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Abstract: The eigenfunctions and eigenvalues of the three-dimensional Schrödinger equation with a 
harmonic oscillator plus an inverse square interaction are obtained. A realization of the ladder 
operators for the wave functions is studied. It is found that these operators satisfy the commutation 
relations of an SU(1,1) group. The closed analytical expressions for the matrix elements of different 

functions   ρ and 
ρ

ρ
d
d

 with 2r=ρ  are evaluated. Another hidden symmetry explores the relations 

between the eigenvalues and eigenfunctions for substituting irr → . 
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INTRODUCTION 
 
It is well known that the algebraic method has been the 
subject of the interest in the wide variety of fields of 
physics. Systems displaying a dynamical symmetry can 
be treated by algebraic techniques [1, 2, 3, 4]. With the 
factorization method [5, 6, 7], we have established the 
ladder operators of a quantum system with some 
important potentials such as the Morse potential, the 
Pöschl-Teller one, the pseudoharmonic one, the 
infinitely square-well one and other quantum systems 
[8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 16, 17, 18]. From 
those ladder operators we can finally constitute a 
suitable algebra and simultaneously obtain the matrix 
elements for some related functions. It should be 
addressed that our approach is different from the 

traditional one, where an auxiliary variable was 
introduced [19], namely, we can construct the ladder 
operators only from the physical variable without 
introducing any auxiliary variable. Recently, the 
quantum system for the one-dimensional harmonic 
oscillator plus an inverse square interaction has been 
studied [20]. To our knowledge, however, the hidden 
symmetry of this quantum system is a gap to be filled 
in, which is the main purpose of the present work. 
 
The Eigenvalues and Eigenfunctions: Now, we are 
studying the exact solutions, which are necessary to be 
used to construct the ladder operators and constitute a 
suitable algebra. Consider the Schrödinger equation 
with a potential V(r) that depends only on the distance r 
from the origin: 
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where µ is the mass of the particle. In the present work, the potential V(r) is taken as the harmonic potential plus an 
inverse square interaction, 
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where, the ω is the frequency and α is the strength of the external field. 
For simplicity, the natural units 1=== ωµ�  are employed throughout this paper if not explicitly stated 
otherwise. Owing to the symmetry of the potential, we take the wave functions with the form 
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where, the radial wave function R(r) satisfies the following equation 
 

0)(
)1(

))((2
)(2)(

22

2

=��

�
��

� +−−++ rR
r
ll

rVE
dr

rdR
rdr

rRd
.                                (4) 

 

Defining the new variable 2r=ρ , equation (4) can be re-arranged as 
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From the behaviors of the wave functions at the origin and at infinity, we can take the following ansatz for the wave 
functions 
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with 
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where, another solution 2/))2/1(2/1( 2++−−= ls α  is not an acceptable one in physics. Substitution of 
Eq. (6) into Eq. (5) allows us to obtain 
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whose solution is nothing but the confluent hypergeometric solutions );2/32,4/32/(11 ρ++− sEsF . One 
can finally obtain the eigenfunctions as 
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with a normalized factor N to be determined below: 
 
 From consideration of the finiteness of the solutions, it is shown from Eq. (7) that the general quantum condition is  

,...2,1,0,4/32/ =−=+− nnEs ,                                               (10) 
 
from which we have 
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which implies that the energy level is equidistant. 
 
Recall that when 4/32/ −−= sEn  is a non-negative integer, the confluent hypergeometric functions can be 
expressed by the associated Laguerre polynomials [21]: 
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from which, together with the following important formula [21]: 
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we can finally obtain the normalized  radial wave functions 
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with  
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The construction of the ladder operators: We address the problem of finding the creation and annihilation 
operators for the radial wave functions (12) with the factorization method. [8-18], the ladder operators can be 
constructed directly from the wave functions without introducing any auxiliary variable, namely, we intend to find 

differential operators ±L̂  with the following property 
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Specifically, we look for operators of the form 
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where we stress that these operators only depend on the physical variable ρ. 
 

To this end we start by establishing the action of the differential operator 
ρd
d

 on the wave functions (12) 
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One possible relation for the first derivative of the associated Laguerre functions is given in [21]  
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The substitution of this expression into (16) enables us to obtain the following relation 
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Making use of Eq. (13) and introducing the number operator $\hat {n}$ with the property 

)()(ˆ ρρ nn nRRn = ,                                                                (19)     
 
we can define the following operator 
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with the following effect over the wave functions 

)()(ˆ
1 ρρ −−− = nn RlRL ,                                                           (21) 

 
where, 
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As we can see, this operator annihilates the ground  state )(0 ρR , as expected from a step-down operator. 
We now proceed to find the corresponding creation operator. Before proceeding to do so, we should make use of 
another relation between the associated Laguerre functions [21]. 
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Substitution of this expression into Eq. (16) admits us to obtain  
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Using Eq. (13) again, we can define the following operator 
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satisfying  the equation 
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with 
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Therefore it is shown that the wave functions can be directly obtained from the creation operator +L̂ acting on the 

ground state )(0 ρR , namely, 
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We now study  the algebra associated to  the operators +L̂  and −L̂ . Based on the results (21-22) and (26-27) we can 

calculate the commutator [ ]+− LL ˆ,ˆ : 
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where we have introduced the eigenvalue 
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The operators ±L̂  and 0L̂  thus satisfy the commutation relations 
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[ ] [ ] [ ] ++−−+− =−== LLLLLLLLL ˆˆ,ˆ,ˆˆ,ˆ,ˆ2ˆ,ˆ
000 ,                                     (33) 

 
which correspond to an SU(1, 1) algebra  for the radial wave functions. The Casimir operator can be also expressed 
as 
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The hamiltonian Ĥ  can be expressed as: 
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It is shown that there are four series of irreducible unitary representations for the SU(1, 1) algebra except for the 

identity representation [22]. They are the representation )( jD ±  with a spectrum bounded below and above, 

respectively; the supplementary series ),( 0qQDs  and the principle series ),( 0qQD p . Since the eigenvalues 

have the ground state, the representation of the dynamical group SU(1, 1) belongs to )( jD + : 
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In comparison with Eqs. (21-22), (29-30) and (33-34) we have )4/3( +−= sj , 4/3++= snv  and 

vjRn ,)( =ρ . 

On the other hand, the following expressions in terms of the creation and annihilation operators ±L̂  and 0L̂  can be 
obtained as 
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The matrix elements of these two functions  can be analytically obtained in terms of Eqs. (21), (31) and (34) as 
 

1)(nm,

1)-(nm,

nm,

0

2

)2/32)(1(

)2/12(                               

3/2)2s(2n                              

)()()()(

+

∞

+++−

++−

++=

≡ 

δ

δ

δ

ρρρ

snn

snn

drrRrrRRR nmnm

                                                (38a) 

 
and 



American J. Applied   Sci., 2 (1), 376-382, 2005 

 381 

nm,

1)-(nm,

1)(nm,

0

4
3

)2/12(
2
1

                                     

)2/32)(1(
2
1

                                    

)(
2

)()()(

δ

δ

δ

ρ
ρ

ρρ

−

++−

+++=

≡

+

∞



snn

snn

drrR
dr
dr

rRR
d
d

R nmnm

,                           (38b) 

 
 
where, the integral range ),0( ∞∈r . It is shown that 
this is a very simple method to calculate the matrix 
elements from these ladder operators.  
Before ending this section, it should be pointed out that 
there exists another hidden symmetry for this quantum 
system. As      discussed     in   our    previous   work 
[23],   it   is   found   that   the   eigenfunctions   (12) 

(the variable 2r=ρ ) vanish not only as ∞→r , bus 
also as ∞→ ir .  The substitution irr → , also 
demonstrates intimate     connections    between  the    
energies,    that    is    to    say,    the    eigenvalues   E     
of     quantum system    will       change     to    -E but   
keeping other parameters unchanged. 
 

CONCLUSION 
 
In this paper we have studied the eigenvalues and 
eigenfunctions for the one-dimensional harmonic 
oscillator plus an inverse square interaction and then 
established the creation and annihilation operators 
directly from the eigenfunctions (12) with the 
factorization method. We have derived a realization of 
dynamic group only in terms of the physical variable ρ, 
without introducing any auxiliary variable. It is shown 
that these operators satisfy an SU(1, 1) dynamic group. 
The representation of the bound states of this quantum 
system is described by the representation )( jD+  with 
a spectrum bound below. The matrix elements of the 
different functions ρ and ρρ dd  with 2r=ρ are 
also analytically obtained from the ladder operators ±L̂  
and 0L̂ . This method can be generalized to other 
wavefunctions and represents a simple and elegant 
approach to obtain these matrix elements. 
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