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Abstract: The performance of database transaction processing system can be profoundly affected by 
the concurrency control method employed since it is necessary to preserve database integrity in a 
multi-user environment. In addition to satisfying the consistency requirement as in traditional database 
system, real-time database systems must also satisfy timing constraints. In this study we present a 
virtual run policy for the restarted first run optimistic transactions and compare its performance with 
optimistic concurrency control in firm real-time database system. 
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INTRODUCTION 

 
 The problem of concurrency in database systems 
has been considered by many researchers and several 
concurrency control mechanisms have been 
introduced[1-4]. Concurrency means that different users 
have access to the database at the same time. In such a 
system each user must be protected against others. We 
must avoid the situation in which one user is altering an 
object in the database, while another user is reading 
it[1]. The task of a concurrency control mechanism is to 
ensure the consistency of the database while allowing a 
set of transactions (i.e., user’s programs) to execute 
concurrently. 
 During the last few years the interest in the study 
of real time database system (RTDBS) has increased 
considerably because of their importance in a wide 
range of applications. A real time database is a database 
system where transactions have explicit timing 
constraints such as deadlines[5-7]. Concurrency control is 
one of the main issues in the study of real time database 
systems. In addition to satisfying consistency 
requirements as in traditional database systems, a real 
time transaction processing system must also satisfy 
timing constraints. To support real time transaction 
processing the new criteria and issues to be considered 
in design and implementation of real time database 
systems are scheduling of CPU and I/O and the 
requirement that conflict resolution schemes used 
should be time cognizant[7]. 
 
Terms and definitions: The database is viewed as a 
set of distinct data objects. An object has a name and a 
value. Associated with the database is a set of assertions 
called integrity constraints. The database is in a correct 
state if the set of objects satisfies the integrity 
constraints. The state of the database undergoes 
changes because of the actions performed by the users. 
The sequence of actions of one user is called 
Transaction. A transaction is a program that issues 

reads and writes to a DBMS and it represents a unit that 
preserves integrity of the database. Transaction when 
executed alone transforms the database from one 
correct state to another correct state, but during 
intermediate stages of the execution of a transaction the 
integrity constraints may be violated, that is why 
concurrency control mechanisms prevent other 
transactions from seeing these transient stages. A 
transaction is executed atomically even in the face of 
failures, the database system either executes all of its 
actions or performs none of them[2]. Consistency deals 
with the correct processing of concurrent transactions. 
The concurrent execution of the transactions T1,......,Tn 
must produce the same effect as the execution of some 
serial schedule. A serial schedule is a schedule 
consisting of a sequence of transactions without any 
interleaving between their reads and writes (if Ti 
precedes Tj in the serial schedule, then all of Ti's 
operations precede all of Tj's operations). Since each 
transaction is a correct computation, a serial schedule is 
correct. An interleaved schedule (concurrent execution 
of transactions) is considered to be correct if its effect 
on the database is equivalent to that of a serial schedule 
and it is called a serializable schedule. Serializability is 
the main correctness criterion for concurrency 
control[1]. Serializability requires that the execution of 
each transaction must appear to every other transaction 
as a single atomic step. 
 Two transactions conflict if they access the same 
data object and one or both of them does (do) a write 
operation or update on that data object. The order in 
which operations execute is computationally significant 
if and only if the operations conflict. 
 
Characteristics of data and transactions in RTDBS: 
Transaction characterization in RTDBS is based on the 
manner in which data is used by the transaction, nature 
of time constraints and the significance of executing a 
transaction by its deadline or more precisely the 
consequence of missing specified time constraints. In 
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hard RTDBS, missing deadlines of transactions may 
result in catastrophic consequences, i.e., they are safety 
critical transactions. In soft RTDBS, transactions have 
time constraints but there may be some value in 
completing the transactions even after their deadline 
and this value drops to zero at a certain point past the 
deadline. When this value drops to zero by missing the 
transaction deadline it is referred to as Firm RTDBS but 
catastrophic consequence do not result if their deadlines 
are missed[8]. In these simulation experiments we 
assume firm real time database system model where 
transactions that missed their deadlines are aborted and 
permanently discarded from the system.  
 

CONCURRENCY CONTROL 
 
Conflict detection: Conflicts between transactions can 
be detected in two ways. Pessimistic method detects 
conflicts before making access to the data object[2]. 
When a transaction requests access to some data item, 
the concurrency control manager will examine this 
request and will determine whether to grant the request 
or not (if a conflict will occur or not). The optimistic 
method detects conflicts after transactions have 
accessed the data object when checking for 
serializability is done later at the certification time[4]. 
 Optimistic schemes are designed to get rid of the 
locking overhead. They are optimistic in the sense that 
they take into account the explicit assumption that 
conflicts among transactions are rare events. They rely 
on the hope that conflicts will not occur. Since locks are 
not used in pure optimistic concurrency control they are 
deadlock free (one of the disadvantages of lock-based 
schemes). The task of concurrency control is deferred 
until the end of transaction when some checking for 
potential conflicts has to take place and will be resolved 
accordingly, taking into consideration the amount of 
progress that has been done and the nature of conflict 
with transactions 
 
Resolving conflicts among concurrent transactions: 
When concurrency control detects a conflict among 
some concurrent transactions accessing the same object, 
a conflict resolution mechanism needs to be put on. 
Concurrency control manager decides which 
transaction (victim) to penalize (the lock holder or the 
requester) and chooses an appropriate action and 
suitable timing. Two possible actions are most used: 
Blocking (wait) and abort (restart). In pessimistic 
concurrency control either blocking or abort can be 
used to resolve the conflict[1]. However, in optimistic 
concurrency control only aborting is appropriate since 
conflict has been detected after the transaction has 
accessed the data object and performed some 
computation[4]. As for timing of action, it is immediate 
for blocking but it can be immediate or deferred 
(delayed) for aborting. 

OPTIMISTIC CONCURRENCY CONTROL 
 
 The basic idea of an optimistic concurrency control 
mechanism is that the execution of a transaction 
consists of three phases: read, validation and write 
phases as in Fig. 1. For all optimistic concurrency 
control (OCC) schemes a conflict is detected after the 
data object has been accessed. In the OCC, conflict 
detection and resolution are both done at the 
certification time when a transaction completes its 
execution; it requests the concurrency control manager 
to validate all its accessed data objects. If it has not yet 
been marked for abort, it enters the commit phase 
where it writes all its updates to the database. 
Backward-oriented OCC (BOCC) checks during the 
validation test of Tj whether its readset RS(Tj) 
intersects with any of the write sets WS(Ti) of all 
concurrently executed transactions Ti having finished 
their read phases before Tj. Forward-oriented OCC 
(FOCC) checks during the validation phase of Tj 
whether its write set WS(Tj) intersects with any of the 
read set RS(Ti) of all transactions Ti having not yet 
finished their read phases[4, 9,10].  
 
                         READ        VALIDATION      WRITE 

                                       

                                                            TIME 
 Fig. 1: The three phases of an optimistic transaction  
 
Extension of optimistic concurrency control for 
RTDBS: Ideally optimistic concurrency control (OCC) 
should be non-blocking and deadlock free. These 
properties make OCC attractive in real-time transaction 
processing. OCC may be in a better position to be 
integrated with priority driven CPU scheduling. To 
adapt OCC into RTDBS the main issue is how to 
incorporate priorities (time constraints) into conflict 
resolution[8,11,12]. The key component of optimistic 
concurrency control schemes is the validation phase 
where a transaction's destiny is decided. Transaction 
validation can be performed in one of two ways: 
forward validation and backward validation. In 
protocols that perform backward validation the 
validating transaction either commits or aborts 
depending on whether it has conflicts with transactions 
that have already committed. So this scheme does not 
allow us to take transaction characteristics into account 
and it is not suitable for real time database. In forward 
validation however, either the validating transaction or 
the conflicting ongoing transactions can be aborted to 
resolve conflicts. This scheme can be extended to real 
time database since the timing characteristics of 
transaction can be considered and proper decision can 
be taken in aborting, delaying the committing 
transaction or aborting the conflicting ongoing 
transactions. We explain below the three schemes used 
in our simulation experiments. 
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OCC-forward validation with virtual run policy: In 
this scheme (OCC_FV) the transaction that reaches its 
validation phase is allowed to commit if it is not a 
virtual first run transaction and all the active conflicting 
transactions which are in their read phases are 
immediately aborted and restarted if they are rerun 
transactions. In case some of the conflicting read phase 
transactions are in their first run, instead of aborting 
them they enter their virtual run and continue their read 
phase so as to bring data objects required to buffer, 
assuming the system buffer has a high retention effect, 
then a transaction in its second run and onward does not 
need to access the disk since the data objects are 
already in memory. When the virtual run transaction 
completes its read phase, it is aborted and resubmitted 
to the system to start its real second run. It is clear that 
there is no point to allow restarted rerun transaction to 
complete its read phase in virtual mode since all its data 
items are already in memory. This scheme does not take 
the transactions timing constraints into account and 
favours the validating one to save the amount of 
progress done by the validating transaction since it is 
near completion and will definitely complete if it is not 
restarted.  
 
OCC-sacrifice with virtual run policy: It is an 
optimistic protocol which uses a priority-driven abort 
for conflict resolution. In this protocol (OCC_OS) when 
a transaction reaches its validation phase, it is aborted if 
one or more conflicting transactions have higher 
priority than the validating one; otherwise it commits 
and all the conflicting read phase transactions are 
restarted immediately. This protocol uses transaction 
priority (timing constraints) in such a way that the 
validating transaction sacrifices itself for the sake of 
conflicting ones with higher priority.  
 If some of the restarted read phase transactions are 
in its first run, it enters the virtual run phase as 
explained above to complete its read phase, so its 
access pattern will be known and brought to buffer. On 
completing its virtual run, it is aborted and restarts its 
real second run. 
 
OCC-abort50 with virtual run policy: In this scheme 
(OCC_A50) when a transaction reaches its validation 
phase, its priority is checked against those conflicting 
transactions in the read phase. If more than 50 percent 
of the transactions in their read phase have higher 
priority than the transaction in its validation phase, the 
validating transaction is aborted and all other 
transactions are allowed to continue. If the number of 
transactions in the read phase having higher priority 
than validating transaction is less than or equal to 50 
percent, the validating transaction is allowed to commit 
and all the other transactions are restarted. 
 If some of the restarted read phase transactions are 
in its first run, it enter the virtual run phase as explained 
above. 

SIMULATION MODEL 
 
 Our program to simulate a RTDBS system was 
written in C. For each of the following experiments the 
simulation was run with the same parameter values for 
10 different random number seeds. Each run continued 
until 2000 transactions were executed. For each run the 
statistics gathered during the first few seconds were 
discarded in order to let the system stabilize after initial 
transient condition. 
 The simulation model for RTDBS is a single-site 
disk resident and memory resident database system 
operating on shared memory multiprocessors. CPUs 
share a single queue and the service discipline used for 
the queue is priority scheduling without preemption. 
Each disk has its own queue and is also scheduled with 
priority scheduling. Figure 2 shows the RTDBS 
queuing model. 
 In this model, the execution of a transaction 
consists of multiple instances of alternating data access 
request and data operation steps until all of the data 
operations in it complete or it is aborted for some 
reason. When a transaction completes its data access 
requests, it requests the concurrency control manager to 
validate them. if it is validated it enters the commit 
phase with raised priority to maximum so it can 
complete its write phase as fast as possible; otherwise it 
is aborted and enters the deadline test, if it missed its 
deadline it is terminated and discarded from the system 
since with the firm deadline assumption, transactions 
that have missed their deadlines are aborted and 
permanently discarded from the system, or it is 
restarted if there is a time to complete before missing its 
deadline. The data operation consists of disk access and 
CPU computation and the transaction passes through 
disk queue and CPU queue.  
 The database is modeled as a collection of data 
objects. A transaction consists of a mixed sequence of 
read and writes operations. We assume that a write 
operation is always preceded by a read, that is, the write 
set of a transaction is always a subset of its read set. A 
data item that is read is updated with the probability 
Update probability.  
 When a transaction attempts to read a data item, 
the system determines whether the object is in memory 
or disk using the probability DISK ACCESS PROB. If 
the data item is determined to be in memory, the 
transaction can continue processing without disk 
access. Otherwise, an I/O service request is created and 
placed in the input queue of the appropriate disk. The 
database is partitioned equally over the disks. 
 Transactions arrive in a Poisson stream, i.e., their 
inter-arrival times are exponentially distributed. 
 The assignment of deadlines to transaction is 
controlled by the parameters : minimum slack factor 
and maximum slack factor which set a lower and upper 
bound, respectively , on a transaction’s slack time and it  
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Fig. 2: RTDBS simulation model 
 
is generated uniformly using the arrival time, 
transaction length, CPU time and disk time. 
 In this system, the priorities of transactions are 
assigned by the Earliest Deadline First policy, which 
uses only deadline information to decide transaction 
priority, but not any other information about transaction 
execution time. 
 
Table 1: System resources and workload parameters 
Parameter Value 
Number of data objects in database 500 
Number of processors 4 
Number of disks 8 
Mean CPU time for processing a data object 15 
Mean disk service time for a data object 25 
Disk access probability 0.5 
Update probability per accessed object 0.5 
Mean transaction length (in accessed objects) 10 
Minimum slack factor 2 
Maximum slack factor 8 

 
 The important goal of RTDBS is to meet the time 
constraints of the transactions, therefore the primary 
performance metric used is the percentage of 
transactions which miss their deadlines, referred to as 
Miss Percentage. Miss Percentage is calculated with 
the following equation: 
Miss Percentage = 100 * (no. of tardy transactions / no. 
of transactions arrived). 
 We show also the average number of restarts per 
transaction which is referred to as restart count. 

RESULTS AND DISCUSSION 
 
 Here we present the performance results of our 
experiments for extending the optimistic concurrency 
control to real-time database systems and investigate 
the performance gain while incorporating its technique 
with virtual run policy for aborted first run transaction 
assuming sufficient buffer so that data blocks 
referenced by aborted transactions continue to be 
retained in memory and be available for access during 
reruns without I/O by the aborted or restarted rerun 
transaction. The optimistic concurrency control scheme 
OCC_FV with virtual run policy does better than the 
scheme without this policy under low system workload 
level up to 20 transactions/sec where system workload 
is controlled by the arrival rate of transactions in the 
system, but as the number of arriving transactions 
increases its performance is somewhat degraded. This is 
because the restarted first run transactions under this 
policy continue their read phases to bring the required 
data objects in memory in virtual run mode, increase 
the already high system resources contention since they 
compete for system resources and waits in system 
queues to complete their read phases in contrast to the 
other policy where the aborted first run transactions are 
restarted immediately. We get similar results for 
OCC_OS and OCC_A50 but are not shown due to 
space limitation. 
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 It is clear that the schemes using virtual run policy 
outperform significantly the other schemes for a wide 
range of system workload due to the elimination of I/O 
operations for rerun transactions since all the required 
data blocks are already in memory, brought by the first 
run of the restarted transaction in virtual mode. The 
virtual run policy helps transactions to complete fast 
and reduce the average number of restarts transactions 
encounter before completion. Similar results for 
OCC_OS and OCC_A50 are obtained. 
  At low arrival rate there is no much difference 
among the three protocols. However, as the arrival rate 
increases, OCC_A50 does better than OCC_OS and 
OCC_FV does even better than OCC_A50. The 
improvement in performance of OCC-FV can be done 
if it avoids wastage of work done by transactions as 
every transaction which reaches its validation phase is 
allowed to complete, unlike the case of OCC-OS where 
a transaction in its validation is aborted for the sake of a 
higher priority transaction still in its read phase which 
may later be killed. The OCC-A50 gives better 
performance than OCC-OS as we are aborting the 
transaction in its validation phase only if there are more 
than 50 percent of the transactions in the read phase of 
higher priority than the validating transaction. 
The restart counts of all the three schemes decrease 
after a certain workload point when system resources 
contention dominates data contention in discarding 
deadline missing transactions. 
 

CONCLUSION 
 
 A major difference between conventional database 
and real-time database transaction processing is their 
approach to resolving data and resource conflicts. 
Conventional database attempts either to be fair in data 
and resource allocation or to maximize resource 
utilization. In real-time databases, timely transaction 
execution is more important and both fairness and 
maximum resource utilization become secondary goals. 
Also, in contrast to conventional databases that use 
transaction response time and throughput as 
performance measures, real-time databases use the 
percentage of transactions that complete within their 
deadlines. In this study we presented some features 
which can be added to concurrency control, virtual run 
policy for restarted first run transaction and we show 
that it improves the performance of real-time optimistic 
concurrency control schemes especially under moderate 
system workload level and in systems with disk resident 
databases. 
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