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Abstract: Euler deconvolution method is the method of demtingtion which is best suited for
anomalies caused by isolating and multiple anonsalsources. In the present study, algorithmic
programs based on generalizing linear inverse jhawes a least square sense to solve for Euler’s
equation is being written. The Euler technique det estimate the location of a simple body from
measurements of the magnetic field could be appbea long profile of measurements, by dividing
the profile into the windows of consecutive meamants, each window providing a single estimate of
depth and source location. Acceptable solutionsfdatures of interest may involve some trial and
error by adjusting the structural index and thedsin size. When all such measurements are plotted
they tend to cluster around magnetization of gaologerest. Some indication of the source type can
be gained by varying the structural index for argrtipular feature. Shallow features can be
deconvolved well by using small window to reducerse interference. By usingn=1and n = 1. 5,
and deconvolved with small window sizes, our pragngelds good tight clustering and acceptable
depths of the anomalous igneous body located adengmagnetic profile in the south of Amenzi area,
Inner Mongolia, North China. The depths obtainedubing the structural index of n = 1. 5 varying
between 700-900 m. The method yielded useful smistivith an acceptable depth estimate.
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INTRODUCTION systems that the single-source algorithm can oerbi d
with approximately.

The advantages of this technique over more
conventional depth interpretation methods (i.e.

data. It is particularly good at delineating cotgaand CharacFeristic curve:‘s, inverse (;urve matching) taae
rapid depth estimation. This technique belongs td'© partlculgr geological model IS as§umed, a}ndttkmt
automatic depth estimate methods and, is desigmed fieconvolutlon Cf”m be directly applied and- interpret
provide computer-assisted analysis of large voluofes even when particular model, such as a prism or dyke
magnetic and gravity data. cannot properly represent the geology.

Euler's equation has been used by a number of
authors for analyzing both magnetic anomé&fiés'and Theory of euler equation: However, for applying the
gravity anomaliéd. Euler's homogeneity relationship Euler's expression to profile or line-oriented dé2aD
offers a quasi-automated method to derive the p|a§ources). In this case, the x-coordinate is a reasi

location and depth estimation of buried Ferro-ntietal .o gistance along the profile, and the y-coorairzn
objects from magnetic data. Euler’s homogeneitybe set to zero along the entire, profile:

equation relates the magnetic field and its gradien
components to the location of the source with the
degree of homogeneity expressed as a structure&_x)aﬂ_zaﬂ__m-r(x) 1)
index™. ™ Developed the technique and applied it to “ox  ° oz

profile data.””! Developed the technique most widely
used version for grid-based data. Also recent
improvements on the technique had occurred which
included the estimation of the structural index®
Developed a multiple-source generalization of Euler, 95T . "AJ:X‘MJJ,MT(X) (2)

deconvolution, which is capable of handling complex ° ox ° oz ox
209

The Euler deconvolution method is used for rapid
interpretation of potential field (magnetic and \gty)

Rearrangement of the above expression yields:
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where (%, Z) is the position of a 2-D magnetic source where, m is the vector of unknown parameters:
whose total field T is detected on (X, z). The Itdield

has a regional value of B, and n is a measure ®f th
falloff rate of the magnetic field. N is directlglated to m:l:
the source shape and is referred to as the stalictur z
indexX!. By evaluating the total field T and its derivatv

ﬂ (7)

0

(calculated or measured, The gradient can be eddzll aT aT\ /3T oT

using standard potential theory in the space orewav <——><——>

number domain or the vertical gradient may begTg=|'%X 9X/\0x 0 (8)
calculated and can be used directly in the above <0l aT ><¢LT aT >

equation) at all points on a magnetic data segsees of ox'0z/\0z 9z

simultaneous linear equations is obtained with the

unknowns being theox z, represent the location and And:

depth of the magnetic source, n, the structuratxnof '

the source and B the regional magnetic field. Usirey

derivatives of potential-field anomalies enhance ftbld <¢LT Xal>+<0l Z‘LT>+ n<al -|->

associated with shallow features and de-emphabize t _ _|\0x " dx/ \ox ' oz ox ' ©)
field from deeper sources. Used appropriately, the aT oT\ /oT oT aT

method is suitable for characterizing sources of al <$'X&>+<E’ZE>H}<E’ >

potential-field data and/or their derivatives, @3g as the
data can be regarded mathematically as contiffious . .
The application of equation (2) directly to the Stepsof processing: The Following Flow Chart Shows
observed data makes the exact solution unreliatde a the Input and Steps of Processing:
erratic. The problem of removing the bias from the

observed data is solved in the following waytby Torl Magnetic Fiold (X, Z. T .2
Assume the anomalous field is perturbed by a Or the Total Magnetic Field

constant amount B in the window in which equati@n ( AYA

IS belng evaluated. The observed quantlty IS Calculate the Gradients (dT/dx and dT/d#) The first

horizontal derivative in X and vertical denvative in £ directions

T(X) =AT(x)+B 3 N/

. . . Choose the Structural Index: n
where, B is a constant in the coordinate x over the

portion of the profile where the analysis is beingde. N\
Solving equation (3) foAT , substituting into equation

) . Several Window Length and Position along the Profile
(2) and arranging terms yield:
A
oT oT oT Use All Points in the Window to Solve
X,—+2,—+ NB=x—+nT 4 Euler's Equation
%9x ‘oz ax @) :
AV
E {i 4 ith th K dB (Xg Z,) Source Position and B
quation ( ) wi ree unknowns, X, an can B: The Back ground Value
be solved by using a least squares procedure. Vi

The proposed method involves setting an
appropriate value of the structural index of the Apply the Acceptance Tolerance (Uncertainties)
suspected source bodies and then solving the system
least-squares inversion for an optimug) % and B. \/
The inversion process also yields an uncertainty Plot Any Acce ptable Results Solutions for Each Window
(standard deviation) for each of the fitted pararet
These uncertainties may be used as criteria for

acceptance or rejection of solutions. Interpretation: Using MATLAB software version 6.5
To solve for the source location, 3z, the process  for programming, a program uses the generalizeghtin

normally solving the following least square normalinyerse method in a least square sense to solve the

equation associated with equation (4): Euler's equation has been written. It will be shotvat
the general inverse can be constructed so as ta get
G'Gm=G d (5) better fit to the data (in a least square sensedprhe

stabilized, so that it is less critical to choosdame

number of model parameters than with the ordinary

m=G'd(GG ) (6)  least square technique.
210
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To discuss our model construction, from the linear  The above is the theory of SVD of the physicist

equation; Lanczo¥), so any matrix G¢ RY *N can be factored as
the equation (16), that is G can be factored as
GMxN My = de1 (10) G= UI’Dr VrT
Where: Let T:
M = The number of observations
N = The number of model parameters G =V O™y, (18)
The least square solution to linear problems, ; P

objective function: =V, 0. U u ooy (19)
E=(d-G,)d-G, Y (11)  =G"(u,0? Uy (20)
=dd"'-Gmd - dni G+ Gmnm G (12) G, =G (GG ) (21)
Let aET -0, then we have: _ Be the]ir}l/o(]erse of the ma_trix G, Gs callgd natural

m inverse b¥. % was named it as Lanczos inverse, and

also as generalized inverse and is used basedeon th
d'G+em @ = (13) above equation for solving linear inversion prokdem
So the solution of the Gm =ist

/AT ~y1 AT
m=(G'G)" G d 14 e d=v ot ud (22)

L r r r

This is what is called the normal equation: The generalized inversion based on the Lanczos

natural inverse, the definition of natural inverseG d
m=G_d (15  =r=N(M, Gm=dis an over-determined equation, in
this case, the solution of the generalized invergo

If M) N =r, where r = rank of matrix G, an

overdetermined system, then some constrains must b8 =G, d= (G'G)' G ¢ (23)
added to effect more information (M-N) from the

observation. This is what is called L. S solutiSo.that This is the least square solution which provides t
from equation (6): minimum length solution of linear systems. The

provided algorithm is based upon the above thedry o
the generalized inversion.

The application of our algorithm is based on the
) _ ~ above steps of processing and was tested on some
The above equation is called the generalizedypical magnetic structures, and on real field data

m=G" (GG )'d

inversion_. _ o _ examples using an aeromagnetic data profile over
If G is M x N matrix which is singular matrix. The Amenzi area, Inner Mongolia, North China, which
matrix G can be factored as. targets the shallow igneous body source.

By applying the matrix decomposition theor{fof

Single anomalous sources. Figure 1-3 represent the
G=U 0V (16) total-field magnetic anomalies over single 2-D
anomalous source bodies of known depths. By using
. . _ the structural index of n=1, and varying the window
The above equation is called Singular Valuegj,o 510ng the profile, the pattern of the clusteri
Decomposition (SVD) of singular matrix G} is @  around magnetization of geologic interest derives

diagonal matrix with r singular values on its main gqrce position and depth. Varying the window size

diagonal and zero elsewhere: along the profile will show roughly different degref
clustering and also different depths. For a small
0 =diag}, A, ,..A, ). window, the points give a good tight clusteringtbe

top of the vertical and dipping dike bodies Fig, 8)
and for horizontal source body the two edges of the
0= )\1)\2 0 (17)  source body is indicated by tight clustering points
0 A, (Fig. 2).
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b?—](mi----- Fig. 3: (&) Shows the total-field Anomaly (dT) Over
Single Dipping Anomalous Source Body; (b):
The Obtained Depths by Deconvolved with
Fig. 1: (a) Shows the Total-field Anomaly (dT) Over Different Window size and Using Structural
Simple Single Anomalous Vertical Dike; (b) Indexn=1

The Depths Obtained by Decovolved with For a large window, the pattern is represented ridy o

Different Window Size and by Using Structural one noi . o
_ o N 7 _ point on the top of the vertical and dippingliee

Index n =1 Model 1: Width = 4m; Height = 2,4 5 the case of the horizontal body the pattsrn

40m; Top Depth: 10m; Bottom Depth: 50m; ronresented by only one point in the center oktherce

Center Point Coordinate: (x0 =50;z0 =12)  pody. In case of horizontal body the geological slod

may represent the situation where two sedimentary

_ units with different magnetic susceptibilities are
nl juxtaposed which is referred to magnetized contact.

Multiple anomalous sources: In 2-D multiple
anomalous sources' case of known depths, the
deconvolution was run using different structural
indices n = 0, 0.25, 0.5, and 1 and a number of
window size along the profile. In case of n = Gg th

. . program gives poor biased depths, showing thaDns=

0 20 40 60 &0 100 a wrong index (Fig. 4a). Using n = 0. 25 indicd® t
program gives poor clustering around anomalousesodi
and biased depths (Fig. 4b). At n = 0. 5, the @ogr
yields a good solution at the horizontal and digpin
bodies, but at the vertical dike gives poor cluster
around the geologic body (Fig. 4c). On n = 1, and
deconvolution with different window sizes, our prag)
yields good clustering and acceptable depths of
anomalous bodies varying between 10-14m (Fig. 4d).

A real field example from amenzi area: Our

algorithm was applied to a real field example of

aeromagnetic profile. The aeromagnetic profile has

Fig. 2: (a): Shows the Total-field Anomaly (dT) @ve |ength of 27 km located in the southern part of Ame
Single Anomalous Horizontal Body; (b). The area, Inner Mongolia, North China., with a northio
Depths Obtained by Deconvolved with direction. The local anomaly in the south of thefie
Different Window Size and by Using n = 1 is interpreted as a shallow-buried igneous bodya of
Model 2: Width = 40m; Height = 4m; Top depth less than 1000 m, which is correspondindhéo t
Depth: 10m; Bottom Depth: 14m; Center Point positive local magnetic anomaly located in the Bout
Coordinate: (x0 = 50; z0 = 12) part of Amenzi area.
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Fig. 4: Shows the Total-field Anomalies (dT) of Mul
model Anomalous Source Bodies and their
Depths Deconvolved by Using Different
Structural Indices, a) n =0,b)n=0.25,¢c)n =

0. 5, d) By Using Correct Index n =

dT(nT)
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Fig. 5: Shows the Total Magnetic Field (dT) and the
Euler Response Over Field Example (Amenzi
Area), Using Structural Index n=1 and n=1. 5

The anomalous igneous body was tested by Euler
method, using two different structural indices, nl=
and n = 1. 5. The result was shown in Fig. 5, which
shows that the index n = 1.5 was yielding useful
solutions and acceptable depth estimates. The slepth
vary between 700-900 m.

CONCLUSION

A number of methods are available for a fast
analysis of large data sets. They are used to rditer
the average location of the main anomalous bodies
under a number of quite strict assumptions. Exasple
include Euler deconvolution methdtls Werner
deconvolution methodd!, the analytic signal
approach®® ‘statistical’ approach and similar
method&**%]

Euler deconvolution has been widely used in
automatic aeromagnetic interpretations because it
requires no prior knowledge of the source
magnetization direction and assumes no particular
interpretation model.

The Euler deconvolution method is best suited for
anomalies caused by isolating and multiple anonsalou

1 and goyrces. The method is applied to a long profile of

Deconvolved by Using Different Moving aeromagnetic measurements, located over Amenzi area

Window Sizes
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Inner Mongolia, North China. Some indication of the
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source type can be gained by varying the structurdb.
index for any particular feature.

It is concluded from the above the deconvolution?.
must be run with different structural indices eweith
the intermediate structural indices, which might
improve clustering solutions, but they are nottedlao
a known model structure.

The anomalous features of the field example are.
simple feature and located at shallow depths, de it
better to be deconvolved with a small window size9.
rather than a large window.

10.
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