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Abstract: Methods for detecting and locating a single QTL within a 10 cM region of DNA using 10 
equally spaced SNP markers were compared.  The QTL was assumed to be bi-allelic and located 
between markers 5 and 6.  Monte Carlo simulation of a granddaughter design with 30 sires and 400 
sons was used.  Linear regression nested within sire using either two or four marker haplotypes at a 
time was used.  In addition, the scoring of haplotype transmissions from sire to sons were varied in 
three ways.  Another method assumed linkage disequilibrium and estimated haplotype interval effects 
for all intervals simultaneously.  Other variables compared were the ratio of QTL variance to total 
genetic variance, the number of generations of historical recombination, and frequencies of marker 
alleles.  Empirical power was dependent on the scoring method in the linear regression method.  Four-
marker haplotypes gave slightly higher empirical power than two-marker haplotypes.  Reducing the 
proportion of QTL variance decreased empirical power. Empirical power was greater for 25 
generations of historical recombination over 100 generations.  Empirical power was lower when 
marker allele frequencies were 0.8 compared to 0.5.  The linkage disequilibrium model gave results 
similar to those of the linear regression model.  
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INTRODUCTION 

 
SNP are commonly used for detection and 

localization of QTL for complex traits.  Several 
algorithms for identifying haplotypes using SNPs have 
been developed [6, 10]. In practice, SNP genotypes will 
be available without phase information and the most 
frequent haplotypes need to be determined [1, 8]. When 
there are enough offspring genotypes, as in half-sib 
designs in dairy cattle, then sire haplotypes can be 
reconstructed with near certainty.  Determining the 
haplotype of the sire that is inherited by the son is 
difficult if the sire is heterozygous. 

Detection and localization of QTL in livestock 
populations have used single markers, multiple 
markers, and haplotype-based methods analyzed with 
least squares or maximum likelihood procedures.  
Probabilities of QTL alleles being identical by descent 
(IBD) have been used with variance component 
estimation approaches [2, 3].  Haplotype and linkage 
disequilibrium (LD) studies covering small 
chromosomal regions assume that sufficient generations 
have passed such that in small regions, the marker and 
QTL alleles tend to segregate together [5].   

Linear regression has been used with genotypes of 
single and multiple markers[4].  This approach uses 

linkage information and follows segregation of markers 
and QTL within sire families, but the use of haplotypes 
and linkage disequilibrium information could provide 
better precision in locating QTLs.  

The objective of this study was to estimate QTL 
location within a group of markers using all marker 
haplotypes simultaneously. The method is assumes 
linkage disequilibrium and the needs to know the 
transmission of haplotypes from sire to sons. In a 
simulated granddaughter design the method was 
compared to linear regression with single and multiple 
marker methodology. 
 

MATERIALS AND METHODS 
 
The Simulation Method: A genomic structure of ten 
bi-allelic SNPs (each 1 cM from the next) with a single 
bi-allelic QTL located between the 5th and 6th markers 
was assumed.  Initial allele frequencies, p, were either 
0.5 or 0.8 for both markers and QTL. The base 
population was assumed to be in Hardy-Weinberg 
equilibrium at each locus and animals unrelated.  Initial 
haplotypes for each sire and dam were generated 
independently. The number of sires and dams per 
generation were 30 and 400, respectively, giving an  
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effective population size of 100. Progeny were 
generated using the Haldane mapping function (no 
interference) to determine crossover events between 
markers and QTL in deriving sire and dam haplotypes. 
Each mating produced 4 progeny. Each generation was 
discrete with new males and females randomly selected 
from the group of progeny. 

Linkage disequilibrium was created over either 25 
or 100 generations of random matings. In the last 
generation, 10 males were randomly selected and mated 
to 1000 females to produce 100 sons per sire. Each son 
was assumed to have 100 progeny. Progeny Yield 
Deviations (DYD) were created for each son. A DYD is 
the average phenotype of the progeny adjusted for 
systematic environmental effects and the genetic values 
of the dams [7]. 

         eBVDYD son += 5.0                       (1)                                              
where BVson is the breeding value of the son, and e is a 
residual effect with mean zero and variance equal to 
residual variance divided by number of offspring (100 
in this study). The trait was assumed to have a 
heritability of 0.3 and σP =100. 

Parameters allowed to vary were the ratio of 
QTL variance to total additive genetic variance (k=0.1 
or 0.05), the allele frequencies of the SNPs and QTL 
(p=0.5 or 0.8), and the number of generations of 
historical recombination (g=100 or 25).  
 
Linear Regression Method:  The model was 

ijiiijij esxy ++= β ,                                     (2) 

 where yij is the DYD of son j of sire i, xij indicates the 
transmission score of the haplotype from sire i to son j, 
βi is the within sire family regression coefficient, si is 
the polygenic effect of the sire, and eij is the residual 
effect. The assumption was made that only sires and 
sons were genotyped for the markers. The scores for xij 
normally used by Knott et al. (1996) are shown in 
Table 1. Note that progeny of homozygous sires are not 
used. This method uses linkage information and 
segregation of marker alleles within heterozygous 
families. In this study, two different sets of transmission 
scores were used and included progeny of both 
heterozygous and homozygous sires. The two sets of 
scores differed from each other by two numbers as 
shown in Table 1. When a sire is homozygous, then his 
progeny have the same haplotype, and so the 
transmission score in Set 1 was set to 1. With Set 2, the 
transmission score was set to 2 for homozygous sires 
with homozygous sons. 

Haplotypes were created using either two 
contiguous markers at a time (9 sets of two) denoted as 

method LR-2, or four contiguous markers at a time (7 
sets of four) denoted as method LR-4. The analyses 
proceeded from one marker set to the next, and F-ratios 
were used to determine the location of the QTL.  
Transmission scores were applied to the haplotype of 
the set of markers. 
 
Simultaneous Haplotype Model: The simultaneous 
haplotype model, 

     ijklkijijkl eshy +++= µ                     (3) 

where yijkl is the DYD of the lth son of sire k, µ is the 
overall mean, hij is the jth haplotype of ith contiguous 
pair (i=1 to 9 pairs, j=1 to 4 possible haplotypes within 
pairs, 36 effects), sk is the polygenic effect of the sire, 

eijkl is a residual effect, 2
eσ  and 2

hσ  were the same for 

all marker set. Haplotypes were constructed based on 
each pair of contiguous markers, giving 9 non-
overlapping haplotype intervals. For each interval there 
were 4 possible haplotypes that could be inherited from 
sire to son, and therefore, a total of 36 haplotype 
effects. If the haplotype coming from the sire could not 
be determined, the design matrix contained all zeros for 
that interval for that son. Otherwise there was a one 
corresponding to the haplotype that was inherited from 
the sire in the design matrix. 
In matrix notation, the model is 
                         eshy +++= µ                            (4)                          
and the mixed model equations are   
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To locate the QTL, the sum of absolute values 
of estimated haplotype effects within each haplotype 
pair was calculated, 

                            �
=

=
4

1

ˆ
j

iji hH                                 (6) 

The middle of the haplotype interval with the largest Hi 

was taken as the location of the QTL, and the ijĥ  

within the largest Hi indicated the magnitude of the 
QTL effects. 

The ratio of residual to haplotype variances 
was fixed at 1.0 for all pairs of haplotypes. However, 
the ratios could differ between pairs, such that the ratio 
would be larger for pairs of markers that do not contain 
a QTL. Thus, simulations were repeated where the ratio 
for marker pairs without the QTL was 10, and for the 
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marker pair containing the QTL was one. No attempts 
were made to estimate the ratio in this study. 

The number of marker pairs could also have an 
effect on QTL detection, and so the simulations were 
repeated using 20 markers (with all variance ratios 
equal to 1) within a 10 cM chromosome segment. The 
QTL was placed in the middle of the markers. Thus, 
there were 76 haplotype effects to be estimated in this 
scenario. 
 
Comparison Statistics: Let Q be the true position of a 
QTL and Q

�

 be the estimated position. The estimated 
position was the mid point of the marker haplotype 
interval that gave the largest F-ratio or the largest H. 
Bias of estimation was 
                                                 

                     
n

QQ
Bias � −

=
)(

�

                           (7)  

where n is the number of replicates, and the mean 
squared error was 

                     

2
)(

n

QQ
MSE � −

=
�

                         (8)                   

Precision, (P), was 

                        2BiasMSEP −= .                     (9)                        
  The critical values of the test statistic 
corresponding to 5% type I error were determined 
empirically by simulating 1000 replicates based on the 
null hypothesis of no QTL segregating on the 
chromosome segment. Another 1000 replicates were 
simulated under the alternative hypothesis, with the 
QTL situated in the center of the markers, and the 
empirical power was computed as the proportion of 
replicates in which the test statistic exceeded the critical 
value.  
 
Scenarios: Four scenarios of parameter combinations 
were studied.  Scenario 1 had the ratio of QTL variance 
to total genetic variance of 0.1, used 100 generations of 
historic recombination, and started with an allele 
frequency of 0.5 for all markers and the QTL. Scenario 
2 had the ratio of QTL variance to total genetic variance 
of 0.05, and other parameters were the same as 
Scenario 1. Scenario 3 was the same as Scenario 1 with 
the number of generations of historic recombination 
reduced to 25. Scenario 4 was the same as Scenario 1 
with the allele frequency of markers and QTL increased 
to 0.8. 

RESULTS 
 
Linear Regression Two-marker Intervals: Under 
Scenario 1 (the base combination of parameters), using 
Set 1 transmission scores, empirical power was 0.77, 

and using Set 2 the power was 0.82 (Table 2). The only 
difference was in the scores assigned to a homozygous 
son from a homozygous sire.  Precision was better with 
Set 2 (1.33 cM versus 1.37 cM for Set 1). However, the 
probability of a type I error was smaller with Set 1. 
Results are shown in Fig.  1 for the two sets of indicator 
variables and for the Knott et al. (1996) scores for 
comparison. With scores of Knott et al. (1996), the 
QTL position could not be detected because the average 
of 1000 replicates of F-values was below the critical 
value (1.83).  

In Scenario 2, the QTL variance was only half as 
large as in Scenario 1, and this reduced power, 
decreased precision, and increased the probability of 
type I error, but not significantly compared to Scenario 
1.  Set 2 scores gave better results in this scenario also.  
Smaller QTL effects gave generally poorer results for 
both sets of scores. 

In Scenario 3, the number of generations of 
historical recombination was changed from 100 to 25.  
Empirical power increased from 0.77 to 0.95 with Set 1 
indicator variables and from 0.82 to 0.98 with Set 2.  
Precision was below 1 cM for both sets of scores.  
Probabilities of type I errors were only 0.04 and 0.10 
for Sets 1 and 2, respectively. With 100 generations of 
random mating, there was more chance for the marker 
(and QTL) alleles to drift to fixation, than within 25 
generations. This might explain the differences 
observed. 

In Scenario 4, allele frequencies of markers and 
QTLs were changed from 0.5 to 0.8. Empirical power 
decreased from 0.77 to 0.54 and 0.50 for Sets 1 and 2, 
respectively, and the QTL location was less precise at 
over 1.35 cM, but the probability of type I error was 
very low. Bias and MSE were much greater than the 
other scenarios. Set 2 scores had slightly smaller Bias 
and MSE than Set 1, but lower power and poorer 
precision. 
  
Linear Regression Four-marker Intervals: When 
four markers were used to establish haplotypes for the 
linear regression model, results are given in Table 3. 
Degrees of freedom were expected to be less because of 
fewer intervals being considered.  Empirical power was 
the same or greater than with the two-marker intervals, 
but the probabilities of type I errors were slightly 
greater. Precision was better in all scenarios with four 
markers rather than two.     

Comparison of scenarios followed the same pattern 
as for the two-marker intervals. However, the precision, 
bias, and MSE in scenario 4 when the allele frequencies 
changed from 0.5 to 0.8 were better with the four-
marker intervals than with the two-marker intervals. 
The best scenario was 3 having only 25 generations of 
historical recombination.  
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Table1: Two sets of indicators values for the transmission first haplotype of sires to progeny 
Son Haplotype 

Sire Haplotype 
Hi Hi Hi Hx Hx Hx 

Hi Hi 0 0 0 
Knott et al. 

Hi Hx 1 0.5 0 
Hi Hi 1 1 0 

Set1 
Hi Hx 1 0.5 0 
Hi Hi 2 1 0 

Set2 
Hi Hx 1 0.5 0 

 
Table 2:  Comparison of four scenarios using linear haplotype regression with two sets of indicator variables using two-marker intervals 

Scenarios  

1 2 3 4 

QTL Ratio 0.1 0.05 0.1 0.1 
Generations 100 100 25 100 
Allele Freq 0.5 0.5 0.5 0.8 

Set 1 Scores 
Power 0.77 0.76 0.95 0.54 

Pr (Type 1) 0.02 0.18 0.04 0.001 

Bias (cM) 1.48 1.69 0.91 2.57 

MSE (cM2) 4.06 4.86 1.93 8.49 

Precision (cM) 1.37 1.41 0.98 1.38 
Set 2 Scores 

Power 0.82 0.81 0.98 0.50 
Pr (Type 1) 0.07 0.24 0.10 0.001 

Bias (cM) 1.33 1.41 0.72 2.37 
MSE (cM2) 3.55 3.81 1.27 7.62 

Precision (cM) 1.33 1.35 0.88 1.41 

 
Table 3:  Comparison of four scenarios using linear haplotype regression with two sets of indicator variables using four-marker 

intervals 
Scenarios  

1 2 3 4 
QTL Ratio 0.1 0.05 0.1 0.1 
Generations 100 100 25 100 
Allele Freq 0.5 0.5 0.5 0.8 

Set 1 Scores 
Power 0.82 0.78 0.95 0.54 

Pr (Type 1) 0.10 0.24 0.07 0.001 

Bias (cM)  1.54 1.59 1.35 1.91 

MSE (cM2) 3.31 3.63 2.61 4.75 

Precision (cM) 0.98 1.03 0.90 1.06 
Set 2 Scores 

Power 0.85 0.82 0.98 0.64 
Pr (Type 1) 0.15 0.30 0.14 0.001 

Bias (cM) 1.42 1.55 1.23 1.80 

MSE (cM2) 2.90 3.37 2.23 4.44 

Precision (cM) 0.95 0.99 0.85 1.10 
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Table 4:  Comparison of four scenarios using simultaneous model with two-marker intervals 
Scenarios 

 
1 2 3 4 

QTL Ratio 0.1 0.05 0.1 0.1 
Generations 100 100 25 100 
Allele Freq 0.5 0.5 0.5 0.8 

Power 0.84 0.79 0.92 0.63 

Pr (Type 1) 0.02 0.11 0.03 0.01 

Bias (cM) 1.68 1.84 1.89 2.16 
MSE (cM2) 4.58 5.21 5.32 6.51 

Precision (cM) 1.33 1.35 1.32 1.36 

 
Table 5: Comparison of four scenarios using simultaneous model with two-marker intervals and the variance ratio 

was set to 1 for interval with highest Hi, and set to 10 for all other intervals 
Scenarios 

 
1 2 3 4 

QTL Ratio 0.1 0.05 0.1 0.1 
Generations 100 100 25 100 
Allele Freq 0.5 0.5 0.5 0.8 

Power 0.79 0.65 0.80 0.60 

Pr (Type 1) 0.06 0.18 0.04 0.02 

Bias (cM) 1.71 1.91 1.93 2.18 
MSE (cM2) 4.52 5.33 5.34 6.47 

Precision (cM) 1.26 1.30 1.28 1.36 
 
Table 6: Comparison of four scenarios using simultaneous model with two-marker intervals with 20 markers along a 

10cM  
Scenarios 

 
1 2 3 4 

QTL Ratio 0.1 0.05 0.1 0.1 
Generations 100 100 25 100 
Allele Freq 0.5 0.5 0.5 0.8 

Power 0.92 0.84 0.96 0.99 

Pr (Type 1) 0.01 0.08 0.01 0.005 

Bias (cM) 1.54 1.84 1.86 2.23 
MSE (cM2) 4.06 5.32 5.21 7.01 

Precision (cM) 1.29 1.39 1.33 1.42 
 
Simultaneous Haplotype Model, Two-marker 
Intervals: Tables 4 contain the results from the 
simultaneous haplotype model, applied to the four 
scenarios of parameter combinations.  A plot of the Hi 
values for scenario 1 for a typical replicate shows the 
indication of QTL location (Fig.  2). Power for this 
model was similar to the linear regression model using 
four marker intervals and Set 1 scores. Probability of 
type I errors was similar to the linear regression model 
with two marker intervals and Set 1 scores, except for 

Scenario 4 where the simultaneous haplotype model 
was higher. Bias and MSE were greater than either 
linear regression approach and precision was about the 
same as the linear regression model with two marker 
intervals, except for Scenario 3, which gave poorer 
precision with the simultaneous haplotype model. The 
simultaneous haplotype model has the advantage that 
all marker intervals are considered at one time, 
compared to linear regression where only one marker 
interval at a time is analyzed. At the same time, this is a 
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disadvantage in that more effects are being estimated at 
one time. The net result is that the simultaneous 
haplotype model does not appear to be better than the 
linear regression model. 
 

DISCUSSION 
 

The regression model of Knott et al. (1996) was 
not successful in detecting QTL within small regions of 
1 to 5 cM. The method works better for large regions of 
10 to 20 cM. However, by regression of transmitted 
haplotypes instead of genotypes, as in this study, and 
assuming linkage disequilibrium (LD), QTL can be 
detected within 1 cM regions, if the QTL exists, with 
considerable power and precision.   

In this study the positions and order of the markers 
need to be known. In practice, the markers will likely 
not be equally spaced. One possibility is to use SNP 
genotypes rather than haplotypes assuming linkage 
disequilibrium exists, and to put 5 or more SNP 
markers within each cM segment, such that the markers 
are very near or even within a QTL. The SNP 
genotypes then approximate the QTL genotypes. The 
order of the SNPs would not need to be known, nor the 
distances. The SNP location giving the largest 
estimated effects would most likely be the location 
closest to the QTL. 

The size of QTL effect is important in accurate 
mapping as expected, and also the allele frequencies for 
the QTL. Decreases in empirical power in this study 
were non significant in going from 10% to 5% of total 
genetic variance. The decrease in power was much less 
than in using the simple regression method or variance 
component method as in [3, 4]. 

Empirical power of QTL detection increased when 
the number of generations of historical recombination 
decreased from 100 to 25. After 100 generations of 
recombination in a small population, most loci would 
have drifted to become homozygous and the 
informativeness of the haplotypes would decrease. 
Thus, effective population size may have some 
importance on QTL detection. With 25 generations of 
recombination, less homozygosity of loci was allowed 
to occur and the informativeness of haplotypes was 
consequently greater. There was no allowance for 
mutations to occur in order to maintain QTL genetic 
variability.   

The most important aspect of the regression 
methods in this study was the scores used in the 
regression model. A preliminary study comparing seven 
different sets of scores was made. The better two from 
that study were used here. Sets 1 and 2 were not 
significantly different in performance, but Set 2 gave 
slightly greater empirical power and better precision.  
Set 1 was very close to conditional probabilities of 
inheritance of the sire haplotype, dependent on whether 
the sire was homozygous or heterozygous for the 
haplotype. With the Knott et al. (1996) method, only 
one set of scores was given whether the sire was 
heterozygous or homozygous for the haplotype alleles.  
There could be an optimum set of scores that could be 
derived, which might be dependent on the frequencies 
of different haplotypes. 

The simultaneous haplotype model assumes the 
existence of linkage disequilibrium (LD), and many 
generations of historic recombination. LD can also be 
created by selection, but all replacements and matings 
were random in this simulation.  The haplotype interval 
effects were assumed to be random effects, and in this 
study a common ratio of residual to QTL variance of 1 
was used for all intervals. A comparison was made 
where the variance ratio was set to 1 for the interval 
with the highest Hi, and set to 10 for all other intervals 
(Table 5). Compared to using a ratio of 1 for all 
intervals, power was lower and bias was slightly 
greater, while precision was slightly better. The 
differences were small. Thus, assuming the same ratio 
for all intervals is easier to apply, and estimation of the 
appropriate variances by Bayesian or restricted 
maximum likelihood is not necessary. 

A variance ratio of 1 means that the variance for 
each interval is equal to the residual variance, but in 
fact, the ratio should probably be very large because the 
amount of variance accounted for by the QTL is only 
0.10 or 0.05 of the additive genetic variance. For a 
heritability of 0.30 and QTL effects of 10%, the ratio of 
residual to QTL variance would be 23.33. Thus, using a 
ratio of 1 is only a small step up from assuming the 
interval haplotype effects are fixed. The purpose of 
using a ratio of 1 is to remove dependencies among the 
possible confounding of interval haplotype effects. 
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Fig. 1: Comparison of the average of 1000 replicated F-

values using the Knott et al. (1996) method with 
linear haplotype regression model using two sets of 
transmission scores for two-marker intervals 

 
SNP markers could be located more closely than 

every 1cM and presumably the precision of estimating 
QTL location should be better. Another comparison 
was made using 20 markers along a 10 cM segment of 
DNA with one QTL (Table 6). Power of detecting QTL 
was greater than with 10 markers. More SNP markers at 
closer distances were able to locate the QTL better than 
having SNPs only every 1 cM apart.  Denser sets of 
markers may be optimum. 
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Fig. 2: The sum of absolute values of estimated haplotype 

effects within each haplotype pair for Scenario 1 
 

Fine mapping of QTL using linear regression on 
haplotypes or a simultaneous haplotype model is 
possible using closely linked markers in a small region 
of a chromosome. Further studies should examine the 
effects of QTLs having more than two alleles, and 
having more than one QTLs in a small region at one 
time with these new methods. The simultaneous 
haplotype model could be extended to cover the entire 
length of a chromosome. The model should be able to 
detect multiple QTLs of varying magnitudes of effects.  

Xu (2003) describes a similar model for within family 
analyses where regressions are on marker genotypes (as 
random variables) for all markers on a chromosome.  
Using Bayesian methods, Xu (2003) was able to pin-
point the locations of QTL without a lot of noise. 
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