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Abstract: Euler deconvolution method is the method of depth estimation which is best suited for 
anomalies caused by isolating and multiple anomalous sources. In the present study, algorithmic 
programs based on generalizing linear inverse theory, uses a least square sense to solve for Euler’s 
equation is being written. The Euler technique that can estimate the location of a simple body from 
measurements of the magnetic field could be applied to a long profile of measurements, by dividing 
the profile into the windows of consecutive measurements, each window providing a single estimate of 
depth and source location. Acceptable solutions for features of interest may involve some trial and 
error by adjusting the structural index and the window size. When all such measurements are plotted 
they tend to cluster around magnetization of geologic interest. Some indication of the source type can 
be gained by varying the structural index for any particular feature. Shallow features can be 
deconvolved well by using small window to reduce source interference. By using n = 1 and n = 1. 5, 
and deconvolved with small window sizes, our program yields good tight clustering and acceptable 
depths of the anomalous igneous body located along aeromagnetic profile in the south of Amenzi area, 
Inner Mongolia, North China. The depths obtained by using the structural index of n = 1. 5 varying 
between 700-900 m. The method yielded useful solutions with an acceptable depth estimate. 
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INTRODUCTION 

 
 The Euler deconvolution method is used for rapid 
interpretation of potential field (magnetic and gravity) 
data. It is particularly good at delineating contacts and 
rapid depth estimation. This technique belongs to 
automatic depth estimate methods and, is designed to 
provide computer-assisted analysis of large volumes of 
magnetic and gravity data. 
 Euler’s equation has been used by a number of 
authors for analyzing both magnetic anomalies[1, 2, 3] and 
gravity anomalies[4]. Euler’s homogeneity relationship 
offers a quasi-automated method to derive the plan 
location and depth estimation of buried Ferro-metallic 
objects from magnetic data. Euler’s homogeneity 
equation relates the magnetic field and its gradient 
components to the location of the source with the 
degree of homogeneity expressed as a structured 
index,[1]. [1] Developed the technique and applied it to 
profile data. [3] Developed the technique most widely 
used version for grid-based data. Also recent 
improvements on the technique had occurred which 
included the estimation of the structural index[5]. [6] 
Developed a multiple-source generalization of Euler 
deconvolution, which is capable of handling complex 

systems that the single-source algorithm can only deal 
with approximately. 
 The advantages of this technique over more 
conventional depth interpretation methods (i.e. 
Characteristic curves, inverse curve matching), are that 
no particular geological model is assumed, and that the 
deconvolution can be directly applied and interpreted 
even when particular model, such as a prism or dyke 
cannot properly represent the geology.  

 
Theory of euler equation: However, for applying the 
Euler’s expression to profile or line-oriented data (2-D 
sources). In this case, the x-coordinate is a measure of 
the distance along the profile, and the y-coordinate can 
be set to zero along the entire profile:  

 

0 0

T T
(x x ) z n T(x)

x z

∂∆ ∂∆− − = − ∆
∂ ∂

  (1) 

 
 Rearrangement of the above expression yields: 
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where (x0, z0) is the position of a 2-D magnetic source 
whose total field T is detected on (x, z). The total field 
has a regional value of B, and n is a measure of the 
falloff rate of the magnetic field. N is directly related to 
the source shape and is referred to as the structural 
index[1]. By evaluating the total field T and its derivatives 
(calculated or measured, The gradient can be calculated 
using standard potential theory in the space or wave 
number domain or the vertical gradient may be 
calculated and can be used directly in the above 
equation) at all points on a magnetic data set, a system of 
simultaneous linear equations is obtained with the 
unknowns being the x0, z0 represent the location and 
depth of the magnetic source, n, the structural index of 
the source and B the regional magnetic field. Using the 
derivatives of potential-field anomalies enhance the field 
associated with shallow features and de-emphasize the 
field from deeper sources. Used appropriately, the 
method is suitable for characterizing sources of all 
potential-field data and/or their derivatives, as long as the 
data can be regarded mathematically as continuous[7]. 
 The application of equation (2) directly to the 
observed data makes the exact solution unreliable and 
erratic. The problem of removing the bias from the 
observed data is solved in the following way by[1]. 
 Assume the anomalous field is perturbed by a 
constant amount B in the window in which equation (2) 
is being evaluated. The observed quantity is:  
 
T(x) T(x) B= ∆ +  (3) 

 
where, B is a constant in the coordinate x over the 
portion of the profile where the analysis is being made. 
Solving equation (3) for ∆T , substituting into equation 
(2) and arranging terms yield: 
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 Equation (4) with three unknowns x0, z0, and B can 
be solved by using a least squares procedure. 
 The proposed method involves setting an 
appropriate value of the structural index of the 
suspected source bodies and then solving the system by 
least-squares inversion for an optimum x0, z0 and B. 
The inversion process also yields an uncertainty 
(standard deviation) for each of the fitted parameters. 
These uncertainties may be used as criteria for 
acceptance or rejection of solutions. 
 To solve for the source location x0, z0 the process 
normally solving the following least square normal 
equation associated with equation (4): 
 

T TG Gm G d=  (5) 
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where, m is the vector of unknown parameters: 
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And: 
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Steps of processing: The Following Flow Chart Shows 
the Input and Steps of Processing: 

 

 
 
Interpretation: Using MATLAB software version 6.5 
for programming, a program uses the generalized linear 
inverse method in a least square sense to solve the 
Euler’s equation has been written. It will be shown that 
the general inverse can be constructed so as to get a 
better fit to the data (in a least square sense) become 
stabilized, so that it is less critical to choose a large 
number of model parameters than with the ordinary 
least square technique. 



American J. Appl. Sci., 1 (3), 209-214, 2004 

211 

 To discuss our model construction, from the linear 
equation; 
 

M N N 1 M 1G m d× × ×=  (10) 

 
Where: 
M = The number of observations 
N = The number of model parameters 
 
 The least square solution to linear problems, 
objective function: 
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, then we have: 
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T 1 Tm (G G) G d−=   (14) 

 
 This is what is called the normal equation: 
 

Lm G d=   (15) 

 
 If M  〉 N = r, where r = rank of matrix G, an 
overdetermined system, then some constrains must be 
added to effect more information (M-N) from the 
observation. This is what is called L. S solution. So that 
from equation (6): 
 

T T 1m G (GG ) d−=  

 
 The above equation is called the generalized 
inversion. 
 If G is M × N matrix which is singular matrix. The 
matrix G can be factored as. 
 By applying the matrix decomposition theory of[8]: 
 

T
r r rG U V= ∧  (16) 

 
 The above equation is called Singular Value 
Decomposition (SVD) of singular matrix G, ∧r is a 
diagonal matrix with r singular values on its main 
diagonal and zero elsewhere: 
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 The above is the theory of SVD of the physicist 
Lanczos[9], so any matrix G ∈ RM × N can be factored as 
the equation (16), that is G can be factored as 

T
r rG Ur V= ∧  

 
 Let T: 
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 Be the inverse of the matrix G, G L is called natural 
inverse by[9]. [10] was named it as Lanczos inverse, and 
also as generalized inverse and is used based on the 
above equation for solving linear inversion problems. 
 So the solution of the Gm = d is: 
 

1 T
L r r rm G d V U d−= = ∧   (22) 

 
 The generalized inversion based on the Lanczos 
natural inverse, the definition of natural inverse, m GL d 
= r = N 〈 M , Gm = d is an over-determined equation, in 
this case, the solution of the generalized inversion is: 
 

T 1 T
Lm G d (G G) G d−= =   (23) 

  
 This is the least square solution which provides the 
minimum length solution of linear systems. The 
provided algorithm is based upon the above theory of 
the generalized inversion. 
 The application of our algorithm is based on the 
above steps of processing and was tested on some 
typical magnetic structures, and on real field data 
examples using an aeromagnetic data profile over 
Amenzi area, Inner Mongolia, North China, which 
targets the shallow igneous body source. 
 
Single anomalous sources: Figure 1-3 represent the 
total-field magnetic anomalies over single 2-D 
anomalous source bodies of known depths. By using 
the structural index of n=1, and varying the window 
size along the profile, the pattern of the clustering 
around magnetization of geologic interest derives 
source position and depth. Varying the window size 
along the profile will show roughly different degree of 
clustering and also different depths. For a small 
window, the points give a good tight clustering on the 
top of the vertical and dipping dike bodies Fig. (1, 3) 
and for horizontal source body the two edges of the 
source body is indicated by tight clustering points 
(Fig. 2).  
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Fig. 1: (a) Shows the Total-field Anomaly (dT) Over 

Simple Single Anomalous Vertical Dike; (b) 
The Depths Obtained by Decovolved with 
Different Window Size and by Using Structural 
Index n = 1 Model 1: Width = 4m; Height = 
40m; Top Depth: 10m; Bottom Depth: 50m; 
Center Point Coordinate: (x0 = 50; z0 = 12) 

 

 
 
Fig. 2: (a): Shows the Total-field Anomaly (dT) Over 

Single Anomalous Horizontal Body; (b). The 
Depths Obtained by Deconvolved with 
Different Window Size and by Using n = 1 
Model 2: Width = 40m; Height = 4m; Top 
Depth: 10m; Bottom Depth: 14m; Center Point 
Coordinate: (x0 = 50; z0 = 12) 

 
 
Fig. 3: (a) Shows the total-field Anomaly (dT) Over 

Single Dipping Anomalous Source Body; (b): 
The Obtained Depths by Deconvolved with 
Different Window size and Using Structural 
Index n = 1 

 
For a large window, the pattern is represented by only 
one point on the top of the vertical and dipping bodies 
and in the case of the horizontal body the pattern is 
represented by only one point in the center of the source 
body. In case of horizontal body the geological model 
may represent the situation where two sedimentary 
units with different magnetic susceptibilities are 
juxtaposed which is referred to magnetized contact. 
 
Multiple anomalous sources: In 2-D multiple 
anomalous sources' case of known depths, the 
deconvolution was run using different structural 
indices n = 0, 0.25, 0.5, and 1 and a number of 
window size along the profile. In case of n = 0, the 
program gives poor biased depths, showing that n = 0 is 
a wrong index (Fig. 4a). Using n = 0. 25 indices, the 
program gives poor clustering around anomalous bodies 
and biased depths (Fig. 4b). At n = 0. 5, the program 
yields a good solution at the horizontal and dipping 
bodies, but at the vertical dike gives poor clustering 
around the geologic body (Fig. 4c). On n = 1, and 
deconvolution with different window sizes, our program 
yields good clustering and acceptable depths of 
anomalous bodies varying between 10-14m (Fig. 4d). 
 
A real field example from amenzi area: Our 
algorithm was applied to a real field example of 
aeromagnetic profile. The aeromagnetic profile has a 
length of 27 km located in the southern part of Amenzi 
area, Inner Mongolia, North China., with a north-south 
direction. The local anomaly in the south of the profile 
is interpreted as a shallow-buried igneous body of a 
depth less than 1000 m, which is corresponding to the 
positive local magnetic anomaly located in the south 
part of Amenzi area.  
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Fig. 4: Shows the Total-field Anomalies (dT) of Multi-
model Anomalous Source Bodies and their 
Depths Deconvolved by Using Different 
Structural Indices, a) n = 0, b) n = 0. 25, c) n = 
0. 5, d) By Using Correct Index n = 1 and 
Deconvolved by Using Different Moving 
Window Sizes 

 
 
Fig. 5: Shows the Total Magnetic Field (dT) and the 

Euler Response Over Field Example (Amenzi 
Area), Using Structural Index n=1 and n=1. 5 

 
The anomalous igneous body was tested by Euler 
method, using two different structural indices, n = 1, 
and n = 1. 5. The result was shown in Fig. 5, which 
shows that the index n = 1.5 was yielding useful 
solutions and acceptable depth estimates. The depths 
vary between 700-900 m. 
 

CONCLUSION 
 
 A number of methods are available for a fast 
analysis of large data sets. They are used to determine 
the average location of the main anomalous bodies 
under a number of quite strict assumptions. Examples 
include Euler deconvolution methods[1], Werner 
deconvolution methods[11], the analytic signal 
approach[12,13] ‘statistical’ approach and similar 
methods[14,15].  
 Euler deconvolution has been widely used in 
automatic aeromagnetic interpretations because it 
requires no prior knowledge of the source 
magnetization direction and assumes no particular 
interpretation model.  
 The Euler deconvolution method is best suited for 
anomalies caused by isolating and multiple anomalous 
sources. The method is applied to a long profile of 
aeromagnetic measurements, located over Amenzi area, 
Inner Mongolia, North China. Some indication of the 
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source type can be gained by varying the structural 
index for any particular feature.  
 It is concluded from the above the deconvolution 
must be run with different structural indices even with 
the intermediate structural indices, which might 
improve clustering solutions, but they are not related to 
a known model structure. 
 The anomalous features of the field example are 
simple feature and located at shallow depths, so it is 
better to be deconvolved with a small window size 
rather than a large window. 
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