
this simulator. This allows students understand the concepts and theory of the computer hardware
topics by constructing and verifying knowledge, testing and comparing several different
configurations and memory access. Although there was a large number of computer simulators in the
market, this simulator differs in the way it contains a specially designed assembler that feeds the
simulator with the binary code. In this context it was a tool that provides a high educational value that,
on one hand, helps students learn to write an error-free assembly code and on the other hand
comprehend the activities that take place during the execution of the program under different settings.
At the front-end of the system there are two parts; the editor and the simulator while at the back-end
there are the system specially developed assembler and database.

Key words: Computer architecture, simulation, assembly language, cache memory

INTRODUCTION

 Computer simulators are used in education to help
students understand and comprehend specific topics in
computer architecture. Some of these simulators
concentrate on helping students understand assembly
language programming, while others concentrate on
general operation of computer and data transfer
between computer main components. More advanced
simulators are dedicated to specific more complicated
issues like cache memory operations. Large number of
computer simulators of different degrees of complexity
is available in the market, some of them are offered for
free while the use of others requires special licenses.
Examples of available simple to moderate types of
simulators include Historic Machine Simulators, Digital
Logic Simulators, Theoretical Machine Simulators,
Novice Hypothetical Machine Simulators and
Intermediate Instruction Set Simulators. Other more
sophisticated simulators include Advanced
Microarchitecture Simulators, Multi-Processor
Simulators (including Multi-Processor Interconnection
Network Simulators), Memory and Operating System
Simulators, Embedded Processor Simulators and
Quantum Computer Simulators.
 With the advent of recent computer architecture
issues such as burst-mode cache, victim cache and more
complicated cache coherency issues, multiprocessors,
parallel processing and complicated processors’

architectures, the need for matching sophisticated
simulators becomes more demanding. This is not for
education issues only but for development and
improvement reasons too. In the recent years, large-
scale distributed shared-memory (DSM)
multiprocessors have emerged as a promising
architecture to deliver high-performance computing
power. However, to fully realize the potential
performance of these systems, designers must solve two
important and challenging problems. First, it is
imperative that the cache coherence scheme for such
systems be efficient, inexpensive and scalable. Second,
it is necessary to develop efficient techniques to hide
the large remote memory access latencies in such
systems[1]. The cache coherence techniques used in
existing commercially available multiprocessors are
mainly hardware-based, such as a snoopy cache
protocol[2] or a hardware directory-based scheme[3,4].
 However, in order to reduce the hardware
complexity and/or increase the flexibility, many
researchers have considered migrating the coherence
protocol, or parts of it, to software[5-8]. Shared virtual
memory (SVM) systems go even further by completely
supporting the protocol mechanisms at the operating
system or application level using the virtual memory
system[9].
 Trace-driven simulation is often a cost-effective
way to estimate the performance of computer system
designs. Above all when designing caches, Translation-

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2115

Lookaside Buffer (TLBs), or paging systems, trace-
driven simulation is a very popular way to study and
evaluate computer architectures, obtaining an
acceptable estimation of performance before a system is
built[10].
 From the author experience teaching computer
architecture courses for a period of more than fifteen
years in different universities in the region he identified
two main problems that students were finding difficult
to comprehend more than others. This seemed to have
been consistent over the years. The first problem is
related to programming in assembly language and the
efficient use of processor’s registers. The second
problem is related to cache memory issues and
operation such as mapping functions, write policies,
replacement algorithms and cache coherence. This
work is an attempt to develop a simulator that helps the
students overcome these problems. This simulator is
different from other available simulators in the market.
It does not use memory traces but rather allows the user
to enter his assembly program in an easy manner. The
user then selects size of cache, mapping functions, write
policies and replacement algorithm. The user can also
select the speed at which the program runs so he/she
can properly see how data are moved between different
computer parts during execution and how the chosen
settings affect execution efficiency.

THEORY

The theory of caching: The concept of the memory
cache is simple. Data often moves from a slower
medium, such as the file system, to a faster medium,
such as main memory. Caching relies on the principle
of locality of reference, that is, reading a datum predicts
another read for the same datum in the near future. For�
example, if a browser requests an image on a Web page
once, there will be a good chance that it will be
requested again soon[11]. A cache does speed up the
process of fetching a datum on subsequent requests by
providing a faster medium.
 As the processor usually runs very fast and is
constantly reading information from the memory, it has
to wait for the information to arrive because the
memory access times are slower. A cache memory
therefore is like a small temporary fast memory that the
processor uses for information it is likely to need again
in the very near future. All the 5th generation processors
now have cache memory that is actually built into the
processor itself.

The purpose of cache memory: The processor is so
much faster than other devices in the computer system
and it has to spend a great deal of its time in waiting
and this is a very inefficient use of the processor. This
is mainly because of the slow memory access� and
therefore, in order to reduce the wait time of the

processor, memory access should be sped up. One way
to achieve this is to reduce processor visits to main
memory. This may be achieved by bringing the
required data closer to the processor and this in turn is
achieved by using the cache memory.
 Looking at the relative speed-ups of CPUs and
memories since 1980 we see that memory has increased
in speed by a factor of about 4 while the CPUs by has
increased by a factor of about 20000. The big
mismatch, which continues to get even worse, means
that CPUs are continually held back by slow memory.
One obvious strategy that can help: if memory is too
slow, don't use it too much. This strategy was used
extensively in the early RISC processors which they
often had hundreds of registers. The trouble with this
technology is that it does nothing for instruction access.
At least one memory access is required per instruction,
in a pipelined processor, this means one per cycle.
 A longstanding solution to this problem is the use
of cache. Cache is a small block of high-speed memory
(small enough to be affordable). The vast majority of
references to instructions and data are local, that is, the
next data item/instruction is usually close to the
previous one. When a memory word is accessed, it will
be searched first in the cache. If it is not there, a cache
miss occurs and it has to read the word from the main
memory through the cache.
 Some methods, which are used to reduce the miss
rate, increase complexity and consequently reduce
speed. Therefore, in the tradeoffs between complexity
and effectiveness, simplicity is much more favored by
cache designers than virtual memory designers.
 Figure 1 shows the relationship between main
memory and a cache. Each slot in the cache can hold
one block of contiguous memory words; a block is
usually a specific number of main memory words (in
Fig. 1 it is 3).

Fig. 1: Main memory and cache

 The cache memory is accessed not via a memory
address as such, but by pattern matching on a tag stored
in the cache. The tag is constructed from the main
memory address and means that a block may be stored
in a vacant slot in the cache.

Mapping functions: Because there are fewer cache
lines than main memory blocks, an algorithm is needed

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2116

for mapping main memory blocks into cache lines.
Further, a means is needed to determine which main
memory block currently occupies a cache line. The
choice of the mapping function dictates how the cache
is organized. Three techniques can be used: direct,
associative and set associative[12].

* Direct-mapped caches: This is the simplest
mapping strategy. Each block of main memory can only
map to a single slot in the cache. A simple example is
shown in Fig. 2. The memory address is divided into
three fields; the slot field, which is used to look up a
particular slot in the cache, the tag field which is used
to check if a particular block is in the cache and the
word field which is used to identify the required word
in the main memory[13].�

Fig. 2: Direct mapped cache

* Associative cache: The advantage of direct
mapping is simplicity. However, it is inflexible and if
two commonly-used blocks clash, it makes it very slow.
This is because the need to keep swapping the two
blocks in and out of cache. Associative mapping is the
opposite extreme, i.e. any block of memory can map to
any slot in the cache. This is illustrated in Fig. 3. It is
obvious that apart from the word field, the remaining
part of the address is used as a tag. There is no slot field
because we do not actually lookup a particular slot.
Associative cache is flexible, but expensive and/or slow
since we need to simultaneously search all cache slots.

* Set-Associative cache: This mapping function
represents a compromise between the previous two. It
combines the simplicity of the first and the flexibility of
the second and is meant to allow each block of memory
to occupy one of a small set of slots of cache (typically
2 or 4). Figure 4 illustrates the basic idea with two-way
mapping. Effectively, the main cache is divided into a
number of smaller caches, each of which may contain a
word or more properly a block from the main memory.

Cache line replacement algorithms: When a new line
is loaded into the cache, one of the existing lines may
need to be replaced. In a direct mapped cache, the
requested block can go in exactly one position and the

block occupying that position must be replaced. In an
associative cache the requested block can sit in any
available cache slot[14].

Fig. 3: Fully-associative cache

Fig. 4: Two-way set-associative cache

 This means that all blocks are candidates for
replacement. In a set associative cache, we must choose
among the blocks in the selected set. Therefore a line
replacement algorithm is needed which sets up well
defined criteria upon which the replacement is made. A
large number of algorithms are possible and many have
been implemented. Four of the most common cache
line replacement algorithms are� �Least Recently Used
(LRU), First-In First-Out (FIFO), Least Frequently
Used (LFU) and Random

Cache write policies: Before a cache line can be
replaced, it is necessary to determine if the line has
been modified. The contents of the main memory block
and the cache line that corresponds to that block are
essentially copies of each other and should therefore
hold the same� data. If cache line X has not been
modified since its arrival in the cache, updating the
corresponding main memory block is not required. On
the other hand, if the cache line has been modified, the
corresponding main memory block must be updated.
Basically there are two different policies that can be
employed to ensure that the cache and main memory
contents remain identical. These are: write-through and
write-back.�

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2117

* Write-through: Assuming a cache hit (a write
hit); the information is written immediately to both the
line in the cache and the block in the lower-level
memory (with its normal wait-state delays). The
advantages of this technique are that the contents of the
main memory and the cache are always consistent. It is
easy to implement and any read miss will never result
in a write operation to main memory. On the other
hand, the write through policy has a significant
drawback. For every change in a cache line a main
memory access is required and hence significantly
degrades performance. In spite of this, most Intel
microprocessors use a write-through cache policy.�

* Write-back (sometimes called a posted write or
copy back cache): On a cache hit, the information is
written only to the line in the cache. This allows the
processor to immediately resume processing. The
modified cache line is written to main memory only
when it is replaced. To reduce the frequency of writing
back blocks on replacement, a dirty bit is commonly
used. This status bit indicates whether the block is dirty
(modified while in the cache) or clean (not modified). If
it is clean the block is not written on a miss. The
advantages of the write-back policy are that writes
occur at the speed of the cache memory, multiple writes
within a block require only one write to main memory,
which results in less memory bandwidth usage. Write-
back is a faster alternative to the write-through policy
but it has one major disadvantage that comes from the
possibility of the contents of the cache and the main
memory may not be consistent[15].

SYSTEM SPECIFICATIONS

 This simulator is used for educational purposes and
therefore is not meant to be used as performance
measure for design purposes. The main intention behind
this work was to help students understand the main
concepts of computer architecture. This includes an
easy way to code an error-proof assembly language
program, to see how the program runs and how data
moves between different parts of the computer
including the CPU registers, main memory and cache
memory. It also includes a means to easily configure
the cache settings, control the speed at which the
program runs, pause and resume execution at any time
and to run program at a step-by-step mode. The
simulator would provide the results of execution and
also log all the events taken place during execution and
store that in a file. The user could select different
settings for the same program and see the effect of
selecting different combinations of cache size, mapping
functions, write policies and replacement algorithms on
the results in term of hit/miss ratio. The system
specifications may be summarized as:

* An easy to use assembly language editor. The user
is not required to type-in instructions. The user is
using the mouse to select an instruction group such
as data movements, arithmetic and logic etc. The
user then selects an instruction from the group.
Depending on the instruction type, the valid set of
operands that go with the instruction will be
displayed and the user is prompted to select the
required operands. If the instruction takes only one
operand, the list of operands will be deactivated
right after the selection of the first operand. If the
instruction takes no operands at all, no list will be
displayed and the user is prompted for the next
instruction. This insures that only the right
instruction syntax will be allowed. This is of an
additional educational value too as it teaches the
users of common mistakes they usually commit.

* The user is not to worry about address allocation,
main memory and stack allocations.

* Once a program is complete and assembled, the
user is prompted for more choices. These include
the size of main memory block (or cache line size),
the mapping function, replacement algorithm (if
applicable) and write policy. The user is also to
select the speed of running to suite his/her
capability of following up data movement. If the
execution is too slow or too fast to follow, the user
can stop the execution, adjust the speed and run
again. This may be repeated a few times until the
user convenient speed is reached. The user can also
select a step-by-step execution instead of
continuous running.

* The user is able to easily watch the cache operation
and how and when cache hits and misses occur.

* The system logs all the events taken place during
the execution of a program and stores that in a file
that is available to the user to examine at any later
time.

* The result of execution in terms of hits per misses
ratio is provided.

SYSTEM DESIGN AND IMPLEMENTATION

 The system is architected to have four
functionally-related and loosely coupled units. These
units are the keypad editor, the assembler, the database
and the simulator. The state chart of the system is
shown in Fig. 5.
 The keypad editor is used to enter assembly
language programs. The mnemonics of instructions are
immediately stored in the database line-by-line and at
the same time it is displayed on the right-side of the
editor. When the program is completely keyed-in, it is
assembled by the assembler and stored in binary
(executable) form in the database. The simulator loads
the assembled program in its executable form and runs

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2118

it according to the configuration set by the user. After
execution, the simulator stores a log file in the database.
This file contains details of all events took place during
the execution. In the following subsections, we will be
describing these units in a bit more details.

The keypad editor: The user does not need to
remember instructions nor has to remember the right
format of writing instructions. Instructions are supplied
and the user needs only to select the required
instruction. If the user enters a wrong instruction
format, the system will reject it. Only legal instruction
format is accepted by the system. For example, if the
user enters only one operand for an instruction that
takes two operands, the system will not allow him/her
to continue with the next instruction and so forth. As
the number of available instructions is too large to fit in
the limited space of the editor, these instructions are
divided into five groups:
* Data transfer group.
* Arithmetic and logical group.
* String manipulation group.
* Control transfer.
 Processor control group.
 The operation of the keypad editor is shown in the
state chart of Fig. 6.
 Once the system is started, the user is prompted to
select an instruction set group, one from the groups list
stated above. All instructions from the selected group
will be displayed. When selects an instruction, the user
will be prompted for the exact number of operands that
are required by the instruction. Every instruction keyed-
in will be automatically displayed on the main display.
The system determines the length of the current
instruction and hence calculates the start of the next
instruction. Figure 7 shows a screen shot of the keypad
editor when the control transfer instruction group is
selected. It is useful to mention here that if other group
is selected only the instructions within that group will
be displayed. Figure 8 is another screen shot of the
main display where the mnemonics of instructions are
displayed. When the program is completely entered, it
will be moved to the assembler where it is converted to
binary, all links are resolved and then is converted to an
executable form. In the next subsection we will be
briefly talking about the assembler.

The assembler: There are a large number of
commercially available assemblers, many of them are
offered for free. The problem with these assemblers is
the platform dependency, that is, they generate code
plus extra information that is suitable to the underlying
software and hardware. For the purpose of this
simulator, this extra information will create problems.
 In order to provide the pure binary code for the
simulator we had to choose between two solutions. The
first is to use one of the available assemblers and
perform clean up operation on the generated code. The
second is to develop our own assembler. Although the

second choice needed hard work to accomplish but
nevertheless it always generates the clean code that the
first choice would not guarantee. This assembler, which
is regarded as one major part of this work is based on
Intel x86 processors. The Intel processors are used in
the majority of PCs and are also the subject in a great
number of computer architecture textbooks.

Fig. 5: The system state chart

Fig. 6: The keypad state chart

Fig. 7: Control transfer instruction group

This assembler is good for programs written for all x86
processors from 80286 to Pentium 4. The user can
code programs using 8-bit, 16-bit and/or 32-bit
registers.

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2119

The Database: As described in the previous subsection
regarding the specially developed assembler, a database
is required for assembling purposes, that is, converting
assembly language programs to binary executable
forms. Programs and log files are also stored. The user
can at any time delete these files. However, the
database conversion tables are inaccessible by the users
and can not be altered or modified by them.
The simulator: The simulator contains a variety of
displays, functionalities and controls. Figure 9 shows a
block diagram of the simulator part. The main memory
displays the binary program in hexadecimal values. At
the start of execution, the user is asked to select the size
of the main memory block which is the same size o the
cache line. This is used in matching calculations
between the main memory and the cache. Before
running the program, the user has to select the mapping
algorithm and the write policy. The program may be
run in normal mode or in a step-by-step fashion. In
normal mode, the user may pause and resume execution
at any time. The user may also select the speed of
running so he/she can comfortably see the transfer of
data between processor, cache and main memory. This
is displayed as a dynamic flowchart as seen in Fig. 10.
The current action is displayed in red so the user can
easily follow the program execution. On the other hand,
the user may prefer to run the program in single steps.
This gives more time to the user to see how the
program runs and how data is moved. The execution
controls are shown in Fig. 11. A log window that
displays the actions taken to run the program is also
given. This gives the user a detailed textual description
of what has happened during the execution of the
program. This is shown in Fig. 12.
 The principle operation of this tool is as follows.
The CPU fetches the first instruction from the main
memory and put it the cache. Normally, the CPU brings
more than one instruction so next time it does not need
to go to the main memory. Next, the CPU reads from
the cache and if the instruction or data requested is
available in the cache it will take it from there. This
represents a hit operation. On the other hand if the
requested instruction or data is not in the cache, the
CPU will bring another block from the main memory
and put it in the cache. This represents a miss operation.
 The cache replacement is dependant on the
selected mapping function. If the Direct mapping is
selected, there will be no choice as this is a one-to-one
mapping technique. This means that each word in the
main memory should sit in a specific place in the cache
and if this place is occupied it will be overwritten. If the
2-Way Associative mapping is used, for instance, there
will be two possible places in the cache for each word
in the main memory. If one of them is occupied, the
second one is used. If both of them are occupied, one of
these positions will be overwritten. The replacement
will be carried out according to the selected

replacement algorithm. The available replacement
algorithms are stated in a previous section of this
article.
 The CPU normally operates on the data in the
cache and may or may not change it. If no change takes
place, this will cause no problem when the data in the
cache is replaced. However, if the data in the cache is
changed, this will result in two different values for the
same variable, one in the main memory and the other in

Fig. 8: The program editor

Fig. 9: The simulator block diagram

the cache. This discrepancy in values must be resolved
in order to avoid potential problems.
 The way the CPU resolves this problem depends
on the user selection of write policy. If write through

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2120

was selected, any change in data in the cache is
reflected in the main memory immediately. This might
create traffic overhead on the system busses but is
necessary if the main memory is used by more than one
processor or another input/output device such as the
DMA. However, if the write back policy was selected,
the change in the memory is only done when the
changed data in the cache is replaced. This reduces the
traffic overhead but may create the risk of data
inconsistency.

Fig. 10: The dynamic flowchart of the simulator

Fig. 11: Program execution controls

Fig. 12: Action logging window

CONCLUSION

 The purpose of this work was to develop an
educational tool to help describing the main
architectural concepts of a computer system. This tool
is of a great help to computer engineering and computer
science students who study the computing systems or
computer architecture and organization courses.
 A large number of computer simulators of different
degrees of complexity is available. Examples of
available simulators include Digital Logic Simulators,
Theoretical Machine Simulators, Intermediate
Instruction Set Simulators, Advanced Microarchitecture
Simulators and Multi-Processor Simulators (including
Multi-Processor Interconnection Network Simulators).
Trace-driven simulation is often a cost-effective way to
estimate the performance of computer system designs.
It is a very popular way to study and evaluate computer
architectures, obtaining an acceptable estimation of
performance before a system is built. Simulators of this
type usually require memory traces in special text
format to operate.
 From the author experience teaching computer
architecture courses for many years, two main problems
were identified where students find difficult to
comprehend more than others. These problems seemed
to have been consistent over the years. The first
problem is related to the difficulties of programming in
assembly language and the inefficient use of
processor’s registers. The second problem is related to
cache memory issues and operation such as mapping
functions, write policies, replacement algorithms and
cache coherence.
 A computer simulator was developed to address
these two issues. The simulator is equipped with easy-
to-use graphical user interface. It contains an Intel-
based assembly language programming editor that
allows the user to select instructions rather than typing
them. The total number of instructions is rather big and
therefore any attempt to display all the available
instructions on one screen makes it very difficult for the
user to use. Instead, instructions are divided into
functionally related groups. Once a group is selected,
all the instructions within that group will be displayed.
The editor automatically determines the number of
operands needed for each particular instruction and will
not allow an illegal instruction format to be entered.
This, in fact, serves as a programming educator and it
is, in this context, representing a valuable educational
tool. Memory allocation and addressing is
automatically dealt with by the system. Programs' files
are stored in the database in two formats, the source
(mnemonics) and in binary executable forms too. A
specially designed assembler is used. The reason for
that is no commercially available assembler would
generate the pure binary code that is understood by the
simulator.

Am. J. Applied Sci., 3 (11): 2114-2121, 2006

 2121

 Once a program is coded and assembled, a second
user interface will be displayed. This screen contains all
the controls that allow the user to define the simulator
settings. This includes memory block size, cache size,
mapping function, write policy and replacement
algorithm. It also includes the execution modes. Two
modes are available the first mode is the normal mode
where the user can pause and resume at any time as
well as controlling the speed of execution. A flowchart
that dynamically shows the movement of data between
processor, cache and main memory is provided. The
screen also shows displays of the current contents of the
main memory, cache memory and CPU registers. A
window that logs all events during program execution is
also provided.
 Although this tool represents a great help to users,
it still has a room for more changes and improvements.
This simulator does not provide the full set of
instructions and does not allow entering more
complicated programs. Future work can improve the
simulator to cover the full set of instructions and more
complicated combination of these. Also, the simulator
can be improved to cover more complex issues of cache
memory such as burst-mode cache, victim cache and
more complicated cache coherency issues.

ACKNOWLEDGEMENT

 The author would like to express his sincere
appreciation to the Research Affairs at the United Arab
Emirates University for the financial support of this
project. The author would also like to express his
gratitude to Moza Mohammed, Hamda Al-Awar,
Maryam Al-Aryani, Asma Mohd Al-Nayadi and
Mariam Mohammed Al-Raisi for the valuable help.

REFERENCES

1. Lim, H.-B. and P.-C. Yew, 2001. Efficient

integration of compiler-directed cache coherence
and data perfecting. J. Parallel and Distributed
Computing, 61: 1775–1802.

2. Papamarcos, M. and J. Patel, 1984. A low-
overhead coherence solution for multiprocessors
with private cache memories. Proc. 11th Intl.
Symp. Computer Architecture, pp: 348–354.

3. Laudon, J. and D. Lenoski, 1997. The SGI origin:
A CCNUMA highly scalable server. Proc. 24th
Intl. Symp. Computer Architecture, pp: 241–251.

4. Lenoski, D., J. Laudon, K. Gharachorloo, A. Gupta
and J. Hennessy, 1990. The directory-based cache
coherence protocol for the DASH multiprocessor.
Proc. 17th Intl. Symp. Computer Architecture, pp:
148–159.

5. Agarwal, A., R. Bianchini, D. Chaiken, K.L.
Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim, K.
Mackenzie and D. Yeung, 1995. The MIT Alewife
machine: Architecture and performance. Proc.
22nd Intl. Symp. Computer Architecture, pp: 2-13.

6. Chaiken, D. and A. Agarwal, 1994. Software-
extended coherent shared memory: Performance
and Cost. Proc. 21st Intl. Symp. Computer
Architecture, pp: 314-324

7. Chiou, D., B.S. Ang, R. Greiner, Arvind, J.C. Hoe,
M.J. Beckerle, J.C. Hoe, M.J. Beckerle, J.E. Hicks
and A. Boughton, 1995. StarT-ng: Delivering
seamless parallel computing. Proc. EURO-
PAR'95. Lecture Notes in Computer Science, No.
966, pp. 101-116, Springer-Verlag, Berlin.

8. Grahn, H. and P. Stenstro, 1995. Efficient
strategies for software-only directory protocols in
shared-memory multiprocessors. Proc. 22nd Intl.
Symp. Computer Architecture, pp: 38-47.

9. Grahn, H. and P. Stenstroem, 2000. Comparative
evaluation of latency tolerating and reducing
techniques for hardware-only and software-only
directory protocols. J. Parallel and Distributed
Computing, 60: 807-834.

10. Angel, M., J. Manuel and J. Antonio, 2001. An
educational tool for testing caches on symmetric
multiprocessors. Microprocessors and
Microsystems, 25: 187-194.

11. Leon Atkinson, Caching, Zend, the php company,
http://www.zend.com/zend/trick/tricks-dec-
2001.php

12. Stalling, W., 2003. Computer Organization and
Architecture, Designing for Performance. 6th Edn.
Prentice Hall.

13. University of Swansea, Department of Computer
Science, Staff and Student Server, Cache Systems,
http://www.cs.swan.ac.uk/~csneal/HPM/cache.htm
l

14. Popov, D., E. Foutekova, I. Delchev, I. Krivulev
and Z. Kochovski, 2003. Cache Memory
Implementation And Design Techniques,
http://www.faculty.iu-bremen. de/birk/ lectures/
PC101-2003/07cache/cache%20memory.htm

15. Phil Storrs PC Hardware book, Cache Memory
Systems, Phil Storrs, December 1998.

