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Abstract: This study highlights the importance of collecting good quality data from multidisciplinary 
studies. Bias in data may be the result of instrument inaccuracies, imprecise data recording techniques, 
inaccurate data entry to computers or inappropriate statistical analysis and presentation. 
Recommendations for good data quality control are given. Different types of data are discussed: raw 
data, simple indicators and complex indicators. It is shown how measurements from the components of 
multidisciplinary systems can be combined to form complex indicators and a specific example is given 
using Z-scores and dot charts. Finally the accumulated effect of bias in the individual component 
measurements upon the combined indicator is shown. 
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INTRODUCTION 

 
 The quality of experimental or survey results 
depends upon the quality of their associated data. In 
research programs, whatever their size, the maintenance 
of data quality is a continuous problem. Staff must be 
trained both to collect accurate data and to enter them 
into computers in a precise manner. If this is not done 
then data with errors will lead to faulty analyses and 
wrong conclusions and decisions. In many field studies, 
program managers and researchers are very confident 
about their data collection staff, trusting their fieldwork 
and data-entry processing without question. But 
everybody is susceptible to making mistakes, so data 
quality should not be taken for granted. Many 
publications have stressed the need for good quality 
data[1,2] and the implications of poor data recording[3,4]. 
These stress the large effects in even quite small 
univariate studies. But in large multidisciplinary studies 
where raw data, simple and complex indicators are 
involved, the accumulated effect of initial collection of 
poor data will have even greater implications on the 
results and conclusions. Here we show how biased data 
are generated and can have serious implications on 
complex indicators.  
 
Data quality: Researchers and program managers need 
to obtain precise estimates of the effect of some 
intervention in order to make a decision or a 
recommendation. The estimate of the intervention 
effect should reflect as closely as possible what would 

be determined if the whole population could be 
measured. When the collected data on which the 
estimates are to be based do not accurately reflect 
reality, they are said to be biased. Biased data will 
provide biased estimates and may lead to wrong 
decisions. For example, if a dataset implies that a 
community under a health improvement program no 
longer has health problems (or that there are minimum 
problems), then the decision may be taken to start a 
similar health improvement program in other 
communities or to focus on other domains. If the first 
community health status has not improved to such a 
positive extent then the new health programs will be 
waste of resources. Another example of biased data is 
when someone tries to evaluate the effect of a program 
to determine to what extent children are being helped 
and motivated to attend school. From collected data one 
can decide whether the program has been successful. If 
the sample of children that was taken was not random, 
if the sample size was not large enough to include 
children from all grades or if there was a systematic 
error in data collection the data are likely to be biased 
and may distort the real effect.  
 
Data can become biased from several different 
sources and processes: These are:  
* The instruments used for measuring data 
* The field personnel who gather the information 
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* The entry of the data to the computer 
 The summaries of the data, whether they are biased 
or not, can themselves introduce a degree of 
misrepresentation to the results. This will come from: 
* The statistical analysis 
* The presentation of estimated values 
Each of these is dealt with here. 
 
Instruments for measuring data: Instruments may 
include simple tools like questionnaires or more 
sophisticated equipment such as automatic data loggers. 
Whatever their degree of complexity they must all be 
used with the same consideration for precision. 
Sometimes an inexperienced researcher may think that 
just to use a questionnaire with simple questions is 
enough to obtain the desired data. If the questions in the 
questionnaire were not validated or did not include the 
vital variables to answer the questions or objectives of 
the study then the resultant data will at best be 
incomplete and at worst, biased. Before going to the 
field to collect the data, it is important to test if the 
questionnaire measures what is required. A simple 
example of this is the language to use. For example, in 
some rural areas in Guatemala, the word diarrhea does 
not exist, instead there are many different local names. 
An inexperienced researcher may use the word diarrhea 
and get answers that will not be measuring the reality of 
this indicator.  
 Electronic instruments must be set accurately. 
Simple weighing scales and automatic data loggers, for 
example, must be calibrated at the start of a study and 
must be checked regularly for their reliability of 
measurement. If the instruments are not set correctly 
initially, then they could be including some extraneous 
measurement together with the effect that is required. 
This is known as instrument bias. 
 
The field personnel who gather the information: The 
process of training field personnel is important, because 
this is the first major influence on data quality. It is 
essential to: 
* Establish the quality maintenance procedures 

during selection of sampling units, 
* Train the field personnel to handle the instruments 

in the same way. If this standardization is not 
achieved, they may interview in different ways, 

 During the field collection of data, it is important 
to monitor the quality of: 
* The field personnel making the interviews and 

measurements, 
* The selection of sampling units, 

* The handling of instruments 
 All of the above are potential sources of bias, that 
are important to remember and to control in order to 
minimize the bias as much as possible. 
 Specific types of bias are generated from biased 
samples, which have no randomness in the selection of 
the sampling units and from systematic errors which are 
usually made without the knowledge of the data 
collector. There are different possibilities for making 
systematic errors: 
 During data capture in the field an interviewer may 
interpret a response in a different way from the rest of 
the interviewers, or may code the information 
differently from the rest of the field workers. 
Machinery may not be set accurately and may add (or 
subtract) a constant value from the true measurement 
 
The entry of the data to the computer: Once the 
fieldwork is done, or even at the same time, the process 
of entering the data to the computer begins. This should 
aim to enter the data exactly as it was recorded in the 
field. In other words, it should be like xeroxing the field 
work into the computer. But, unless the field 
instruments are read directly by a computer, there is 
always human error involved in the process. During the 
data entry process, the data-entry staff does their best to 
maintain accurate data entry. They enter data very fast, 
depending on the clarity of the data being entered. 
However, data entry errors may still be made. This is 
understandable, but to ignore them because there is no 
quality control is not acceptable. If the conclusions 
from an analysis of the data clearly point to a nonsense 
result, then the data entry errors may be spotted, 
otherwise the errors will be hidden and the information 
misleading. The result of this is that the researcher will 
have to pay for his mistake by spending a lot of time in 
finding the errors and doing the analysis again. 
 Different procedures to control the problems of 
data entry errors have been developed. The most 
common are: 
 
Data entry → manual check→ errors fixed: Here 
there is a likelihood that errors will remain. This is a 
common method among people with little or no 
experience in how to deal with this problem. The data 
are entered once into the computer and an output 
produced. The output is checked manually with the 
original documents. This is time consuming and does 
not guarantee correction of all the errors (even if the 
checking is made by more than one person). 
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Data entry → sample data→ Fix errors in sample: 
This is not a recommended procedure.  Its main purpose 
is to understand how good the data are; in no case is it 
to correct the errors. The data are entered once and a 
random sample of data (cases, individuals) is chosen to 
check for errors among them. An estimate of the errors 
due to data entry is obtained with this sample. 
However, only the errors in the sample are corrected, 
but not those in the rest of the data. A study may have 
10,000 children and only one data entry has been paid 
for. If a random sample of 100 children is selected from 
the typed data to check the data entry quality shows that 
10% of the data entered are wrong, these 10 errors may 
be corrected but the remaining estimate of 990 errors 
will not be. This second option for checking data is not 
viable. 
 
Double data entry → compare the two entries → fix 
errors in one of the files: This is one used by most 
professional organizations with experience in dealing 
with data entry. It consists of entering the data twice; 
and then the two files are compared by means of 
validation software. In contrast to the first option, this 
one has the disadvantage of having to enter all the data 
twice which implies twice the time and possibly twice 
the costs for data entry. However, by using a computer 
the comparison between the files is done in minutes, 
instead of having one or more persons checking 
manually for errors. The time cost consumed in 
manually checking is invested in a second entry and 
which usually is faster than the process of manual 
checking. This third option will be more cost effective 
than the first one, with the benefit of zero errors in the 
data or a very small amount of error.  
 
Double data entry → compare two files → fix errors 
in both files → compare again → Fix errors again, 
etc. until no errors are found   
 This is an extension of the third method. 
Experience has shown that after comparing the files and 
correcting the errors - usually they are in only one of 
the files - this is not sufficient to eliminate all the errors. 
For example, if a file is very large it may be necessary 
to take a break in the checking process and this may 
result in loss of the last variable or case that was 
worked on. So, some of the original errors remain. So 
one way to deal with this is to correct the files 
repeatedly until no further error is found. So far, this 
option has proved to be the most efficient of the four, 
with the guarantee of 0% errors in data entry. The 
procedure requires no more appreciable amount of data 
personnel time or cost than the third procedure. 

 The implications of organizing good data 
collection and handling procedures are that there will be 
more work to do, professionals to contract and thus a 
direct impact on the budget. This may be unwelcome to 
the administrators. But the greater investment will be 
cost-effective. There is nothing more inefficient than 
running a large study and not being able to use the data 
because of inherent biases. 
 
The statistical analysis: The development of software 
and the introduction of statistical software tools for 
common use have resulted in more and more people 
using statistical methods. However, bias may arise 
when these statistical tools are used in the wrong way. 
For example when parametric methods are used without 
checking their assumptions or when a hypothesis test is 
inappropriately used. Problems may arise where the 
distributional properties of the data demand that a 
transformation of the values is made before analysis. If 
this is not done then the results of the analysis can 
easily lead to invalid conclusions. 
 But besides inferential analysis, there are 
descriptive analyses used by almost all agencies to 
evaluate their programs. In any project in any country, 
there may be bias when an analysis of a survey is based 
on a simple random sampling design rather than the 
complex sampling designs that may have been used, 
such as stratified-cluster sampling. If the data analyst 
has not been informed about the correct design 
structure, the results could range from a little bias 
which may not be very influential to a large one which 
may lead to misleading results depending on the 
variable or indicator being analyzed. 
 Misleading results are likely to have poor external 
validity so professional statistical advice is 
recommended to all researchers at all stages from 
design of their study through to statistical analysis. 
 
The presentation of estimated values: The sampling 
process provides an estimate of a population value. 
However the estimate is not a single value, but is a 
value within a set of bounds, limits or thresholds 
dictated by the variability in the data and rules 
according to probability levels. This range is the 
Confidence Interval. It is important for any technical 
report to give confidence intervals together with the 
estimated parameter (which may be a mean value) and 
an estimate of its variability, say its standard deviation. 
This is very important when dealing with indicators 
which may be functions of variables, functions of some 
complexity. It is not sufficiently simply to report the 
results of significance tests. 
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 A wide confidence interval shows that a lot of 
variability is attached to the estimate implying that 
there is a great deal of variability in the data or that the 
estimation process is not a good one. A narrow interval 
provides greater confidence in the estimate of the true 
population value. The presentation of a single estimated 
value without considering the possibility of a range of 
values and limits or thresholds to these values is likely 
to lead to biased or inaccurate recommendations. 
 
Indicators 
Indicator definitions: Variables and indicators need to 
be defined. A variable is a characteristic to be 
measured on a subject or unit, for example weight of 
a crop, type of soil, gender of children and age of 
farmers. A parameter is the unknown population 
value. Variables are used to estimate parameters. 
Using this definition, an indicator can be defined as a 
parameter with a threshold value(s), that can be used to 
describe or evaluate a particular system and according 
to which a decision may be taken. 
 It is estimated with a variable or a set of variables, 
which is related to a decision process based on 
threshold values. For example, malnutrition is defined 
as the percentage of children with a nutritional status 
given by a “Z” score (See a more detailed definition of 
the Z score ahead on the section “Construction of 
complex indicators”) on weight for age under 2 
standard deviations; measure the malnutrition in a given 
region and then place a threshold on it, like decreasing 
it by 10%. 
 There are indicators that are defined by a simple 
variable, for example age of a farmer; these indicators 
are referred as simple indicators. A variable may be a 
part or a whole component of the system. Thus, yield is 
an indicator and it can be defined by several variables 
such as plant population, total number of tillers, total 
number of productive tillers, number of grains per ear 
head and test weight (1000-grain weight). In this case, 
yield may be defined as a complex indicator because in 
order to get it, it is necessary to estimate different 
variables and to put them together in a particular way. 
In other words these complex indicators are functions 
of simple indicators. Other examples of complex 
indicators are increase in yield, soil health and 
malnutrition. 
 There can be several ways to classify indicators. 
Based on their measurement scales, indicators can be 
classified as qualitative for example socio-economic 
status, gender, soil health or quantitative for example 
age of a person, yield increase, benefit to cost ratio, 
literacy level (for example if the person reads or not). 

Soil Health 

Soil carbon 
level 

Nutrient 
supplying 
capacity 

Water holding 
capacity 

Soil bulk 
density/compactness 

Toxic metal 
content 

 
Fig. 1: Main indicators contributing to soil health 
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Fig. 2: Main indicators contributing to food security 
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Fig. 3: Some indicators contributing to CARE’s Food 

Security 
 
Construction of complex indicators: Soil health as an 
indicator is dependent on the combined effect of several 
other indicators. Figure 1 shows the five main indicator 
groups which contribute to soil health. It may be 
necessary to weigh each indicator group differently. 
The weights can be assigned based on the extent to 
which they affect the complex indicator. For example 
toxic metal content will influence soil health to the 
extent it will kill any crop thus this indicator will get 
more weight than the others. 
 Another important indicator is food security. This 
is the combination of several other indicators on health 
such as nutritional status, presence of water supply 
systems, diarrhea, disposal of fecal excrements, 
agricultural indicators such as crop production, food 
storage, animal production, as well as income and other 
variables. This is shown diagrammatically in Fig. 2.  
 A real example using data from the Food Security 
Program from CARE International in Guatemala is 
demonstrated here. CARE had not worked on all the 
areas related to food security, but wished to measure the 
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effect of the different interventions on a single food 
security indicator. Therefore simple indicators related 
to the interventions were chosen to define food security. 
These indicators and their relationship with the main 
and complex indicators - food production, prevalence of 
diarrhea and nutritional status are shown in Fig. 3. 
 Nutritional status can be measured by different 
indicators related to anthropometry, the one used in this 
example is in itself a complex indicator called a “Z-
score” on weight for age (WAZ). It is a standardized 
value of children's weights, compared with the mean 
and standard deviation from a “standard population”. Z-
scores have a normal distribution with a mean of zero 
and standard deviation of 1. Malnutrition, in this case 
underweight, is defined as being lower than 2 standard 
deviations below the mean value. Prevalence of 
diarrhea is a simple indicator, created by a single 
qualitative variable - yes, no - that is yes if a child had 
diarrhea during the last 15 days. 
 Food production is a complex indicator formed 
from six other indicators: 
* Weight of maize production  
* Weight of beans production 
* Percentage not lost in maize storage 
* Percentage not lost in beans storage 
* Animal production - Existence of small animals at 

the household  
* Existence of a garden at home (with plants and 

vegetables rich on Vitamin A and iron). 
 So, food production is a complex indicator formed 
with three different types of indicators. It was decided 
that each of the six indicators that leads to food 
production should have the same weight, so there was 
no one indicator more important than the other. This 
decision made it easier to find the solution, which was 
to transform all the indicators to the same scale, here to 
standardize them to Z-scores: 

observation meanZ
SD

−
=  

where “mean” is the arithmetic mean of the distribution 
and SD is its standard deviation. 
 However, by using the mean from their own 
distributions, all transformed indicators (Z-scores) will 
have zero as a mean (by definition). When these 
transformed indicators are ultimately combined or 
averaged the result may be zero; certainly a loss of 
information is likely to occur. Therefore, instead of 
calculating the Z-scores with the means from their own 
distribution, they were calculated using the proposed 
goals as means. Thus the indicators have non-zero 
means and their values reflect how far from the goals 

the indicators are (the goals being the Z-scores equal to 
zero). Thus, 

observation goalZ
SD

−
=  

 Once all Z-scores for each indicator were obtained, 
then a mean from all of them was calculated. So to 
obtain the food production indicator, it was calculated 
as the mean of all the Z-scores from the six indicators, 
using different goals appropriate for each indicator, 
Z Food Production = (Z1 + Z2 + Z3 + Z4 + Z5 + Z6) / 6 
 The method of getting the food security indicator 
was the same as that for food production. But to have 
all the indicators pointing to the same direction, instead 
of calculating Z-scores for diarrhea, the Z-scores for 
NO diarrhea were calculated. So, food security was 
defined as: 
Food security = (Z food production + Z WAZ + Z No diarrhea) / 3 
 Then the mean of Food Security was estimated as 
follows: 

food production waz NO diarrhean
i 1

Z   Z   Z
3

FoodSecurity
n

=

+ + 
∑  

 =  

 These three indicators are calculated for each of n 
individuals and then added and then divided by 3. All n 
values are then added and averaged over the n 
individuals. The same applies for all the other 
indicators used to estimate food security. 
 
Graphical representation of a complex indicator: 
Graphing a complex indicator may be considered 
difficult to do, if not impossible, but it can be done in a 
simple way, similar to its estimation. Dot charts[5] can 
be used and because the food security program from 
CARE had a baseline and the design was a follow up, 
this format is ideal for demonstrating the effects of the 
indicators. 
 In Fig. 4, it is easy to see that by using Z-scores the 
idea of being well or better is attained by having larger 
positive values. Remember that diarrhea prevalence and 
losses in storage were reversed to ensure that improved 
conditions related to increased values.  
 There are four panels in the graph. Panel “1” shows 
how the six indicators that form food production change 
from the baseline to the mid term appraisals. Indicators 
on gardening and animal production did not change. 
For crop production, only maize production had 
improved but the bean production is almost constant. 
Finally the indicators on NO loss at storage improved, 
meaning that the losses were less at midterm than at the 
baseline. The  food  production  indicator  is  shown   in  
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Fig. 4: Food security indicators 
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Fig. 5: Food security, scale in percentages 
 
panel “2”, which has a little improvement since 
baseline (because of the positive change in maize 
production). In panel “3” are the three indicators that 
form the Food Security indicator. Prevalence of NO 
diarrhea was the one that improved more than the other 
two. WAZ also moved in a positive direction (meaning 
that children improved their nutritional status). 
Together, the movement from these three indicators 
leads to the overall effect on food security that is shown 
on panel “4” (a change of 0.16 SD, meaning an 
improvement of quality of life for these people). 
 
Presentation of this information to policy makers: 
Although the above graph is very useful and easy to 

interpret for someone with a little knowledge in reading 
graphs and understanding of Z-scores, it may be 
difficult to decode for others.  
 The first step to make the graph intelligible is to 
change the scale on the “X” axis. Percentages can be 
presented instead of Z-scores. To do this, the Z-score of 
zero is defined as 100% (achievement of the goal). 
Under the normal curve, within 1.96 standard 
deviations of the mean value, there is an area of 95%. 
Taking the value of –2 standard deviations as the zero 
value for percentage achievement of the goal, then a 
simple transformation gives:  
 
Z –score -2.0 -1.5 -1.0 -0.5 0.0 0.5 
Percentage  
(of achievement 0 25 50 75 100 125 
of the goal) 
 
 So, the transformed Fig. 4 will appear as Fig. 5. 
This may still appear somewhat complex but it is the 
clearest representation of a multidimensional indicator 
that can be achieved. Other, simpler, presentations may 
be attempted such as bar charts. These however are not 
recommended because the differences will be less 
apparent. 
 
Weighting to construct a complex indicator: For the 
above example, the complex indicator related to food 
security was constructed assuming that the three 
component indicators had the same influence. Thus, 
food security = (Z food production + Z WAZ + Z No diarrhea) / 3 
 Some indicators may be considered more important 
or relevant than others (may be due to the way the 
intervention was planned). Therefore, they should be 
weighted differently. For example: 
IND 1 = (Z food production + Z WAZ + Z No diarrhea) / 3
 (This is the original) 
IND 2 = (2Z food production + Z WAZ + 3Z No diarrhea) / 6 
IND 3 = (Z food production + 4Z WAZ + Z No diarrhea) / 6 
IND 4 = (3Z food production + Z WAZ + 9Z No diarrhea) / 13 
IND 5 = (Z food production + 3Z WAZ + 3Z No diarrhea) / 13 
 Figure 6 shows how the different weightings affect 
the final value. The example shows data from the 
midterm evaluation only. So, in constructing a complex 
indicator the way that its indicators or variables are 
weighted are critical. But the choice of weights 
themselves is difficult. This is an issue that should be 
addressed preferable together with a statistician while 
designing of the study or at least before the statistical 
analysis is started. 
 
Indicators and bias: Indicators and bias have been 
described in sections 2 and 3, but how does bias affect  
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Table 1: Results of simulated bias process 
Indicator Unbiased Biased Bias (%) 
Food production -0.571 -0.580 1.6 
Food security -0.509 -0.630 19.2 
 
Table 2: Bias and design for indicators analyzed according to an 

incorrect design 
Indicator Bias (%) Design effect 
Baseline evaluation 
WAZ 3.8 5.7 
Prevalence of NO diarrhea -64.2 1.3 
Food production 6.6 8.5 
Food security 5.1 6.4 
Midterm evaluation 
WAZ -4.0 1.3 
Prevalence of NO diarrhea 1.0 2.0 
Food production 2.8 7.1 
Food security 2.2 1.7 
 
an    indicator?    To    show    how    bias    could 
change    an  indicator,   two   examples   are   presented 
here.  
 The first example shows how a systematic error, 
mainly coming from the field, could change the results. 
Assume that the fieldwork was done by ten people and 
that one of them was not standardized and made a 
systematic error. To do this we randomly biased 10% of 
the results from the midterm evaluation, on the “food 
production” indicator, by subtracting 0.5 standard 
deviations from the standardized indicator. This food 
production indicator is part of the “food security” 
indicator so the bias is reflected in both indicators as 
can be seen in Table 1. In this case bias did have a 
small effect on food production, but it had lot of 
influence (19%) on the final and most important 
indicator - food security, which would lead to erroneous 
conclusions and wrong decisions regarding the 
intervention. 
 The other example reflects one of the most 
common mistakes while analyzing data and which is to 
forget that a complex sampling design was used and to 
analyze the data according to a simple random sample 
format. The sampling design used to evaluate CARE’s 
food security program was a stratified – cluster 
sampling (two stages with probability of selection equal 
to size). So, it is not a simple random sample. To show 
how the indicators may be biased by not analyzing the 
data correctly, the indicators “food production”, 
“prevalence of no diarrhea”, “WAZ” and “food 
security”, were analyzed assuming the incorrect simple 
random sample design. The bias and design effect for 
the indicators at the baseline and midterm evaluations 
are presented in Table 2. A design effect is the 
influence given by a sampling design to the variance. A 
simple   random   sample   is  defined  as not having  an  
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Fig. 6: Effect of different weights on simple 

indicators to estimate a complex one 
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Fig. 7: Bias and design effect 
 
effect on the variance, any other design will have an 
effect on the variance (which could be positive or 
negative, positive meaning to reduce the variance and 
negative to increase the variance). A way to calculate 
the design effect and at the same time to show the 
meaning of it, is given by the following equation: 
 

Variance from a complex designDesign Effect
Variance from a simple random sample design

=  

 
 From the above example, values that have a design 
effect less than 2 are related to bias in a non predictable 
way, while values above 2 demonstrate a direct 
relationship between bias and design effect (Table 2). 
 Bias may be small or large. If it is large, then 
certainly wrong conclusions would be stated. If it is 
small, it may not affect the results and will remain close 
to a threshold. It is never known for certain if the data 
are biased, but likely causes of bias should be avoided 
as much as possible in order to support good data 
analysis leading to reliable recommendations and 
decisions. 
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CONCLUSION 
 
 Data quality is essential to support good analysis  
and estimation procedures both for simple and complex 
multidisciplinary surveys and experiments. Bias in data 
comes from several different sources and control of 
these can be maintained with a rigorous checking 
procedure. Equipment and personnel both are sources 
of error and thus bias in data.  
 It is essential to decide about the survey proforma 
in consultation with a statistician so that all the possible 
facets are taken care off. The design to be followed 
should also be clear. The field personnel should be well 
aquatinted with the filling of the proforma. There must 
be some cross checks on the field information to know 
the bias in the data collected. After taking a decision 
from the collected data, it is also essential to revalidate 
the results in a small area to confirm the findings.  
 Bias in data may be small or large. If it is small 
then resultant bias in indicators and their analysis 
should be small. Indicators formed from collected data 
may be simple or complex, but provided data quality is 
good then the results of analyses of complex indicators 
should be unbiased. It is important to stress that 
decisions are made from measurements on indicators 
and if these indicators are biased the decisions may be 
wrong and even worse, they may lead to non-results or 
unexpected and misleading effects. 
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