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Abstract: This study deals with the quadratic stability and linear state-feedback and output-feedback 
stabilization of switched delayed linear dynamic systems with, in general, a finite number of non 
commensurate constant internal point delays. The results are obtained based on Lyapunov’s stability 
analysis via appropriate Krasovsky-Lyapunov’s functionals and the related stability study is performed 
to obtain both delay independent and delay dependent results. It is proved that the stabilizing switching 
rule is arbitrary if all the switched subsystems are quadratically stable and that it exists a (in general, 
non-unique) stabilizing switching law when the system is polytopic, stable at some interior point of the 
polytope but with non-necessarily stable parameterizations at the vertices defining the subsystems.  
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INTRODUCTION 
 
 Switching systems are hybrid dynamical systems 
composed of subsystems with their own 
parameterizations subject to a rule orchestrating the 
switching law between the various subsystems. In the 
last years, there has been increasing interest in stability 
and stabilization for switched dynamic systems[1-10] 
where appropriate switching laws decide through time 
which subsystem parameterizes the system so that 
stability is guaranteed. In particular, switching rules are 
applied[8-10] among several estimation schemes of a 
given linear plant which are then used to obtain 
different time-updated parameterizations of the adaptive 
controller. The switching law orchestrating the various 
estimators to obtain the active one which parameterizes 
the adaptive controller is interpreted as a higher 
hierarchical decision level of the whole adaptive system 
while the basic adaptation scheme is the lowest decision 
level. The switching law is designed so that the 
identification error is minimized in real time while the 
closed-loop system is guaranteed to be stable. A key 
motivation for studying switched systems is that many 
practical systems are inherently multi-model in the 
sense that several dynamic subsystems describe their 
whole behavior depending on multiple environmental 
factors[5]. On the other hand, time-delay systems offer 
an increasing interest since many real – life examples 
are subject to delays, like, for instance, population 
growth models, signal transmission, tele-operation 
problems, wear/peace models and actuator monitored 
processes with noisy sensors etc.,[11]. Delays may be 
classified as point delays or distributed delays 
according to their nature and as external (i.e. in the 

inputs or outputs) and internals (i.e., in the state) 
according to the signals they influence. Point delays 
may be commensurate if each delay is an integer 
multiple of a base delay or, more generally, 
incommensurate if they are arbitrary real numbers[11-14]. 
The presence of internal delays leads to a large 
complexity in the resulting system’s dynamics since the 
whole dynamical system becomes infinite-dimensional. 
This fact increases, in addition, the difficulty in the 
study of basic properties, like for instance 
controllability, observability, stability and stabilization 
and robustness, compared to the delay-free case since 
the transfer functions consist of transcendent numerator 
and denominator quasi-polynomials[11-38]. By those 
reasons, the design of exact or approximate pole-
placement controllers towards the achievement of a 
finite or infinite closed-loop spectrum becomes of 
increased difficulty related to the delay-free case[9-18]. 
Neutral delay systems, which are those where the 
delayed time-derivative influences the system’s 
dynamics[11,28,29], present even a higher analysis and 
design difficulty. A great effort has been devoted to the 
investigation of the behavior of time-delay systems in 
sliding mode and in the use of such a property for 
synthesizing appropriate controllers[23-32,36-38] including 
applications to vibrations in heat exchanger tubes and 
aircraft dynamics[35,36]. An important point is that 
different types of delays appear in a natural way when 
modeling discrete systems and some classes of hybrid 
systems[39-41]. The objective of this study is to 
investigate the stability and stabilization properties of 
linear switched time-delay dynamic systems subject to, 
in general, multiple incommensurate known internal 
point delays.  
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Notation: 
 
* The sets R (Z), R+ (Z+) and R0

+ (Z0
+) denote, 

respectively, the sets of real (integer) numbers, 
positive real (integer) members and non negative 
real (integer) numbers. 

* It is said that a complex matrix is strictly 
Hurwitzian, or a stability matrix, if all its 
eigenvalues have negative real parts. 

* An unforced linear system with r finite 
incommensurate internal point delays hi of state 

equation ( )
1

( ) ( )
r

i i
i

x t Ax t A x t h
=

= + −∑ɺ  has two 

associate systems without delays, namely: 

 

( )1 1
1

( )
r

i
i

z t A A z t
=

 
= + 
 

∑ɺ  Which describes the above 

so-called current delay-free system time-delay system 
when   h i = 0 ;   i = 1 , r ; and ( ) )t(zAtz 22 =ɺ  

which is called the nominal delay-free system which 
describes the above time-delay system when   A i = 0 , 

or when   h i → ∞ ;   i = 1 , r .  

 Both systems have to be stable in order that the 
delay system is a stable independent of the delays. The 
system is said to be g.a.s. if it is globally asymptotically 
Lyapunov stable and g.u.a.s. If it is globally uniformly 
asymptotically stable: 
 
* The l2-norm of a matrix (or vector ) M is denoted 

as ( )1/ 2
2

T
MaxM M Mλ= . In Euclidean vectors, 

such a norm coincides with the Euclidean norm. A 
positive definite (semidefinite) matrix M is denoted 
as M > 0 ( M≥ 0). A negative definite 
(semidefinite) matrix M is denoted as M < 0 
(M ≤ 0). 

* The notation for the subset {1, 2, … , k } of +
Ζ  is 

abbreviated as k . 

 
STABILITY AND STABILIZATION WITH 

ARBITRARY SWITCHING LAW 

 
Asymptotic stability independent of and dependent 
on the delays: Consider the time- varying switched 
linear dynamic system: 

 

( )tσΣ : 

( ) ( ) ( ) ( )
1

( ) ( ) ( )
r

jt j t t
j

x t A x t A x t h B u tσ σ σ
=

= + − +∑ɺ  (1) 

 

( ) )t(xC)t(y tσ=  (2) 

where, ( )x t ∈ nR  , ( ) mu t ∈ R  , ( ) py t ∈ R  are the n-

state, m- input and p-output, respectively, ( )tA σ , 

( ) ;j tA j rσ ∈  = {1,2,…, r}, are real square n- matrices 

describing, respectively, the delay-free dynamics and 
the various delayed dynamics and ( )

m n
tB σ

×∈ R  and 

( )
n p

tC σ
×∈ R  are real control and output matrices. The 

initial condition of (1) is any absolutely continuous 
function [ ]: , 0hϕ − → nR  plus, eventually, a function of 

zero measure of isolated bounded discontinuities 
defined on[ ], 0h− , with ( ) ( ) 00 0x xϕ= = , where 

( )
1

i
i r

h Max h
≤ ≤

= , with 0ih ≥ , ri ∈  being the delays. The 

time function [ ) { }: 0, 1,2,...,N Nσ ∞ → =  is a switching 

function among the various subsystems iΣ  defined at 

time t by (1)-(2) for σ (t)= i N∈  being parameterized 

with the corresponding matrices 
iA , ;j iA  , iB and 

iC ; rj∈ , i N∈ . Thus , ( ) { }1 2, , ..., NtσΣ ∈ Σ Σ Σ  for 

all 0t ≥ .The following set is introduced by 

convenience: 

( ) ( ){ }1
ˆ , ,...,i i i i r iS h M A A Aε = =  such that the 

switched unforced system iΣ  is g.u.a.s. with stability 

abscissa ; ( )ε +− ; i.e. with all its eigenvalues 

satisfying ( )( )( ).ReMax λ ε ε+= − < − , where 

ĥ ={ }1 2, ,..., rh h h , any i N∈ . Note , in particular, that 

( )0̂iS ε is the set of parameterizations of the unforced 

(1.a) such that the delay- free system iΣ  is g.u.a.s ; i.e., 

it is all the set of matrices iA , ;j iA ; j r∈ , i N∈  

such that 
1

r

i j i
j

A A Iε
=

 
+ + 

 
∑  is strictly Hurwitzian. Note 

also that ( ) ( )´
ˆ ˆ0 0i i

S Sε ε
⊃ , [ ]´ 0 ,ε ε∀ ∈ . The 

following result is concerned with arbitrary switching 
laws while generalizing previous results in[12] to 
multiple point delays.  

 
Theorem 1: The following items hold: 

 
i. The switched unforced system ( )tσΣ  is g.u.a.s. with 

quadratic stability independent of the delays for any 
arbitrary switching law σ :  [ )0, ∞ → N  and 

( ) ( )ˆ, ,...,i i ji r i iM A A A S hε= ∈  , i N∀ ∈ , ˆ ˆ ˆ0,h  ∀ ∈ ∞ 
 

if there exist +∈ε R  and real matrices TP P=  > 0, 

0T
j jS S= > , j r∀ ∈ , such that the following set 

of matrix constraints holds: 
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( )1

1

r
T T

a i i i j j i j j i
j

Q A P P A S P A S A P Iε−

=

= + + + < −∑ ; 

Ni ∈∀  (3) 

 
 If (3) holds with ε ≥  0 then the switched unforced 
system ( )tσΣ  is g.a.s. With quadratic stability 

independent of the delays for any σ :  [ ) →∞,0 N . 

 
ii. The switched unforced system ( )tσΣ  is g.u.a.s. 

with quadratic stability for any arbitrary switching 

law σ (t) N∈ , 0t ≥  and any delays 
0

i ih 0, h ∈   , ri ∈∀ , if there exist ε +∈ R and 

real matrices TP P= > 0, T
0 j 0 jS S 0= >  , 

T
k j kjS S 0= > , j, k r∀ ∈ , such that the following 

set of matrix constraints holds: 
 

´

1 1

r r
T T

ai i j i i j i
j j

Q A A P P A A
= =

   
= + + +   
   

∑ ∑  

 

0 0 1

0 1 1

r r r
T T

k k j j j i i j i j i
j k j

h S h P A M R M A P Iε−

= = =

+ + < −∑ ∑ ∑

 

Ni ∈∀  (4) 
 
Where: 
 

( ), ,...,i i ji r iM A A A= ; Ni∈∀  (5) 
 

( )0 1, , ....,=k k k k rR Block Diag S S S  

( ) ( )m r 1 m r 1; k r+ × +∈ ∀ ∈R  (6) 
 
 If (4) holds with ε ≥ 0 then the switched unforced 
system ( )tσΣ  is g.a.s. with quadratic stability 

independent of the delays for any 

σ : [ ) →∞,0 N and any delays 0
i ih 0, h ∈    , 

ri∈∀ . 
 
Remark 1: Note that if (3)-(4) hold for some sets of 

matrices jkS , )i(
jkS  , k , j r∈  then they also hold for 

some real scalars jα  , jβ  with 02
j

2
j >β≥α , 

Nj∈ . Thus, Theorem 1 (i) holds if:  
 

( )2 2 1

1

− −

=

+ + +∑
r

T T
i i j j j i j j i

j

A P P A I P A S A Pα β  

I; i N< − ε ∀ ∈  (7.a) 

1 1

r r
T T
i j i i j i

j j

A A P P A A
= =

   
+ + +   

   
∑ ∑  

2 0 0 2 1

0 1 1

r r r
T T

k j k j j j i i j i j i
j k j

h I h P A M R M A P Iα β ε− −

= = =
+ + < −∑ ∑ ∑

; Ni ∈∀  (7.b) 

 
 Note that if Theorem 1 (i) holds then Theorem 1 
(ii) holds with 0

ih 0= ( )ri ∈ . Then, the stability 

depends on the delays may be checked from (7.b) to 
establish a range of maximum allowable delays. 
           
2.2. Asymptotic stabilization independent of and 
dependent on the delays: The results of Section 2.1 
may be applied to forced stabilizable systems if a 
stabilizing regulation control law is applied. The 
discussion is limited to state and output linear feedback. 
The first definitions are first given. 
 
Definitions 1: The switched unforced system ( )tσΣ  is 

said to be globally uniformly asymptotically stabilizable 
(g.u.a.st.) [respectively, globally uniformly 
asymptotically output stabilizable (g.u.a.o.st.)] with 
quadratic stability via a linear delay-free control law for 

any arbitrary switching law σ :  [ ) →∞,0 N  if there is 

a linear regulation feedback control law 

( ) ( )txKu )t(t σσ =  with ( ) { }N21t K,...,K,KK ∈σ  

[respectively, an output regulation feedback control law 

( ) ( )txCKu )t(
0

)t(t σσσ = ] for some real matrices 

m n
iK ×∈ R [respectively, 0 m p

iK ×∈ R ] ; Ni ∈∀  

such that the closed-loop system: 
 

( )
c

tσΣ : 

( ) ( ) ( )( ) ( ) ( )
1

( ) ( )
r

jtt t t j t
j

x t A B K C x t A x t hσσ σ σ σ
=

= + + −∑ɺ

[respectively: 
 

( ) ( ) ( )( ) ( ) ( )0

1

( ) ( )
r

jtt t t j t
j

x t A B K C x t A x t hσσ σ σ σ
=

= + + −∑ɺ ] (8) 

 
is g.u.a.s. With quadratic stability. The following result 
whose proof is omitted holds. 
 
Theorem 2: The following items hold: 
 
i. Assume that the switched unforced system ( )tσΣ  

is not g.u.a.s. for all delays 0
i ih 0, h ∈    some 

0
ih > 0, i r∀ ∈ , for an arbitrary switching law 

σ :  [ ) →∞,0 N  (i. e. There is a nonempty set 
´N N⊂ such that iA  is not strictly Hurwitzian 

for ´i N∈ . Then, a necessary and sufficient 

condition for the forced ( )tσΣ  to be g.u.a.st. 
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(g.u.a.o.st.) for all delays 0
i ih 0, h ∈    some 

0
ih > 0, i r∀ ∈ , is that the pair ( )i iA , B  be 

stabilizable (respectively, the triple ( )i i iA , B , C  

be stabilizable and detectable) for all ´i N∈ . Those 

conditions guarantee that the switched forced 
system 

( )tσΣ  is g.u.a.st. (respectively, g.u.a.o.st.) 

independent of the delays provided that jiA  ; 

j r∈ , i N∈ is sufficiently small. 

ii. Assume that the switched unforced system ( )tσΣ  

is g.u.a.s. for arbitrary switching law 

σ :  [ ) →∞,0 N  for all delays [ ]0
ii h,0h ∈  

some finite 0
ih > 0, ri ∈∀ . Then there is a (non-

unique) linear regulation state-feedback control law 

( ) ( )txKu )t(t σσ =  with 

( ) { }r21t K,...,K,KK ∈σ  for some real 

matrices nm
iK ×∈R [respectively, a (non-

unique) linear regulated output-feedback control 

law ( ) ( ) ( )txCKu t
0

)t(t σσσ =  with 

pm0
iK ×∈ R ]; Ni ∈∀  such that the resulting 

closed-loop system ( )
c

tσΣ  is g.u.a.s. with 

quadratic stability for all delays 




∈ ´h,0h 0

ii  

some finite 
´´0

ih > 0
ih  , ri ∈ , being dependent 

on the parameterization , if ( )ii B,A  is 

completely controllable (respectively, the triple 

( )i i iA , B , C  is completely controllable and 

observable and ( ) np,mMax ≥ ) for all Ni∈ . 
 
 Definitions 1 may be generalized in a natural way 
for linear state and output- stabilizability via linear 
regulation delay- dependent control laws[20-23,32,33]. For 
that purpose, consider the following control laws:  
 

( ) ( ) ( ) ( ) ( )
1

r

jt j t
j

u t K x t K x t hσ σ
=

= + −∑  (9) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0

1

r

jt t j t t
j

u t K C x t K C x t hσ σ σ σ
=

= + −∑ (10) 

 
with ( ) { }1 2 NtK K , K , ...., Kσ ∈ , 

( ) { }j1 j2 jNj tK K , K , ...., Kσ ∈ ,  

( ) { }0
N

0
2

0
1

0
t K,....,K,KK ∈σ  and 

( ) ( ) ( ) ( ){ }0
tN

0
t2

0
t1

0
tj K,....,K,KK σσσσ ∈  

( ( ) Nt ∈σ , rj
�

∈ ) for real matrices m n
iK R ×∈ , 

m n
jiK R ×∈ , 0 m p

iK R ×∈  and 0 m p
jiK R ×∈ ; rj

�
∈ , 

Ni∈  specifying the controller gains. Define n x n real 

matrices: 
 

ji ji i iÂ A B K= +  ; 
0 0
ji j i i i iÂ A B K C= +  ; Ni ∈  (11) 

 
 The following technical result, concerned with the 
choice of the controller gains corresponding to the 
delayed dynamics if the control laws (9) or (10), so that 
the closed-loop delayed dynamics is annihilated or 
nearly annihilated.  
 
Lemma 1: 
 
i. If ( )iij B,A  is a completely controllable pair 

then it always exists a m n
jiK ×∈ R  such that all the 

zeros of the polynomial 

( ) ( )ji ji i jip s Det s I A B K= − −  (or, 

equivalently, n of its n+1 coefficients) are located 
in arbitrary prefixed positions.  

ii. If ( )iiij C,B,A  is a completely controllable 

and observable triple then it always exists a 
pm0

ijK ×∈ R  such that all the zeros of the 

polynomial 

( ) ( )0 0
ji ji i ji ip s Det s I A B K C= − −  (or, 

equivalently, n of its n+1 coefficients) are located 
arbitrarily close to a given set of prefixed positions. 

iii. If ( )irank B m n= <  then for any given real matrix 

*
ijÂ , it exists a unique 

ijK ( ) ( )T 1 T *
i i i ji ji

ˆB B B A A−= −  gives the 

minimum value to ( )* 2
ji ji ji 2

ˆ ˆA A K− . 

iv. If ( )irank B n m= ≤  then for any prescribed real 

matrix * n n
jiÂ ×∈ R , it exists a unique ijK m n×∈R  

such that *
ijij ÂÂ = . 

v. If ( )irank B m= and ( )irank C p= with 

( ) np,mMax ≥  then for any given real matrix 
*
ijÂ , it exists a unique matrix: 

 
0
ijK ( ) ( ) ( )1 * 1ˆT T T T

i i i j i j i i i iB B B A A C C C− −= −  (12) 

 
such that gives the minimum value of 

( )* 0 2
ji ji ji 2

ˆ ˆA A K− . 
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vi. If ( )irank B = ( )irank C n= with 

( ) np,mMax ≥  then for any given real matrix 
*
ijÂ , it exists a unique matrix 

0 0*
ji jiK Block Diag K , 0 =    with 0* n n

j iK ×∈ R  

defined by: 
 

( ) ( ) ( )
1 1

0* 1 *
1 1 1 1

ˆ ˆ
i i

T T
j i i i j i j i i iK B B A A C C−= −  (13) 

 

gives exact matching *
ji ji

ˆ ˆA A=  (prefixed arbitrarily) 

where matrix partitions [ ]i2i1i B,BB =  and 

[ ] TT
i2

T
i1i C,CC =  are used with i1B , i1C  being 

square real n-matrices all i N∈ .  

 Lemma 1 might be used combined with Theorem 2 
in the sense that a control law involving delays allows 

to reduce the norm of ijÂ  associated with the delayed 

dynamics after feedback (defined by one of the two 
equations in (11) depending on the use of state or output 
feedback) related to that of ijA under the various given 

conditions of controllability/ observability. This allows 
to accomplish with the conditions of closed-loop 
asymptotic stability independent of the delays or to 
increase the size of the maximum allowable delay 
guaranteeing closed-loop asymptotic stability via 
state/output feedback.  
 

ASYMPTOTIC STABILITY AND 
STABILIZATION WITH A SWITCHING LAW 
AMONG THE VERTICES OF A POLYTOPIC 

SYSTEM 
 
 The main result of this section follows below. 
 
Theorem 3: The following two items hold: 
 
i. Assume that there exist square real n-matrices 

0PP T >= , 0SS T
jj >=  ( rj∈ ), +∈ε R  and 

a N real scalar ( )1,0i ∈λ  fulfilling 1
N

1k
i =λ∑

=

, 

such that 
N

i a i
i 1

Q Q 0λ
=

= <∑  with iaQ  defined in 

(3), Ni ∈ . Thus, for any initial condition, there is 

a (non-unique) switching law σ :  [ )0, ∞ → N which 

is piecewise constant on [ ),α ∞  for some real 

constant 0α≥ , such that the switched unforced 

system ( )tσΣ  is g.u.a.s. with quadratic stability 

independent of the delays. If Q 0≥  for the set of 

unforced systems iΣ , Ni ∈ , then it always exists 

a (non-unique) stabilizing switching law 
σ :  [ )0, ∞ → N which is piece-wise constant on 

[ ),α ∞ , some real 0≥α , such that the switched 

forced system ( )
c

tσΣ  is g.u.a.s. with quadratic 

stability independent of the delays provided that 
any of the conditions below hold: 

a. The pair ( )ii B,A  is stabilizable for all Ni ∈  and 

a control law ( ) ( ) ( )txKtu tσ=  is generated, 

with ( ) { }r21t K,...,K,KK ∈σ , for controller 

gains nm
iK ×∈ R  is applied. 

b. The triple( )iii C,B,A  is stabilizable / 

detectable for all Ni ∈  and an output-feedback 

control law ( ) ( ) ( ) ( )txCKtu t
0

t σσ=  is generated, 

with ( ) { }0
r

0
2

0
1

0
t K,...,K,KK ∈σ , for controller 

gains pm0
iK ×∈ R .  

 
 Furthermore, if Error! Bookmark not defined. for 
the set of unforced systems iΣ , i N∈ , but there exists 

a set of matrices m n
iK ×∈ R , i N∈  and a set of real 

scalars ( )1,0i ∈λ  fulfilling 
N

i
i 1

1
=

=∑ λ  such that 

N
c c

i a k
k 1

Q Q 0
=

= <∑ λ , with c
kaQ  being redefined 

from kaQ  by replacing iiii KBAA +→  

( Ni ∈ ), then the switched closed-loop system ( )
c

tσΣ  

for the control law ( ) ( ) ( )tu t K x tσ=  and some 

stabilizing switching law σ :  [ )0, ∞ → N  is g.u.a.s. with 

quadratic stability independent of the delays (even if 

( )i iA , B  and then ( )i i i iA , Bλ λ  , is not stabilizable 

for all i N∈ ) . 

 
ii. Assume that there exists square symmetric positive 

definite matrices P, 0 jS , k jS ( )k, j r∈  and some 

real scalars ( )i 0,1λ ∈  fulfilling 
N

i
k 1

1
=

λ =∑ , such that 

´Q
N

i a i
i 1

Q´ 0
=

= λ <∑  with a iQ´ defined in (4)-(5), 

i N∈ . Thus, for any initial conditions, there is a 

(non-unique) switching law σ :  [ )0, ∞ → N , 

which is piece-wise constant on [ ),α ∞  some real 

0≥α , such that the switched unforced system 

( )tσΣ  is g.u.a.s. with quadratic stability dependent 
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of the delays, 0
i ih 0, h ∀ ∈   , some 0h 0

i > , all 

i N∈ . If ´Q 0≥  for the set of unforced systems 

iΣ , i N∈ , then it always exists a (non-unique) 

stabilizing switching law σ :  [ )0, ∞ → N which is 

piece-wise constant on [ ),α ∞  some real 0≥α , 

such that the switched closed-loop system ( )
c

tσΣ  

is g.u.a.s. with quadratic stability dependent of the 

delays, 0
i ih 0, h ∀ ∈   , some 0h 0

i > , all Ni ∈ , 

provided that similar conditions as (a)-(b) in Item 
(i) hold. Furthermore, for any prefixed set 0ih  

( )Ni ∈ , it always exist matrices 

( )Ni,rjA ij ∈∈  and a positive real constant γ 

dependent on 0
ih ( )Ni ∈  such that for sufficiently 

small γ≤ijA  ( )Ni,rj ∈∈ , the switched 

( )
c

tσΣ  obtained under linear state feedback via a 

controller of gain ( ) { }1 2 rtK K , K , ... , Kσ ∈  is 

g.u.a.s. with quadratic stability dependent of the 

delays, 0
i ih 0, h ∀ ∈    for some switching law 

σ :  [ ) →∞,0 N . 
 

 Furthermore, if 0Q ´ ≥  for the set of unforced 

systems iΣ , Ni ∈ , but there exists a set of matrices 
Pm

iK ×∈R , Ni ∈  and a set of real scalars 

( )1,0i ∈λ  fulfilling 1
N

1i
i =λ∑

=

 such that 

0QQ
c

ka
´

N

1k
i

c´ <λ=∑
=

, with 
c

ka
´Q  being redefined 

from ka
´Q  by replacing i

0
iiii CKBAA +→  

( Ni ∈ ), then the switched closed-loop system ( )
c

tσΣ  

for the control law ( ) ( ) ( ) ( )txCKtu t
0

t σσ=  and some 

stabilizing switching law σ :  [ ) →∞,0 N  is g.u.a.s. 

with quadratic stability dependent of the delays (even if 
( )iii CB,A  and then ( )iiiiii C,B,A λλλ  , is not 

stabilizable and detectable for all Ni ∈ ). 

 An interpretation of Theorem 3 is as follows. The 
conditions of Theorem 3 (i) imply that if a polytopic 
system: 
 

( )
N r

i i j i j i
i 1 j 1

x(t) A x(t) A x t h B u(t)
= =

  = λ + − + 
  

∑ ∑ɺ ; 

( )i 0,1λ ∈  , 
N

i
i 1

1
=

λ =∑  (14) 

is g.u.a.s. for zero control input guaranteed by the 

condition 
N

i a i
i 1

Q 0
=

λ <∑ ; i.e., it is g.u.a.s. independent 

of the delays at some interior point of the polytope 
being the set defined by some combination of vertices 
defined by the matrices a iQ  ( i N∈ ) then there is a 

switching law σ :  [ )0, ∞ → N such that the 

corresponding unforced switched ( )tσΣ  is g.u.a.s. The 

same idea might be extended by switching closed-loop 
system for the state or output linear feedback under the 
corresponding modifications given conditions as well as 
for stability dependent of the delays . That means, 
roughly speaking, that stability at a point inside the 
polytope implies stability at any interior point of the 
polytope (for some switching law) even if the system is 
not stable at any vertex. Note that 

0Q0Q a <⇔> ⇒¬ 0Q0Q iai <⇔>  some Ni ∈  

but only ( ) ( ) 0txQtx a
T < ( ) ( ) 0txQtx ia

T <⇒ for 

all nonzero x (t) and all 0t ≥ ([2,4-6,8] for a delay-free 

system). It is now interesting to investigate quadratic 
stability of a switched system composed of two 
subsystems with an (uncertain) polytopic-type 
parameterization which are not necessarily stable. 
Assume that the switched unforced system 

( ) { }21t , ΣΣ∈Σ σ  is defined for all 0t ≥ by one of 

the two subsequent subsystems: 
 

( ) ( ) ( )
r

i i j i j
j 1

: x t A x t A x t h
=

Σ = + −∑ɺ  ; i= 1, 2 (15) 

 
 Assume that iΣ (i=1,2) are uncertain polytopic 

systems defined by: 
 

 )k(
i

N

1k
kii AA

i

∑
=

µ=  ; )k(
ij

N

1k
kiij AA

i

∑
=

µ=  ( rj∈ ) (16) 

 
with scalars ( )1,0ki ∈µ  ; i, k=1,2 subject to 

1
2

1k
ki =µ∑

=

; i=1,2 ; and real square n-matrices ( )k
j iA  and 

( )k
j iA  ; i, k = 1, 2 ; rj∈  defining the delay-free and 

delayed dynamics at the vertices. For simplicity of 
exposition and mathematical proofs, it is assumed in the 
sequel without loss of generality that the number of 
extreme points 2N i = ; i= 1, 2. In order to make the 

subsequent discussion nontrivial, the following 
assumption is made. 
 
Assumption 1: Both iΣ , i= 1, 2 are not quadratically 

stable 0
i ih 0, h ∀ ∈   , some 0

ih 0> , all i= 1, 2 ; i.e. 
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there does not exist real square symmetric n-matrices 
0P i >  ( i=1,2) such that: 

 

( ) ( ) ( ) ( )

1 1

0
= =

   
+ + + <   

   
∑ ∑

T
r r

k k k k
i j i i i i j i

j j

A A P P A A ; 

i, k = 1, 2 (17) 
 
 The matrix inequality (17) holds when for each 

i=1,2, there it at least one matrix 
r

(k) ( k )
i ji

j 1

A A
=

 
+ 

 
∑ for 

k=1 or 2 which is not strictly Hurwitzian so that the 
polytopic system iΣ  is not quadratically stable for 

i=1,2 at the corresponding vertex for zero delays. By 
continuity of the characteristic roots, there is some 
neighborhood of values of delays around zero such that 
the corresponding polytopic system is not quadratically 
stable ; i.e. there exist 0jh  such that iΣ (i=1,2) is not 

quadratically stable for all 0
i ih 0, h ∈    . Note that if 

Assumption 1 holds then Theorem 1 cannot be applied 
because of the instability or critical stability at the 
vertices. The following result, whose proof is omitted, 
is related to the stabilization of (15) via switching. 
 
Theorem 4: The following two items hold under 
Assumption 1: 
 
i. The switched system ( )tσΣ is quadratically stable 

independent of the delays, via some non-unique 
switching law σ :  [ )0, ∞ → { }2 1 , 2=  , if there 

exist constant real scalars 0>ε , ( )1,0ki ∈λ ; i, 

k = 1, 2 ; 
2

i k
k 1

1
=

=∑ λ ; i=1,2 and real square n-

matrices TP P 0= > , T
j jS S 0= >  ( j r∈ ) such 

that: 
 

( )
( )

( ) ( )
1 2

( ) ( )
1 2

1

1

 + − 

 + + − 

i j T
i j i j

i j
i j i j

A A

P P A A

λ λ

λ λ
 

+ 

( )

( ) 1 ( )
1 1

1

( ) 1 ( )
2 2

1

1

−

=

−

=

  
+  

   < − 
  + − +  
  

∑

∑

r
i i T

i j k k k k
k

r
i i T

i j k k k k
k

S P A S A P

I

S P A S A P

λ
ε

λ
 

; i , j = 1, 2 (18) 
 
ii. The switched system ( )tσΣ is quadratically stable 

for all delays 0
i ih 0, h ∈   , some 0

ih 0>  ( ri ∈ ) 

via some switching law σ :  [ )→∞,0 2 , if there 

exist constant real scalars 0>ε , ( )1,0ki ∈λ ; i, 

k = 1, 2 ; 
2

i k
k 1

1
=

λ =∑ ; i=1,2 and real square n-

matrices TP P 0= > , 0SS T
jkjk >= , 

0SS T
0k0k >=  ( k, rj∈ ) such that : 

 

( )( ) ( ) ( ) ( )
1 1 2 2

1 1

1
= =

    
+ + − +    

     
∑ ∑

T
r r

i i i i
i j k i j k

k k

A A A A Pλ λ  

( )( ) ( ) ( ) ( )
1 1 2 2

1 1

1
r r

i i i i
i j k i j k

k k

P A A A Aλ λ
= =

    
+ + + − +    

     
∑ ∑  

+
0

0 1

r r

k k j
j k

h S
= =
∑∑ +

0 ( ) ( ) 1 ( ) ( )
1 1 1 1

1

r
i i i T i T

i j k k k k
k

h P A M R M A Pλ −

=

 
 
 
∑  

( ) 0 ( ) ( ) 1 ( ) ( )
2 2 2 2

1

1
r

i i i T i T
i j k k k k

k

h P A M R M A P Iλ ε−

=

 
+ − < − 

 
∑

; i , j = 1, 2 (19) 
 

ASYMPTOTIC STABILITY OF A CLASS OF 
UNFORCED NEUTRAL SYSTEMS 

 
 A standard class of unforced neutral systems 
involving a single point delay is now focused on[11,28]. 
The extensions in the cases of multiple point delays and 
regulating inputs are direct by using direct extensions 
with the tools of this class of systems. They are omitted 
by the sake of simplicity. Consider the neutral system: 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

´
1:Σ = +

− + −

ɺ

ɺ

t t t

t

x t A x t A

x t h D x t h

σ σ σ

σ

 (20.a) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1

−

= + − +

− − ∫

ɶ ɶ

ɺ ɺ

t t t

t

t t h

A x t A x t h D

x t h W x d

σ σ σ

σ τ τ
 (20.b) 

 
where, the function of initial conditions is any 
absolutely continuous function [ ]: h, 0− → nRϕ  plus, 

eventually, a function of zero measure of isolated 
bounded discontinuities defined on [ ]h , 0− , with 

( ) ( ) 0x 0 0 x=φ =  and ( )tW σ  is chosen so that 

( ) ( ) ( )t t tA A W= +ɶ
σ σ σ  is strictly Hurwitzian for all 

( )t Nσ ∈ and ( ) ( ) ( )tt1t1 WAA
~

σσσ −=  with 

σ : [ )0, ∞ → N  being the switching law. All the 

matrices of parameters in (20) are square real of order n 
with: 
 

( ) { }1 2 NtA A , A ,..., Aσ ∈  ;  
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( ) { }11 12 1N1 tA A , A ,..., Aσ ∈  

( ) { }1 2 NtD D , D ,..., Dσ ∈  ;  

( ) { }1 2 NtW W , W ,..., Wσ ∈  (21) 

 
for all 0t ≥ . Since ( )tA σ

ɶ is strictly Hurwitzian for all 

0t ≥ , ( i iA W+ ) is strictly Hurwitzian for all i N∈ . 

The following result is related to the stability of (20) via 
switching: 
 
Theorem 5: The neutral system ( )

´
tσΣ is g.u.a.s. for all 

delays [ ]0h,0h∈  and some 0h > 0 for any arbitrary 

switching law σ :  [ )0, ∞ → N , if iD 1<  and 

( )i iA W+  is strictly Hurwitzian ( )i N∈ , provided that 

there exist square real positive definite symmetric n-
matrices P, S, R and T such that: 
 

( )i i jBlock Matrix ; i, j 1,3 0Π = Π = <  (22) 

( ) ( )
( )

11

0 0 1−

Π = + + + +

+ + +

T
i i i i i

T T
i i i i

A W P P A W

R A S h T A h P W T W P  

 

( ) ( )0
12 21 1 1Π = Π = − + +T T

i i i i i iP A W A S h T A ; 

( )0
13 31

T T
i i i iP A S h T D Π = Π = + +  all Ni ∈  (23) 

 
 The proof of the subsequent result follows 
immediately from Theorem 5 , via Schur´s complement 
of the last block matrix of 

( )i i jBlock Matrix ; i, j 1,3 0Π = Π = < , in the equivalent 

test for negative definite[43]. 
 
Corollary 1: Theorem 5 holds if: 
 

( )´ i j11i
Block Matrix ; i, j 2,3 0Π = Π = <  

( ) ( ) ( )T T 0
i i i i i iA W P P A W R A S h T A+ + + + + +  

- ( ) ( ) ( )´ 1 T
12 i 13i 11i 12 i 13iM , M M , M 0−Π <  

all i N∈  (24) 

 
 Now, the polytopic structures of Theorems 4-5 are 
extended for the given class of switching laws which 
conditionally stabilize the switched system under 
convexity-type constraints. The extensions of all the 
results in this section to the case of forced systems are 
directly obtained by using linear state/output feedback 
laws under either controllability/observability or 
stabilizability/detectability assumptions of the 
appropriate parameterizations of the subsystems. Some 
stability results for the neutral system of this section 
based on the properties of its subsystems are 
summarized in the following result. 

Theorem 6: The following items hold: 

 
i. The neural system ( )

´
tσΣ is g.u.a.s. for all delays 

0h 0 , h ∈    and some 0h > 0 for some (non-

unique) switching law σ :  [ )0, ∞ → N , if 

iD 1< and ( )i iA W+  is strictly Hurwitzian 

( )Ni ∈ , provided that there exist square real 

symmetric n-matrices P, S, R and T and some set of 

real scalars iN 0∋ λ ≥ satisfying 
N

i
i 1

1
=

=∑ λ , such that 

N

i i
i 1

0
=

Π = Π <∑ λ , with the matrices iΠ ( )i N∈  

being defined in (22)-(23). 

ii. Assume that ( )
´

tσΣ { }´,´ 21 ΣΣ∈  for any 

switching law [ ) 2,0: →∞σ  and all time 

0t ≥ where ´
iΣ , being defined by (20) when σ(t) 

= i { }2,12 =∈ , are not quadratically stable with 

i i iA A W= +ɶ is strictly Hurwitzian, 

1i 1i iA A W= −ɶ  and iD 1< for i=1,2. Assume also 

that ´
iΣ (i=1,2) are uncertain polytopic systems 

defined by: 

 

)k(
i

2

1k
kii AA ∑

=

µ=  ; )k(
i1

2

1k
kii1 AA

i

∑
=

µ=  ( rj∈ ) (25.a) 

)k(
i

2

1k
kii WW ∑

=

µ=  ; )k(
i

2

1k
kiji DD

i

∑
=

µ=  ( rj∈ ) (25.b) 

via real scalars ( )i k 0,1µ ∈  ; i, k=1,2 subject to 

1
2

1k
ki =µ∑

=

; i=1,2. Then, there is a non-unique 

switching law σ :  [ ) →∞,0 2 such that ( )
´

tσΣ is 

g.u.a.s. for all delays 0h 0 , h ∈    and some 0h > 0 

provided that the four subsequent linear matrix 
constraints hold for some square real symmetric n-
matrices P, S, R and T and some set of real scalars 

i kN 0∋ λ > satisfying 
2

ik
k 1

1
=

=∑ λ ; i=1, 2: 

( ) ( )( ) ( )
1 2, 1 0Π = Π + − Π <i j

i j i ji j λ λ  ; i, j =1,2, (26) 

where )j(
iΠ  is defined similarly as iΠ in (21)-(22) 

with the following replacements related to Theorem 5: 

 

( )i i 1i iA , W , A , D →   

  ( ))j(
i

)j(
i1

)j(
i

)j(
i D,A,W,A ; i=1, 2  



Am. J. Applied Sci., 2 (10): 1481-1490, 2005 
 

 1489

 Note that if all the parameterizations i´Σ  are not 

stable then ( )i 0,1λ ∈ for all i N∈  in Theorem 1 (i) 

since k 0Π = Π < is impossible if k 1λ = , i 0λ =  for some 

k i N≠ ∈ . For Theorem 6(ii) the above constraint has to 

hold as well by the same reasons that those pointed out 
related to Theorem 4. The extension of Theorem 6 (ii) 
to general parameterizations defined by (25) with 

3N i ≥ ; i=1,2 is direct by using more constraint (26) by 

involving the corresponding necessary iN2  constraints 

in the same way as Theorem 4 is extendable to this 
situation. The extension is omitted for the sake of 
simplicity. 
 

CONCLUSION 
 
 This study has been devoted to investigate the 
stability and stabilization properties of linear switched 
time-delay dynamic systems being subject to, in 
general, multiple incommensurate known internal point 
delays. Firstly, the uniform asymptotic quadratic 
Lyapunov stability (both independent of and dependent 
on the delays) for unforced systems has been 
investigated under arbitrary switching laws in non-
polytopic systems parameterized by a finite set of stable 
subsystems. The results have been extended to prove 
the existence of stabilizing switching laws in polytopic 
systems under testable convexity-type conditions for the 
vertices. Further stability results have been derived from 
forced systems for linear state/output feedback control 
laws under certain controllability and 
observability/stabilizability and detectability conditions. 
The stability results have been also extended to a class 
of switched polytopic systems and two switched 
systems consisting of a set of polytopic subsystems, 
subject to mutual switchings through time, which fulfill 
a convexity-type condition by each combination of sets 
of vertices, one corresponding to each polytope. 
Numerical simulated examples have corroborated some 
of the obtained results. 
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