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Abstract: This study relates the properties of operators with the well- known concepts of positive 
realness and passivity properties in dynamic systems and their associate transfer functions. Those 
concepts together with very close related ones are first examined from a physical point of view. Then, 
they are related to hyper-stability and properties of transfer functions while the hyper-stability theorem 
is revisited and interpreted. Finally, the above concepts are compared to the mathematical concepts of 
positivity and closely related ones in operator theory in Hilbert spaces. 
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INTRODUCTION 

 
 The stability properties of nonlinear dynamic 
systems have been widely studied in the literature,[1-3] 
and[9-12]. Related properties include, for instance, 
Lyapunov´s stability/asymptotic stability, absolute 
stability (i.e. Global Lyapunov´s asymptotic stability in 
the presence of nonlinear static devices belonging to 
prescribed sectors in the feedback law) or hyper-
stability/asymptotic hyper-stability (i.e. Global 
Lyapunov’s stability/asymptotic hyper-stability in the 
presence of any nonlinear and /or time-varying devices 
whose time input-output integral satisfies Popov´s type 
inequalities). While Lyapunov’s stability may be local 
around the equilibrium, absolute stability/hyper-
stability are always global in the whole state space and 
established as a generic property for a set (not just for a 
single element) of feedback devices for a given forward 
device or plant. An important physical property is that a 
positive dynamic system being hyper-stable (roughly 
speaking positively) which is feedback connected with 
any class of devices satisfying a Popov´s -type 
inequality implying lower bounding by a negative finite 
constant is globally Lyapunov´s stable since its input-
output energy is nonnegative and bounded for all 
time,[4-8]. On the other hand, hyper-stability of a set of 
nonlinear/time-varying devices satisfying a certain 
Popov’s inequality includes the absolute stability of any 
static nonlinear device that satisfies such an inequality. 
The above concepts are very related to the more general 
one of passivity. In an operator theoretical framework, 
there are well-known related concepts based on 

positivity of operators,[1]. In this study, we analyze and 
interrelate the various concepts of passivity, hyper-
stability, positivity, dissipation, conservation, 
regeneration etc. in Physics from their implications in 
input-output or power energy balances as well as their 
strict- type version. We interpret those concepts in a 
feedback framework related to general stability 
properties (or roughly speaking hyper-stability). Then, 
we relate those concepts to close properties in the 
operational theoretical framework formulated in an 
appropriate Hilbert space. 

 
Physical concepts related to power and energy 
balances: Consider a scalar (only for purposes of 
facilitating the mathematical treatment and exposition) 
dynamic systems with instantaneous real input and 
output signals at time t being, respectively, u (t) and y 
(t), think of supply power (u. (t) y (t) ), whose stored 
energy and dissipated energy are respectively given by 
functions S (t) and D (t). Thus, the instantaneous power 
balance at time t≥0 and the energy balance in the time 
interval [0, t] are given, respectively, by. 

 
Power balance at time t:  

 
u (t) y (t) = SY(t) + DY(t) (1a) 

 
Energy balance in the time interval [0, t]: 

 
< u, y >t = S (t) + D (t) - S (0) - D (0) (1b) 
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where the dots superscript denotes the time-
derivative, as usual, <u, y> t is an abbreviation for a 
time- integral product (i.e. A scalar product, denoted 
by < u, y>t, of square-integrable functions u (t) and y 
(t) on [0, t]; I. e. Belonging to L2 [0, t]) 

meaning
t

t 0
<u,y> = u( )y( )dτ τ τ∫ . It's the time  subscript “ 

t “ is dropping out from the  cellar product definition 
then the time integral, provided to exist, is; i.e. 

0
<u,y>= u( )y( )d

∞
τ τ τ∫ . Note that if truncated input and 

output signals ut and yt replace u and y where zt = z 
(� ) for all τ [0, t] and zt = 0 otherwise in the real axis 

then t t t tu,y u , y u ( )d
∞

−∞
< > = >= τ τ∫ ; i.e., the input/output 

energy  ime-integral  may  be   extended   from 
minus infinity to infinity when using truncated 
input/output signals. This allows to describe the 
supplied energy equivalently in the frequency 
domain via Parseval’s theorem for all finite time 
even if the input/output product is not potentially 
square-integrable on [0, ∞). In the following, we 
drop the time argument t in order to simplify the 
notation when no confusion is expected. In the 
context of dynamic systems, we manipulate a set of 
energies-related concepts saying that the system is at 
time t ≥ 0 (the constraint t > 0 for time is stated 
explicitly when applicable). 

 
Regenerative: if it does not dissipate energy but it 
supplies it to the network. Thus, DY (t) < 0 and D (t) 
< D (0) so that u (t) y (t) < SY (t) and < u, y > t < S 
(t) - S (0) < S (t). If, in addition, the stored energy 
decreases with time then S (t) S ≤ (0) for all t ≥ 0 and 
then < u, y >t < 0. 

 
Passive or dissipative: If it has energetic losses since 
DY (t)≥ 0. Thus, D (t) ≥ D (0) so that: 

 
<u (t) y (t) ≥ SÝ (t) 

 
And: 

 
< u, y > t ≥ S(t) - S (0) 
≥ β : = Min t ≥ 0 S (t) - S (0) ≥ - S (0) 
 
 Note that �  is a real number whose sign depends 
on each particular situation related to the system´s 
properties. For instance, if S (t) tends asymptotically to 
zero then β_= - S (0). However, β_ is nonnegative 
(positive for any t > 0) if S (t) ≥ S (0) (S (t) > S (0) for 
any t > 0). The system is said to be Strictly Passive or 
Strictly Dissipative if DÝ (t) > 0 for all finite time so 
that < u, y > t > S (t) - S (0) for all t > 0 except possibly 

as a set of zero measure. A more complete classification 
of passivity may be made as follows: 
 
• The system is Weakly Passive (then called Positive 

as well) if < u, y > t ≥ 0 for all t ≥ 0. 
• The system is Weakly Strictly Passive (then called 

Weakly Strictly Positive as well) if < u, y > t > 0 
for all t >0. 

• The system is Strongly Strictly Passive (then called 
Strongly Strictly Positive as well) if < u, y > t > 
b < u, u > t for some real constant �  > 0 and all t 
≥ 0. 

 
Conservative:  If  SÝ  (t) = 0; i.e.  the stored energy 
is  kept  constant while the supplied energy is 
entirely dissipated so that < u, y > t ≥ D (t) - D (0) ≥ 
- D (0). 
 
Positive (Strictly Positive): If u (t) y ( t) ≥ 0 so that < 
u, y > t ≥ 0 (u (t) y ( t) > 0 and < u, y > t > 0 for all t > 
0). The specifications weakly or strongly may be used 
in the same contexts and meanings as for Strict 
Passivity so that Strictly Positive systems may be 
specified as Weakly Strictly Positive or Strongly 
Strictly Positive ones, respectively. Positive systems 
may be equivalently named as Weakly Passive 
Systems. 
 
It satisfies Popov’s Inequality. If for some finite real 
constant g 0 and all t ³ 0, the following inequality holds: 
 
< u, y >t ≥ - γ0

2 > - ∞ 

 
Remarks:  

 
• The above concepts may also be applicable only to 

some finite time subinterval [t1, t2] in such a way 
that the system may be characterized under 
different properties in the above context through 
time. 

• Both passive and Positive dynamic Systems satisfy 
Popov’s Inequality. 

• A system which satisfies Popov´s Inequality is 
always passive or conservative but not necessarily 
Positive (i.e., not necessarily Weakly Passive). 

• If a system is regenerative and S (t) ≤ S (0), for all 
finite time, the energy supplied is negative for all 
finite time so that in fact the system supplies 
energy to the connected network. Also, its supplied 
input/output energy is upper-bounded by a negative 
real number. 

• A system is both Passive and Positive if <u, y > t ≥ 
β ≥ 0. A system is Passive but not Positive (then 
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not Weakly Passive) in some interval [0, t] if there 
exists a finite negative �  such that < u, y > t ≥ bβɶ . 
Then, the system satisfies Popov´s Inequality as 
well. 

 
Hyper-stability: The above concepts play a crucial 
role in the properties of hyper-stability and 
asymptotic hyper-stability which, as stated in the 
introduction, generalize the concept of absolute 
stability which, on the other hand, generalizes the 
standard one of global Lyapunov’s stability. Assume 
a negative feedback configuration where the forward 
loop is defined by a linear time-invariant 
input/output operations (or plant) from the input 
space to the output space G: U → Y while the 
feedback  loop is a, in general, nonlinear and/or 
time-varying  operator (or feedback controller) 
whose  output  space is equal to the input space to 
the forward loop F : Y → V =  U such that if u is in 
U then v = -u is in V identical to U. Assume that the 
G-operator is Strictly Positive and the feedback one 
is anyone satisfying a Popov’s -type Inequality so 
that: 

 

t t

2
t 0

u ,  y 0 ;  u ,  y

v ,  y

< > ≥ − < > =

< > ≥ −γ > −∞
  (2) 

 
 Combining the above two relationships, one gets 
that the supplied input/output energy during the time 
interval [0, t] satisfies after using Parseval’s theorem 
and assuming that the input is not identically zero 
within such an interval: 

 

t t t t t t

1 1
t t t t

E(t) u, y u ,y u ,g * u u ,hu

ˆˆ ˆ ˆ ˆ(2 ) u , y (2 ) u ,gu− −
>=

=< > =< >=< >=< >

= π < π < >
 (3) 

 
where,  j  is  the imaginary unit, the symbol * 
denotes  the  convolution  integral,  g and ĝ  being 
the impulse response and the frequency response (i.e. 
Its Fourier transform F (.) ) Associated with the 
physical filter of the forward input-output G-
operator, and h being a time operator from U to Y 
defining the convolution integral in the time-domain, 
namely: 

 
t

t t t 0

j
t t t

j
t t t

g * u h(u )(t) g( )u (t ) g( )u(t )d

û ( j ) F(u ) u ( )e

ˆd ;y ( j ) F(y ) y ( )e d

∞

−∞

∞ − ωτ

−∞

∞ − ωτ

−∞

= = τ − τ = τ − τ τ

ω = = τ

τ ω = τ τ

∫ ∫

∫

∫

 

 Such Fourier transforms always exist in finite 
time since the corresponding integrals exist. Note 
that the input/output energy is expressed equivalently 
in the time-domain (first line of identities in eq. 3) 
and in the frequency domain (second line of 
identities in eq. 3). Thus: 

 
1

t t

11 2
t

ˆˆ ˆE(t) (2 ) u ( j )(g( j )u ( j ))d

ˆ ˆˆ ˆ(2 ) Reg( j ) d (2 ) u(Reg)u

∞−

∞

∞ −−

∞

= π ω ω − ω ω

= π ω ω = π < >

∫

∫
  (4) 

 
with the last inner product being defined in the 
frequency input/output spaces by using the identities 
(3) where the odd symmetry property of the 
imaginary part of the hodograph 

ˆ ˆIm(g( j )) Im(g( j )ω = − − ω has been used. 

 
Asymptotic hyperstability for strongly strictly 
positive real transfer functions: Now, if the h and 

ˆRegare Strictly Positive (or, in particular, Strongly 
Strictly Passive) operators then 

0
ˆd Min Reg( j ) 0

ω≥
= ω >  

[checking for negative frequencies is not necessary 
since ˆ ˆRe(g( j )) Re(g( j )]ω = − − ω . It is then said that the 
transfer function ̂g(s)is Strongly Strictly Positive Real, 
i.e. ˆReg(s) d 0for Res 0> ≥ ≥ so that ˆReg( j ) d 0ω ≥ > for 
all real ω[4-8], so that one gets directly from (4) 
combined with the second relationship in (2) for the 
feedback loop: 

 
2 1 2
0 t

t 2

0

ˆE(t) (2 ) d u ( j ) d

d u ( )d 0fort 0

∞−

−∞
∞ > γ ≥ ≥ π ω ω

= τ τ > >

∫

∫
 (5) 

 
so that taking limits as t →∞ it follows that the input 
is bounded for all time and it converges to zero 
asymptotically continuous (or it only has bounded 
isolated discontinuities). Since Error! Bookmark 
not defined. is strongly strictly positive real then it 
is strictly stable (i.e. are poles have negative real 
parts) and non-strictly proper (i.e. It has the same 
number of poles and zeros -or relative degree zero). 
Its inverse ˆ1 / g(s) is also Strongly Strictly Positive 
Real, strictly stable and non-strictly proper but 
proper (and then realizable) so 

that 1

0
ˆ1 / dMin(g ( j )) 0−

ω≥
ω > . Thus, (5) might be re-

arranged by using 1ˆˆ ˆu( j ) g ( j )y( j )−ω = ω ω  as follows: 

 
2 1 1 2
0 t

t 2

0

ˆE(t) (2 ) d y ( j ) d

d y ( )d 0fort 0

∞− −

−∞
∞ > γ ≥ ≥ π ω ω

= τ τ > >

∫

∫
 (6) 
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 Then, taking limits as above as time tends to 
infinity, one concludes that the output is bounded 
provided that it is continuous almost everywhere and 
tends asymptotically to zero. The asymptotic hyper-
stability theorem is formulated as follows,[5].Thus, if 
the plant is Strongly Strictly Passive (so that its 
transfer function is Strongly Strictly Positive Real) 
while the feedback loop is anyone satisfying a 
Popov’s type Inequality than the closed-loop system 
is asymptotically hyper-stable (i.e., Globally 
Lyapunov’s asymptotically stable for the class of 
feedback laws satisfying the Popov´s Inequality in 
(2). If the transfer function is Weakly Strictly 
Positive Real, so that its associate time and 
frequency domain operators are Weakly Strictly 
Passive, then ˆReg( j ) 0ω > for all finite- 
but ˆLim Reg( j ) 0

ω→±∞
ω = . 

 
Asymptotic hyperstability for weakly strictly 
positive real transfer functions: Thus, the above 
reasoning needs to be modified to get the asymptotic 
hyper-stability result.  
 
Assume that the transfer function is weakly strictly 
positive real with ˆReg( j ) 0ω > for all finite ω 

and 2
0ˆlim Reg( j ) d 0

ω→±∞
ω ω ≥ > . Then, we perform 

multiplication and division by the squared-frequency in 
the frequency domain integrals of (5) to get 
instead 2

0 E(t)∞ > γ ≥ : 

 
2

1 1 t
0 t 0

t 2
0 0

û ( j )ˆ(2 ) d ( j ) d (2 ) d d
j

d ( )d 0fort 0

∞ ∞− −

−∞ −∞

 ω≥ π δ ω ω π ω ω 

= δ τ τ > >

∫ ∫

∫

 (7) 

 
where, �  (.) is the input time-integral. Thus, it follows 
that this integral converges to zero as time tends to 
infinity so that the input should exhibit that limit 
behavior. Continuing with such a development one gets 
the following conclusion. Thus, if the plant is Weakly 
Strictly Passive (so that its transfer function is 
Weakly Strictly Positive Real) while the feedback 
loop is anyone satisfying a Popov´s type Inequality 
than the closed-loop system is asymptotically hyper-
stable (i.e. Globally Lyapunov’s asymptotically 
stable for the class of feedback laws satisfying the 
Popov’s Inequality in (2). 

 
Further comments: Note also that, in both cases of 
Strict Positive Realness, the plant input/output energy 
and supplied power are at the same time positive and 
bounded for all time: i.e., bounded above with a 

finite bound and strictly positively bounded from 
below for all time. 
 A key associate property is that the absolute 
maximum input/output phase deviation is 90° and that 
the system is strictly stable of strictly stable inverse in 
the case of strict positivity or passivity and critically 
stable (of inverse being critically stable as well) with 
eventual simple imaginary poles of nonnegative 
associate residuals. 
 Also, the hodographs of frequency responses are 
confined to the first and third quadrants of the complex 
plane and they are never tangent to the imaginary axis if 
the system is Strongly Strictly Positive Real. 
 Note that another important aspect is the role 
played by the feedback device. Note that while the 
forward loop is strictly positive/passive (and then 
dissipative) the feedback one might have negative 
supplied energy (at least during certain time intervals) 
so that it may be regenerative at least during certain 
time intervals. In this case, the upper bound of the 
feedback input/output integral satisfying Popov´s 
Inequality is a negative real number during such time 
intervals. This leads to the weaker sufficient conditions 
for achieving closed-loop stability, when adopting a 
physical point of view concerning the weakness of 
dynamic constraints, but it is not always the case 
concerning the fulfillment of Popov´s Inequality. For 
instance, if the feedback loop consists of a dynamics-
free nonlinearity inside the first/third quadrants, as in 
the standard absolute stability problem, then the 
above mentioned upper-bound is always positive for 
the scalar product satisfying a Popov´s Inequality 
type lower-bound what means that the feedback 
device is either conservative or deceptive as it is the 
forward device (plant) while maintaining closed-loop 
stability in terms of hyper-stability. 
 We can also point out by using again Parseval’s 
theorem in (4) to interpret it in the time-domain via the 
bounds in (5) that: 

 
t 2

0
g( )u ( )d 0∞ > τ τ τ >∫  

 
if the system is Strictly Passive (or Strictly Positive), so 
that its transfer function is Strictly Positive Real and 

t 2

0
g( )u ( )d 0∞ > τ τ τ ≥∫ for all t > 0 if the system is 

Weakly Passive (or Positive), so that its transfer 
function is Positive Real. As a result, the impulse 
response g (t) is a strictly positive function and bounded 
above for all time t > 0 if the system is either weakly or 
Strongly Strictly Passive/Positive and g (t)≥ 0 and 
bounded above for all time t > 0 if the system is 
Weakly Passive/Positive. If the system is only 
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Positive/ Weakly Passive then g (t) does not 
converge asymptotically to zero. Thus, the last 
inequality ensures that the input u (t) is bounded. 
Since the transfer function is (perhaps critically) 
stable [since Positive Real] then the output is 
bounded as well and (in general, non asymptotic) 
hyper-stability is guaranteed. 

 
Asymptotic Hyperstability for Positive Real 
Transfer Function with a Single Pole at the Origin 
(Popov’s Simplest Particular Case): Now, assume the 
case that the plant input is not trivially zero and the 
forward loop is only (non strict) Positive /Weakly 
Passive while its transfer function possess only a single 

pole at s = 0. Assume also that 1ˆ ˆg (s) sg(s)=  is Strictly 

Positive Real. After relating real and imaginary parts of 

ĝ(s) and 1ĝ (s), one gets: 

 

1ˆImg ( j )
ˆReg( j )

ωω =
ω

 

 
And: 

 
ˆ ˆReg( j ) Img( j )ω = −ω ω  

 
So: 

 

ˆImg( j ) 0ω ≤ and 1ˆImg ( j ) 0ω ≤ ω ≥ 0  

 
for should hold in addition. Now, note that: 

 
1 1

t 1 tˆ ˆ ˆE(t) (2 ) g1( j )u ( j ) (2 ) d u ( j )d
∞ ∞− −

−∞ −∞
= π − ω ω ≥ π ω ω∫ ∫  

 

where, d1 > 0 provided that 1ˆ ˆg (s) sg(s)= is Strongly 

Strictly Positive Real (so that strictly stable and of 
relative degree zero or plus unity) since ĝ(s) is Positive 

Real with a single pole at s=0 and 

2

t

t

û ( j )
û ( j )

j

ω
ω =

ω
so 

that: 

 
2

t j
t

1
t t

0

t 1 0

û ( j )
û ( ) e d

j

ˆ ˆE(t) (2 ) d ( j ) u ( j ) d

d1 ( ) d d ( ) u( ) d 0

∞ ωτ

−∞

∞−

−∞

∞

−∞

ω
τ = ω

ω

≥ π δ ω − ω ω

= δ τ τ = δ τ τ τ >

∫

∫

∫ ∫

 

 

 For any nontrivial input wire
1

0
(t) u( ) dδ = τ τ∫ . 

After combining the above inequalities with Popov’s 

Inequality of the feedback device, one gets that the 
input is bounded, square-integrable and converges to 

zero. The output has the same properties since 1ĝ  are 

strongly positive real. Then, asymptotic hyper-stability 
follows also in this particular case of (non strict) 
positive realness where 1ĝ (s) is Strongly Strictly 

Positive Real. The proof for the case when 1ĝ (s)is 

Weakly Strictsimilartive Real is quite similar but more 
involved and it may be addressed by proceeding with 

1ĝ (s)as in the case of Weakly Strictly Positive Real 

transfer function hyper-stability obviously in the 
context of asymptotic hyper-stability for strict realness 
of the forward loop. A very related case is that the 
Simplest Particular Case (i.e. Positive Realness of the 
plant with a single pole at the origin) leads to absolute 
stability (global asymptotic Lyapunov’s stability) for 
any nonlinear device which only generates a zero 
output when its input takes a zero value. 
 
Links with operator theory: All the above results may 
be interpreted in the context of operators. We consider 
the input and Output spaces U (identical to V) and Y as 
Hilbert linear subspaces (i.e. Banach spaces, namely, 
normed spaces where any Cauchy sequence has a limit 
in those spaces) of the set or real square -integrable 
vector functions 2 2L L (0, )≡ ∞ endowed with the inner 

product (semi) norm; i.e. if u ε U then 
| u u,u= < > and a similar norm is defined for the 

output signal on Y. Since, we have to deal with limits 
as time tends to infinity, it cannot be “ a priori” 
guaranteed that the input/output functions are square-
integrable over (0, ∞) since this has been a previous 
issue in the stability proofs of the former section. 
Therefore, the formalism is more properly 
established on: 
 
_ 2e t 2 2

0 t

L : {f :[0, ) R / f L t [0, )} (L [0, t])
≤ <∞

= ∞ → ∈ ∀ ∈ ∞ ≡ ∪   

 
i.e., The set of square-integrable truncated functions for 
some finite truncation time. Thus, for all finite time, we 
can consider the (truncated) input and output signals 
of the dynamic system as members of that set. Also, 
since the L2-norm is rather a seminorm, since it is 
defined through an integral, we consider as identical 
all input and output signals belonging to classes that 
only differ possibly in sets of zero measure of (0, ∞). 
Now, we pay our attention to a key identity 
recovered from (3), namely: 
 
E (t) = < ut, hut > ≥ 0 for all t ≥ 0 
 
for all finite t. In our context, we say that this holds for 
any u t Î L2 for a finite time (which, in fact, is identical 
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to say for any u ∊L2 [0, t] for any finite time). That 
means that the Convolution Operator is Positive if the 
transfer function of the plant is Positive Real or Strictly 
Positive Real. That leads, trough Parseval’s theorem, to 
the fact that the associate response frequency operator 
which is the mapping between the corresponding input 
and output frequency linear spaces (being identified in 
particular with the real part of the frequency response 
Error! Bookmark not defined.  Is also positive, 
respectively, strictly positive. Positive Operators are 
self-adjoin operators. If the two-sided bounded-ness 
of the input/output energy balance discussed in the 
above section (finite above and below strictly from 
zero) holds for all time, which requires for the 
feedback loop to satisfy Popov´s Inequality, then the 
system is asymptotically hyper-stable since we can 
take limits as time tends to infinity to conclude that u 
∊ L2, u tends to zero as time tends to infinity while it 
is bounded for all time, provided that ut∊L2. In order 
to interpret all the results of the previous sections in 
the context of operator theory, we can extend the 
definition of positive operators to passive ones 
together with their strict versions as follows. 
 The h-operator is (and so it is the operator 
ˆ ˆh( j ) : Reg( j )ω = ω through Parseval’s theorem): 
 
• Passive or Dissipative : < u t, h u t > ≥ β for some 

real constant β all t ≥ 0 . This implies t t
ˆˆ ˆu ,hu< >≥ β . 

• Positive if β = 0; Weakly Strictly Positive / Passive 

if t t
ˆˆ ˆu ,hu 0< >≥ β > for all nonzero ut and all t > 0; 

and Strongly Strictly Positive / Passive if < ut, hut > 
≥ b < ut,ut > with b > 0 for all t ≥ 0 . Since the 
properties of the h-operator induce similar 
properties on the ̂h -operator, it follows that: 

• If h is Positive then ̂h  is positive as well, Re ĝ 0≥  
for all real w so that ̂g  is Positive Real. As a result, 
it is (perhaps critically) stable with a relative 
degree zero or plus unity ( if realizable) with 
residuals at the critically stable (necessarily simple) 
poles ( if any) being nonnegative, having an 
inverse Positive Real and producing an absolute 
input / output phase deviation of at most 90º. 

• If h is Strongly Strictly Positive then ĥ  is Strongly 
Strictly Positive as well, Re ̂g 0> for all real w so 
that ĝ is Strongly Strictly Positive Real. As a 
result, it is strictly stable with a relative degree 
zero, having inverse Strictly Positive Real and 
producing an absolute input/output phase 
deviation of at most 90º. 

• If h is Weakly Strictly Positive then ̂h  is weakly 
Strictly Positive as well, Re ĝ 0>  for all real finite 

� � with ĝ  tending to zero as the absolute 

frequency tends to infinity and 2ĝω tending to a 
positive number as the absolute frequency tends to 

infinity] so that ĝ  is Weakly Strictly Positive Real. 
As a result, it is strictly stable, having inverse 
Strictly Positive Real and producing an absolute 
input / output phase deviation of at most 90º. 

 
 The proof of asymptotic hyper-stability is 
required for t the feedback F-operator to satisfy 
Popov´s Inequality and such a proof is addressed as 
indicated above. 
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