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Abstract: This paper models and forecasts volatility (conditional variance) on the Ghana Stock 
Exchange using a random walk (RW), GARCH(1,1), EGARCH(1,1), and TGARCH(1,1) models. The 
unique ‘three days a week’ Databank Stock Index (DSI) was used to study the dynamics of the Ghana 
stock market volatility over a 10-year period. The competing volatility models were estimated and their 
specification and forecast performance compared with each other, using AIC and LL information 
criteria and BDS nonlinearity diagnostic checks. The DSI exhibits the stylized characteristics such as 
volatility clustering, leptokurtosis and asymmetry effects associated with stock market returns on more 
advanced stock markets. The random walk hypothesis is rejected for the DSI. Overall, the GARCH 
(1,1) model outperformed the other models under the assumption that the innovations follow a normal 
distribution.  
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INTRODUCTION 
 

Interest in financial markets and the possibility to 
forecast their course is connected to the growing 
recognition among economists, financial analysts, and 
policy makers of the increasing impact of financial 
variables on the macro economy and thus on economic 
policy in general. The Latin American, Southeast 
Asian, and Russian financial crises are good reminders 
of this fact. Also central to the interest in financial 
market variables is its importance in asset pricing, 
portfolio allocation, or market risk measurement. 
According to [1] modelling volatility in financial 
markets is important because it sheds further light on 
the data generating process of the returns.  
 
Financial sector development and reforms in many Sub-
Saharan Africa (SSA) countries aimed at shifting their 
financial systems from one of bank-based to security 
market-based has orchestrated the establishment of 
many stock markets over the last two decades. 
Liberalisations and deregulations of markets for 
financial sector development to facilitate economic 
growth have also been informed by the drastic shift 
towards property-owning economies and the 
concomitant growing demand for access to capital [2] 

  
As part of the financial sector reforms in Ghana, there 
have been renewed efforts aimed at promoting 

investments and listings on the Ghana stock market to 
open access to capital for corporate bodies and greater 
returns for investors. The stock market provides an 
added dimension of investment opportunity for both 
individuals and institutional investors with the fall in 
the returns on government treasury bills and bonds. 
Thus recent listings on the bourse saw equities being 
oversubscribed. See [3] and [4] for more stylized facts on 
the GSE. The current interest in understanding the 
dynamics of volatility of returns on the stock market by 
investors, markets practitioners, business press and 
academic researchers therefore, does not come as a 
surprise considering the rapid pace of development and 
change. Of particular interest to researchers is the 
ability to model and forecast future movements in 
returns based on information contained in historical 
trading activities. 
 
The purpose of this study is to model and quantify 
volatility of returns on the Ghanaian stock market with 
different types of GARCH models. We use the basic 
random walk model, a symmetric GARCH (1,1) model 
and two asymmetric EGARCH (1,1) and TGARCH 
(1,1) to capture the main characteristics of financial 
time series such as fat-tails, volatility clustering and the 
leverage effect. The basic random walk (RW) model is 
included to test for the random walk (Efficient Market) 
hypothesis. This information is clearly of particular 
importance for making economic decisions.  
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There is a large literature on modelling and forecasting 
volatility, however, none of such studies has appeared 
in the literature focusing on the Ghana Stock Exchange 
(GSE). [4] used both daily and monthly stock data to 
examine calendar anomalies (day of the week and 
month of the year effects) in the GSE they employed 
non-linear models from the GARCH family in a rolling 
framework to investigate the role of asymmetries.  
Their evidence suggests that the best model is the 
threshold generalised autoregressive conditional 
heteroscedasticity (TGARCH) model. The TGARCH 
performs better than the OLS, GARCH, and EGARCH 
models in terms of both information criteria and the log 
likelihood function value for anomalies in rolling 
windows. According to [2], studying African markets 
integration have suggested that the univariate EGARCH 
model suggested by [5] are appropriate for the analysis 
of African market since they can successfully model 
asymmetric impacts of good news (market advances) 
and bad news (market retreats) on volatility 
transmission with high levels of accuracy. Using 
weekly market data from January 1993 to 2000 for 
Ghana, they found no evidence of asymmetry (i.e. 
leverage effect). This paper will focus on modelling and 
forecasting the conditional variance. [6] for Egypt and [7] 
for Kenya and Nigeria are other studies that focused on 
African markets.  
 
The rest of this paper is organized as follows. Section 2 
deals with the volatility models considered for this 
paper. The description of the DSI data and the 
methodology is presented in section 3. The results and 
discussions are presented in section 4 and section 5 
concludes the paper.  
 
Univariate Models of Conditional Volatility  
Random Walk Model: Traditional econometric 
models, such as the Ordinary Least Square method, are 
built on the assumption of constant variance. In the first 
place, supporters of the efficient market hypothesis 
(EMH) claim that stock price indices are basically 
random and as such any speculation based on past 
information is fruitless. The basic model for estimating 
volatility in stock returns using OLS is the naive 
random walk (RW) model is given in (1).  

t tr µ ε= +     (1) 

where under the EMH or random walk hypothesis µ , 
the mean value of returns, is expected to be 
insignificantly different from zero; and tε , the error 
term, should be not be serially correlated over time. 
Secondly, a more general AR1-OLS model could also 
be estimated as: 
 1tt tr rµ φ ε− += +    (2) 
However, real-world financial time-series do not 
behave in a random manner. Financial time series, 
unlike other economic series, usually exhibit a set of 

peculiar characteristics. Stock market returns display 
volatility clustering or volatility pooling, where large 
changes in these returns series tend to be followed by 
large changes and small changes by small changes [8] 
leading to contiguous periods of volatility and stability. 
Stock returns also exhibit leptokurtosis, or in other 
words, the distribution of their returns tends to be fat-
tailed [9] Yet another characteristic of stock returns is 
the exhibition of “leverage effect” which means that a 
fall in returns is accompanied by an increase in 
volatility greater than the volatility induced by an 
increase in returns [10] .These characteristics cannot be 
explained with linear models such as the RW and OLS. 
[11] and [12] independently introduced the autoregressive 
conditional heteroscedasticity (ARCH) and the 
generalized ARCH models, which specifically allows 
for changing conditional variance.  Various extensions 
of these GARCH models have been introduced to 
account for asymmetry effects. The basic GARCH (1,1) 
variants derived below are estimated in this study.  
According to [13] ,the lag order (1,1) model is sufficient 
to capture all of the volatility clustering that is present 
from the data.  
 
GARCH: The GARCH (1, 1) model by [12 ] is based on 
the assumption that forecasts of time varying variance 
depend on the lagged variance of the asset. An 
unexpected increase or decrease in returns at time t will 
generate an increase in the expected variability in the 
next period. The basic and most widespread model 
GARCH (1,1) can be expressed as:  

( )1 t 1

2
1 1

;  / ~ 0,t t t t t

t t t

r r N h

h h

µ φ ε ε

ϖ αε β
− −

− −

= + + Φ

= + +
  

   (3) 
where 0,  0,  0ω α β� � � . The GARCH (1, 1) is 

weakly stationary if 1α β+ � , ϖ  is the mean, 2
1tε −  

is the news about volatility from the previous period 
(the ARCH term), and 1th −  the conditional variance is 
the last period forecast variance (the GARCH term) and 
must be nonnegative.   
 

The basic GARCH is symmetric and does not 
capture the asymmetry effect that is inherent in most 
stock markets return data also known as the “leverage 
effect”. In the context of financial time series analysis 
the asymmetry effect refers to the characteristic of 
times series on asset prices that ‘bad news’ tends to 
increase volatility more than ‘good news’ [10,5].  The 
Exponential GARCH (EGARCH) model and the 
Threshold GARCH (TGARCH) model proposed by [5] 
and [14], respectively are specifically designed to capture 
the asymmetry shock to the conditional variance.  
 
EGARCH: In the EGARCH model the natural 
logarithm of the conditional variance is allowed to vary 
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over time as a function of the lagged error terms rather 
than lagged squared errors. The EGARCH (1,1) model 
can be written as: 

( )
1 1

1 1

1 t 1

2 2
1
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t t

t t t t t
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The exponential nature of the EGARCH ensures that 
the conditional variance is always positive even if the 
parameter values are negative, thus there is no need for 
parameter restrictions to impose nonnegativity. γ  
captures the asymmetric effect.  
 
TGARCH: The TGARCH modifies the original 
GARCH specification using a dummy variable. The 
TGARCH model is based on the assumption that 
unexpected changes in the market returns have different 
effects on the conditional variance of the returns. Good 
news goes with an unforeseen increase and hence will 
contribute to the variance through the coefficient β  
instead of an unexpected decrease which is presented as 
a bad news and contributes to the variance with the 
coefficient α γ+ . If 0γ >  the leverage effect exists 

and news impact is asymmetric if 0γ ≠ . The GJR 
model is written as:  

( )1 t 1
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(5) 

 
MATERIALS AND METHODS 

 
The sample of data used in this exercise is the daily 
closing prices of the Ghana Stock Exchange Databank 
Stock Index (DSI) over the period extending from 15 
June 1994 to 28 April 2004 making total observations 
of 1508 excluding public holidays.   The data are 
obtained from the Databank Research and Information 
Limited (DRIL), Ghana. The DSI was the first major 
share index on the GSE and its computation began on 
12 November 1990. The index is composed of all the 
listed equities on the market. The DSI returns (rt) at 
time t are defined in the natural logarithm of the DSI 

indices (p), that is, ( )1lnt t tr p p −= . In order to 

make forecasts, the full sample is divided into two parts 
comprising 1342 in-sample observations from 15 June 
1994 to 28 March 2003 and 166 out of sample 
observations from 31 March 2003 to 28 April 2004.  
Descriptive statistics for the DSI returns series are 
shown Table 1. As is expected for a time series of 
returns, the mean is close to zero.  
 
Generally the index has a large difference between its 
maximum and minimum returns. The standard 
deviation is also high indicating a high level of  

Table 1: Descriptive Statistics of DSI Returns Series   
Mean         0.001961         Skewness        2.217609 
Max.          0.121210         Kurtosis         44.86563 
Min.          -0.092106       Jarque-Bera    111439.8 
 Std. Dev.  0.010434        Probability      0.000000 
Sample: June 15, 1994 to April 28, 2004 
 
fluctuations of the DSI daily return. There is also 
evidence of positive skewness, which means that the 
right tail is particularly extreme, an indication that the 
DSI has non-symmetric returns. DSI’s returns are 
leptokurtic or fat-tailed, given its large kurtosis 
statistics in Table 1. The kurtosis exceeds the normal 
value of 3. The series is non-normal according to the 
Jarque-Bera test, which rejects normality at the 1% 
level for each series. Figure 1 presents the patterns of 
the price and returns series of the DSI for the period 
under review. The index looks like a random walk. The 
density graph and QQ-plot against the normal 
distribution shows that the returns distribution also 
exhibits fat tails confirming the results in table1. 
 
The autocorrelation coefficients of the squared DSI 
returns are presented in Table 2. We can observe that 
the index shows evidence of ARCH effects judging 
from the significant autocorrelation coefficients. The 
significant autocorrelation in squared returns series 
proves the presence of volatility clustering that could be 
caused by the high kurtosis values. The autocorrelation 
in the series dies out after the 28 lags. The test p-values 
indicate a first order autocorrelation in the sample series 
(i.e. accepts the “no ARCH” hypothesis). The “no 
ARCH” hypothesis is however rejected for all other 
orders. This is an indication that an AR1 conditional 
mean model will be more suitable for our DSI series. 
Both the ADF and PP test statistics (not reported) reject 
the hypothesis of a unit root in the return series at 1% 
level of significance. These characteristics of the DSI 
returns series are consistent with other financial times 
series.  
 
The RW, GARCH(1,1), EGARCH(1,1), TGARCH(1,1) 
models are estimated for the DSI returns series using 
the  robust method of Bolleslev-Wooldridge’s quasi-
maximum likelihood estimator (QMLE) assuming the 
Gaussian standard normal distribution. Next, we use a 
combination of information criteria such as minimum 
Akaike information criteria (AIC) and the maximum 
Log-likelihood (LL) values and a set of model 
diagnostic tests (ARCH-LM test, Q-statistics and BDS 
test) to choose the volatility model that best models the 
conditional variance of the DSI. For this exercise, the 
[15] nonparametric BDS test for serial independence is 
applied. The test is used to detect non-linearity in the 
standardised residuals and is based on the null 
hypothesis that the data are pure white noise 
(completely random)[16]. According to [17], the principle 
is that once any linear or non-linear structure is 
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Fig. 1: DSI Returns and Tail Distribution 

 
Table 2: Autocorrelation of Squared DSI Returns 
Order   AC  PAC                 Q-Stat    p-value 
1 0.018 0.018                 0.4754    0.491 
3 0.019 0.016                  18.878    0.000 
6 0.080 0.063                  42.671    0.000 
9 0.068 0.058                  56.747    0.000 
15 0.019 -0.011                  149.21    0.000 
21 0.003 -0.020                 173.53    0.000 
28 0.000 -0.009                  183.70    0.000 
Sample: June 15, 1994 to April 28, 2004 

 
Table 3: Estimated Volatility Models  
Models RW GARCH TGARCH EGARCH 
Mean Equation 
µ  0.0012 ( 4.15)*** 0.00059 (2.95)*** 0.00075 (4.11)*** 0.00039 (1.37) 

φ  - 0.16449 (2.92)*** 0.1163 (2.92)*** 0.05204 (1.09) 

Variance equation 
ϖ  - 1.01E-05 (1.31) 6.50E-06 (1.68) -0.62708 (-1.61) 
α  - 0.14208 (3.40)*** 0.15599 (2.43)** 0.14324 (3.05)*** 

β  - 0.7798 (10.34)*** 0.85406 (20.40)*** 0.94170 (23.40)*** 
γ  - - -0.15418 (-2.16)** 0.12769 (1.58) 
Q-stat (20) 163.29*** 1.4902  0.6235  0.7052  
ARCH Test 6.8442*** 0.07228 0.03032 0.03399  
AIC -6.28754 -6.63973 -6.67792 -6.68871 

LL 4219.904 4460.263 4486.892 4494.101 

Note: z-statistics [t-stat for RW] in brackets. ***(**)denotes 1% (5%) significance. Superscripts (1) denotes rank of model. 
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Table 4: BDS Diagnostic Tests for Serial Independence in Residuals  
 RW GARCH TGARCH EGARCH 

BDS Asymptotic (p-values)    

Dimension ε = 0.93 ε = 0.95 ε = 0.99 ε = 0.93 ε = 0.95 ε = 0.99 ε = 0.93 ε = 0.95 ε = 0.99 ε = 0.93 ε = 0.95 ε = 0.99 

2 0.0 0.0807 0.9118 0.8901 0.5053 0.9351 0.4061 0.8425 0.9304 0.5829 0.6687 0.9078 

3 0.0 0.0010 0.9022 0.5157 0.8733 0.9096 0.0492 0.4664 0.9163 0.1444 0.6284 0.8827 

4 0.0 0.0005 0.8820 0.5571 0.8127 0.8899 0.0316 0.4431 0.8960 0.1261 0.5930 0.8615 

5 0.0 0.0000 0.8873 0.5920 0.7047 0.8680 0.0444 0.5465 0.8765 0.1508 0.6823 0.8403 

BDS Bootstrap (p-values)   

2 0.002 0.1640 0.850 0.9860 0.6960 0.3720 0.3760 0.8740 0.4440 0.5800 0.9300 0.9880 

3 0.002 0.0160 0.0660 0.4680 0.9860 0.4120 0.0820 0.3800 0.3960 0.1820 0.5700 0.9940 

4 0.002 0.0060 0.0940 0.5040 0.9600 0.4320 0.0500 0.3420 0.4540 0.1740 0.5680 0.9960 

5 0.000 0.0000 0.1260 0.5260 0.8040 0.5640 0.0500 0.4420 0.5160 0.1740 0.6420 0.8940 

Note: the ordinary residuals of the RW and standardized residuals of the GARCH models were used for the BDS test. Bootstrap with 1000 new 
sample and 1342 repetitions for all GARCH models. ε denotes fraction of pairs epsilon value. 
 
removed from the data, the remaining structure should 
be due to an unknown non-linear data generating 
process. In this case, if a model is the true data 
generating process then we expect its residuals to be 
white noise otherwise we reject the null hypothesis and 
consider the model as inadequate to capture all of the 
relevant features of the data. Hence the BDS test 
statistic for the standardised residuals will be 
statistically significant. We estimated the models using 
both EViews 5.1 and PcGive programs.  
 

RESULTS AND DISCUSSION 
 

The results of estimation and statistical verification of 
the RW, GARCH(1,1), TGARCH(1,1), and 
EGARCH(1,1) models are shown in Table 3. The 
conditional mean ( µ ) and the AR1 (φ ) parameters are 
significant in all the estimated models except the 
EGARCH model. The ARCH (α ) and GARCH ( β ) 
terms are positive and significant in all estimations 
(Table 3). The sum of the ARCH and GARCH 
coefficients (α β+ ) is very close to one, indicating 
that volatility shocks are quite persistent. 
 
The univariate RW, GARCH(1,1), TGARCH(1,1) and 
EGARCH(1,1) models are used to provide estimates of 
the conditional volatilities associated with the DSI for 
the period 15 June 1994 to 28 April 2004. Table 3 
reports the estimated parameters and the robust t-ratios. 
 
Column 2 of table 3 reports the OLS estimate of the 
constant of the RW model in equation (1), together with 
a ARCH-LM test statistic. The results suggest that the 

mean ( µ ) of the return series is significantly different 
from zero, which is inconsistent with the random walk 
hypothesis. Furthermore, the battery of model 
diagnostic tests applied to the residuals of the RW 
model (Tables 3 and 4) are very significant at 1% level. 
ARCH-LM test and Q-stat of the standardized residuals 
show the presence of significant ARCH effects and 
autocorrelation in the RW model. The BDS test further 
strongly rejects the null hypothesis of a white noise 
(completely random) DSI returns at 1% significance 
level. The BDS result is also a suggestion of the 
absence of nonlinear dependence in the series. We 
therefore reject the hypothesis that the GSE – DSI 
follows a random walk. A comparison of the RW model 
with the other GARCH models using the minimum AIC 
and maximum LL values also indicates that it is the 
least preferred model to fit the DSI series.   
 
The parameter estimates of all the GARCH models in 
table 3 show that the coefficients of the conditional 
variance equation, α  and β , are significant at 1% and 
5% levels implying a strong support for the ARCH and 
GARCH effects. The sum of the ARCH (�) and the 
GARCH ( β ) estimates are quite close to unity, which 
is an indication of a covariance stationary model with a 
high degree of persistence; and long memory in the 
conditional variance. In the GARCH(1,1) model, 

0.92188α β+ =  is also an estimation of the rate at 
which the response function decays on daily basis. 
Since the rate is high, the response function to shocks is 
likely to die slowly. In other words, if there is a new 
shock it will have implication on returns for a longer 
period. In such markets old information is more 
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important than recent information and that the 
information decays very slowly. For the TGARCH and 
EGARCH models the persistence in volatility is very 
long and explosive suggestive of an integrated process. 
This is consistent with [4]. The asymmetric (leverage) 
effect captured by the parameter estimate γ  is negative 
and significant in the TGARCH suggesting the 
presence of a leverage effect. The asymmetry term is 
however positive and insignificantly different from zero 
in the EGARCH model, also suggesting no leverage 
effect.  The presence of a leverage effect is mixed. The 
TGARCH results is consistent with [4] for the same 
period under review while the   EGARCH  results is 
consistent with [2] for the two separate periods (1993-
2000) and (1997-2000) for the GSE stock index.  
 
The results of the diagnostic tests show that the 
GARCH models are correctly specified. The Q-
statistics for the standardized squared residuals are 
insignificant, suggesting the GARCH models are 
successful at modelling the serial correlation structure 
in the conditional means and conditional variances 
(Table 3). In the case of white noise (randomness) 
hypothesis, both the bootstrapped and asymptotic p-
values of the BDS test on the standardized residuals of 
all the GARCH models show that we can accept the 
null hypothesis of white noise (randomness) at 0.99 
epsilon bound (Table 4).    
 
Overall, using the minimum AIC, maximum LL values 
and the BDS test p-values as model selection criteria 
for the GARCH models, the preferred model is the 
EGARCH model based on the AIC and LL. However 
the BDS test results in table 4 shows that the 
GARCH(1,1) is the best model to capture all the serial 
dependence and inherent nonlinearity in the DSI 
returns.  
 
 
Note: the ordinary residuals of the RW and 
standardized residuals of the GARCH models were 
used for the BDS test. Bootstrap with 1000 new sample 
and 1342 repetitions for all GARCH models. ε denotes 
fraction of pairs epsilon value. 
 
Forecast Performance: The models were also 
evaluated in terms of their forecasting ability of future 
returns. The common measures of forecast evaluation 
the RMSE, MAE, MAPE and TIC were used. In table 5 
the results of the forecast of the performance are shown. 
The model that exhibits the lowest values of the error 
measurements is considered to be the best one. The 
results shows that the symmetric GARCH(1,1) model 
outperformed all the other models. This is supported by 
its highest R2 value (not reported) compared to the 
others.  The EGARCH(1,1) model performed the least 
in forecasting the conditional volatility of the DSI 

returns. These findings support [18] view that relatively 
complex nonlinear models are inferior in forecasting to 
simpler parsimonious models. Figure 2 presents the out-
of-sample volatility forecast and variance forecast of 
the DSI returns.  
 

CONCLUSIONS 
 
The volatility of the DSI returns have been modelled 
for forecasting using a linear random walk model 
(RW), a nonlinear symmetric GARCH(1,1) model, and 
two nonlinear asymmetric models  TGARCH(1,1) and 
EGARCH(1,1).  We found that the DSI exhibits the 
stylised characteristics such as volatility clustering, 
leptokurtosis and asymmetry effects associated with 
stock returns on more advanced stock markets. The 
random walk hypothesis is also rejected for the GSE 
DSI returns.  The parameter estimates of the GARCH 
models (  and α β ) suggest a high degree persistent in 
the conditional volatility of stock returns on the Ghana 
Stock Exchange. The evidence of high volatility 
persistence and long memory in the GARCH models 
suggests that an integrated GARCH model may be 
more adequate to describe the DSI series. By and large, 
the GARCH(1,1) model is able to model and forecast 
the conditional volatility of the DSI better than the 
other competing models.  
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