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ABSTRACT 

We study the capillary rise of wetting in liquids by slightly modifying Ponomarenko’s result, a recently 
derived and observed t1/3 law, without omitting the corresponding gravity term and therefore we find hnew 
(t)≅0.9085hPon (t) instead, which corresponds to a 9% difference. Furthermore, in order to examine the 
effect of corrected gravity, we extend the result on the surface of a planetary body by correcting the 
gravitational acceleration for its oblateness coefficient and rotation. We find that experiments that take place 
on the equator result in highest capillary heights, than those at mid latitudes and the poles. Similarly, 
analyzing the effect of reduced gravitational shielding on the capillary rise under conditions of microgravity 
in experiments aboard orbiting spacecraft, we find that equatorial circular orbits exhibit the highest capillary 
heights, where equatorial elliptical orbits of large eccentricities exhibit the smallest capillary heights. 
Finally, we calculate the rate of change of the meniscus height in the time domain, for the different 
laboratory conditions on the surface of the Earth and in space and as example. As an example we say that 
laboratory sites at the equator will exhibit larges time rates of change for the meniscus height. Similarly, for 
experiments above a spacecraft we find that circular equatorial orbits exhibit the highest time rates of 
change, where elliptical orbits exhibit smaller time rates that reduce as the eccentricity increases. 

 
Keywords: Capillary Effect Rise, Capillary Height, Wetting, Microgravity, Gravitational Acceleration, 

Oblateness 

1. INTRODUCTION 

Capillary rise is used in the study of the performance 
of low-pressure plasma treatments with different gases 
on synthetic fabrics in order to improve wettability 
(Ferrero, 2003), in the study of the shape of an advancing 
interface in a liquid gas system (Hoffman, 1983), as a 
mechanism of water penetration into building materials 
(Karoglou et al., 2005), for the characterization of the 
structure of porous media (Marmur, 2003), in the study 

the shape of oil droplets for lubrication applications 
(Tanner, 1979), for the determination of the wettability 
of powders (Galet et al., 2010), among many other 
applications. In addition, in plant systems, four forces are 
involved in water transport from the roots, through the 
xylem elements to the roots. Water is transpired through 
the leaves pulling water up through the xylem of the 
plant utilizing this way the energy of evaporation and 
tensile strength of water. The movement of water from 
the roots to the leaves is driven by a combination of 
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adhesion, cohesion and tension forces through capillary 
formations known as xylem structures (Nobel, 1999). 
Capillary action effects are also of significance for 
improvement of appropriate porous media involved in 
plant growth experiments in space (Jones, 1998; 1999). 
Furthermore, the capillary rise of liquids plays an 
important role in wetting phenomena and liquid 
motions through porous media especially under 
microgravity because the capillary rise that is 
suppressed under normal gravity become dominant 
under conditions of microgravity (gravitational 
shielding of capillary effects) (Kaneki et al., 2000). 
High altitude aircraft parabolic flights (European Space 
Agency Caravelle aircraft) and an orbiting space shuttle 
(NASA discovery mission STS-91) have been used to 
conduct capillary flow experiments in porous media, as 
part of a broader program aimed at a better 
understanding of mechanisms involved in processes 
designed to recover oil and gas from petroleum 
reservoirs with the use of different fluids it has been 
observed that there is a masking influence of normal 
gravity on capillary flows (Schramm et al., 2003; 
Smirnov et al., 2004). Moreover capillary rise 
phenomena have direct applications to a number of 
problems associated with fluid handling in space vehicles 
of various kinds (Ostrach, 1982; Schramm et al., 2003). 
The enhanced apparent capillary phenomena such as 
the capillary rise, that have been observed under 
conditions of corrected gravity merit a further 
theoretical investigation to existing experimental 
models. Our study is based on the experimental set-up 
and derived and observed model introduced in 
(Ponomarenko et al., 2011) where two solid rods made 
of Plexiglas are pressed together by regularly spaced 
threaded rods and the capillary rise of silicon oil (the 
wetting liquid contained in a Petri dish whose vertical 
position is controlled by a Micro-Controle translation 
table) is observed through the cylinders and the 
location of the liquid front h(t) and its time evolutions 
is determined. The background laboratory in our study 
will be (a) on the surface of a planetary body and (b) 
inside an orbiting spacecraft. 

The organ model consists of a collection of 
juxtaposed tubes of decreasing diameters as they 
approach the corner and hr(r,t) is the location of the front 
in the tube of radius r at time t. Based on Stokes’ 

equation the driving capillary pressure gradient 
r

γ

rh
 is 

balanced by both the force of gravity ρg and the viscous 
friction based on the velocity of the front hr and the 

location of the front is then given by the equation 
(Ponomarenko et al., 2011): 
 

( )
2

r

2rγ t ρ gr
h r,t - t

η η
≅   (1) 

 
Taking the first derivative with respect to r of Equation 

1 and equating to zero we can obtain the radius of the 
leading meniscus and therefore we have that: 
 

 r

r=rL

h γ t 2gρ rt
- = 0

r η2η rγ t

∂  ≅ ∂ 
 (2) 

 
Solving the equation below Equation 2 for we r, we 

obtain the leading radius of the meniscus rL to be: 
 

1/ 3

L 2 2

γη
r

8g ρ t

 
≅  
 

  (3) 

 
Next, substituting Equation 3 in (1) without 

omitting ρgr2t/η as in (Ponomarenko et al., 2011) we 
find that the capillary height rises as a function of 
time t and h(t) is given by a slightly different 
expression that involves numerical factor (3/4)1/3 
≈0.9085 and therefore we find that: 
 

( ) ( ) ( )
2

L

1/ 3

new γ r Pon

3γ t
h t h r ,t  0.90856 h t

4gρη

 
≅ ≅ ≅ 

 
  (4) 

 
1.1. The Gravitational Acceleration at Orbital 

Point and the Action of Gravity in 
Capillaries 

In our effort to study the effect of gravity on 
capillaries in altered gravity environments let us 
consider the acceleration of gravity g at the surface of 
a spherical body as well as at the orbital altitude of the 
spacecraft in which a capillary experiment is taking 
place under controlled conditions. At a radial distance 
r of the spacecraft from the center of the planetary 
body we have that the corrected acceleration is given 
by the sum of three different components namely: 
 

( ) ( ) ( ) ( )
2tot cen J rotg r = g r + g r + g r   (5) 

 
where, gcen(r) represents the central part of the 
gravitational acceleration, gJ2(r) is the correction of 
the gravitational acceleration due to the oblateness of 
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the planetary body and finally grot(r) the contribution 
in the gravitational potential due the rotation of the 
planetary body. Furthermore following (Haranas and 
Harney, 2008; Haranas et al., 2012) we write the 
magnitude of the acceleration of gravity to be: 
 

( ) ( )
2

2 2 22
tot 2 4

GM 3GMR J
g a,e, f,ω,i = - 3sin φ - 1 -ω rcos φ

r 2r
 (6) 

 
where, M is the mass of the spherical body, J2 is the 
zonal harmonic coefficient that describes the oblateness 
of the Earth. Zonal harmonics are bands of latitude, 
whose boundaries are the roots of Legendre polynomial 
(Vallado, 2001). This particular gravitational harmonic 
coefficient is a result of the Earth’s shape and is about 
1000 times larger than the next harmonic coefficient 
J3 and its value is equal to J2 = -0.0010826260 
(Vallado, 2001). Given that the radial distance of the 
spacecraft is given by Equation 7: 
 

( )
( )

2a 1- e
r =

1+ ecosf
 (7) 

 
Equation 6 becomes a function of the spacecraft orbital 

elements which for an elliptical orbit it takes the form: 
 

( )
( )
( )

( )
( )

2

E
tot 22 2

42
E E 2 22

44 2

GM 1+ ecosf
g = -

a 1- e

3GM R J 1+ ecosf
sin isin f - 1

2a 1- e

  (8) 

 
where, a is the semi-major axis of the orbiting 
spacecraft, i is its orbital inclination and f is its true 
anomaly and we have also used the relation sin φ = sin I 
sin (ω+f), which is a standard transformation of celestial 
mechanics relating planetocentric latitude ϕ, or 
colatitude θ, to the inclination i, argument of the perigee 
ω and the true anomaly f of the orbiting spacecraft. 

1.2. Capillary Rise of Wetting Liquids on the 
Surface of a Spherical Body 

First let us consider a capillary experiment that takes 
place on the surface of the Earth r = RE. In this case from 
Equation 6 we obtain the following expression for the 
acceleration of gravity corrected for the oblateness and 
the rotation of the Earth on the Earth’s surface and 
therefore the gravitational acceleration gs becomes: 

( )2 2 2E E 2
s E E2 2

E E

GM 3GM J
g = - 3sin φ - 1 - R ω cosφ 

R 2R
 (9) 

 
Furthermore, thinking the Earth to be an ellipsoid of 

revolution we can write that (Kaula, 2000) Equation 10: 
 

( )

2 2 2 4
E eq E E

2
eq E

3 3
R = R 1- f + f sinφ + f sin φ - ...

2 2

»R 1- f sinφ

  ′ ′ ′  
  

′
 (10) 

 
where, ϕ is the planetocentric latitude and f’  is the 
Earth’s flattering that it is given by Equation 11: 
 

2
3 2

eq pol E E

eq E

R - R 3J Rω
f = = +

R 2 2GM
′  (11) 

 
where, Req and Rpol is the Earth’s equatorial and polar 
radii and therefore. Equation 9 becomes: 
 

( )

( )
( ) ( )

E
s 22 2

eq

2 2 2 2E 2
eq E22 2

eq

GM
g =

R 1- f sinφ

3GM J
- 3sin φ - 1 - R 1- f sinφ ω cosφ 
2R 1- f sinφ

′

′
′

 (12) 

 
On the surface of the Earth and for the geocentric 

latitude φ = 0°, 45°, 90° Equation 12 results in the 
following expressions for the gravitational acceleration 
Equation 13 to 15: 
 

2E E 2
j=0 eq E2 2

eq eq

GM 3GM J
g = + - R ω

R 2R
, (13) 

 

( )
2E E 2

j=45 eq E2 22
2eq
eq

GM 3GM J 1 f
g = + - 1 - R ω

2 2R 1- f f
4R 1-

2

′ 
 ′ ′   

 
 

  (14) 

 

( ) ( )
E E 2

j=90 2 22 2
eq eq

GM 3GM J
g = +

R 1- f R 1- f′ ′
 (15) 

 
Therefore, substituting in Equation 4 we obtain the 

following expressions for the capillary height rise for the 
geocentric latitudes of ϕ = 0°, 45°, 90° given above and 
therefore we respectively obtain: 
 

( ) ( )
1/ 3-1

2
2E E 2

γr L eq E2 2
eq eq

3γ t GM 3GM J
h t = h r ,t = + - R ω

4ρη R 2R

  
      

 (16) 



George D. Zouganelis et al. / Physics International 5 (2): 140-151, 2014 

 
143 Science Publications

 
PI 

( ) ( )

( )

γr L

1/ 3-1

E
22

eq2

2E 2
eq E2

2
eq

h t = h r ,t

GM

R 1- f
3γ t

= 3GM J 1 f
4ρη + - 1 - R ω

2 2f
4R 1-

2

  
  ′  
  ′      ′          

  (17) 

 

( ) ( )
( ) ( )

1/ 3-1
2

E E 2
γr L 2 22 2

eq eq

3γ t GM 3GM J
h t = h r ,t = +

4ρη R 1- f R 1- f

  
  
  ′ ′   

 (18) 

 1.3. The J2 Harmonic and Flattering Resulting 
from a Surface Earth Capillary Experiments 

Solving Equation 16 to 18 we obtain an expression for 
the J2 spherical harmonic of the Earth, as a function of the 
experimental parameters involved in a capillary experiment 
that is taking place on the surface of the Earth and therefore 
we respectively find that Equation 19 to 21: 
 

( )( )
( )

2 2 3
E 2

2 eq3
E

3γ t +4ω h t ηρ1
J = - 4 - R

6 GM ρη h t

 
 
 
 

 (19) 

 

( ) ( ) ( )( )
( )

2 32 2 3 3 2
E E E E

2 3
E

3 2 - f R γ t + h t 16GM - 2 - f Rω ηρ
J =

12GM ρη h t

′ ′
 (20) 

 

( )
( )

2 2
eq

2 3
E

1- f R1
J = + t

3 4GM ρη h t

′
 (21) 

 
Similarly we can also obtain analytical solution for the 

flattering of a spherical body if the height h(t) of a capillary 
experiment can be measured from the cases of ϕ = 45°, 90°. 
Here we only give the solution that results from ϕ = 90° 
geocentric latitude and therefore we can obtain the 
following expression for the planetary flattering to be 
Equation 22 to 24: 
 

( )

( )
( )

2 4 2
eq2 2

eq 1
 

6 6 3 3
eq

1
 

6 6 3 3
eq

3 3
eq

R γ t
-R γ t +

2 Q + R H -γ t

+ 2 Q + R H - γ t  
f =

h t R ηρ

 
 

 
 ′   (22) 

 
Where: 
 

( ) ( )9 4 3 3
eq 2 EH = 2GM 4 - 3J h t ω η ρ  (23) 

( ) ( )
( ) ( )( )

12 9 4 3 3
E eq 2 E

6 3 9 3 3
E 2

H = GM R 3J - 4 h t ω η ρ

γ t +GM h t η ρ 3J - 4
 (24) 

 
Finally when ϕ = 45° we obtain that Equation 25: 

 

( ) ( )3
eq 2

2 2
eq

GM 1- 3J h t ηρ
f = 1±2

3R γ t
′  (25) 

 
1.4. Capillary Height in Altered Gravity 

Conditions 

Next let us consider a capillary experiment that is 
taking place in altered gravity conditions and to be more 
specific in a spacecraft orbiting a spherical body. First, 
let us consider a circular orbits e = 0 with various 
inclinations i.e., i = 0°, 45°, 90°. Using Equation 8 we 
obtain that the corresponding capillary heights become: 
 

( ) ( )
  
      

1/ 3-122
E eq 2E

L 2 4γr

3GM R Jγ t GM
h t = h r ,t = +

ρη a 2a
 (26) 

 
Similarly Equation 26 to 31: 

 
( ) ( )γr L

1/ 3-122 2
E eq 2E

2 4

h t = h r ,t =

3GM R Jγ t GM 3sin f
+ - 1

ρη a 2a 2

           

  (27) 

 
And finally: 

 
( ) ( )γr L

1/ 3-122 2
E eq 2E

2 4

h t = h r ,t =

3GM R Jγ t GM 3sin f - 1
+

ρη a 2a 2

           

  (28) 

 
Similarly, for elliptical orbits we obtain that: 

 
( ) ( )

( )
( )

( )
( )

γr L

1/ 3-1
422

E eq 2E
2 42 2 4 2

h t = h r ,t =

3GM R J 1+ ecosfGM 1+ ecosfγ t
+

ρη a 1- e 2a 1- e

  
  
  
   

  (29) 

 
( ) ( )

( )
( )

( )
( )

γr L

1/ 3-1

E
22 2

2

42 2
E eq 2

44 2

h t = h r ,t =

GM 1+ ecosf
+

a 1- e
γ t

ρη 3GM R J 1+ ecosf 3sin f
- 1

22a 1- e

  
  
  
  
   
   
      

 (30)
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( ) ( )

( )
( )

( )
( )

γr L

1/ 3-1

E
22 2

2

42 2
E eq 2

44 2

h t = h r ,t =

GM 1+ ecosf
+

a 1- e
γ t

ρη 3GM R J 1+ ecosf 3sin f - 1

22a 1- e

  
  
  
  
   
   
      

 (31) 

 
1.5. The J2 Harmonic and Flattering Resulting 

from Space Experiments and the Rate of 
Change of Meniscus Height  

Next, let us consider a capillary experiment that is 
taking place in altered gravity conditions and to be 
more specific in a spacecraft orbiting a spherical body 
of oblateness J2. First, let us consider a circular orbits 
e = 0 with various inclinations i.e., i = 0°, 45°, 90°. 
Using Equation 8 we obtain that the corresponding 
capillary heights become Equation 32 to 34: 
 

( )
2 2 2

2 2 3
E E

a 3a γ t
J = -4 +

6R GM h t ηρ

 
  
 

 (32) 

 
( )

( )

4 2 2 3
E

2
3 2 2

E E

3a γ t - 4GM a h t ηρ
J =

2
9GM h t Rηρ sin u -

3
 
 
 

 (33) 

 
( )

( ) ( )
4 2 2 3

E
2 3 2 2

E E

3a γ t - 4GM a h t ηρ
J =

6GM h t R ηρ 1- 3sin u
 (34) 

 
where, for circular orbits the element of true anomaly 
cannot be defined and gets replaced with the argument 
of the latitude u instead. Similarly for elliptical orbits 
we find that Equation 35 to 37: 
 

( ) ( )
( ) ( ) ( )

( ) ( )

2 2 2 3
2 E2 2

3
E

2 42 3
eq

3a 1- e γ t - 4GM h
a 1- e

t ρη - 4eGM h t cosf 2+ ecosf
J =

6GMR h t ρη 1+ ecosf

 
 
 
   (35) 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

22 2 2 3
2 E2 2

3
E

2 42 3 2
eq

3a 1- e γ t - 4GM h t ηρ -
a 1 - e

4eGM h t ηρcosf 2+ecosf
J = -

3GMR h t ρη 1+ecosf 3sin f - 2

 
 
 
   (36) 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2 2 2 3
2 E2 2

3
E

2 42 3 2
eq

3a 1- e γ t - 4GM h t ηρ
a 1- e

-4eGM h t ηρcosf 2+ ecosf
J = -

6GMR h t ρη 1+ ecosf 3sin f - 1

 
 
 
   (37) 

As a last step of our work we calculate the 
velocities at which of the meniscus height changing. 
Therefore on the surface of the Earth we obtain that 
Equation 38: 
 

( )

( )

( ) ( )

( )

1/ 3

2
-2 / 3

h t
E

22 2
eq

2E 2
22 2

eq

2 2 2
eq E

1 3γ
v = t

GM3 -
R 1- f sinφ

3GM J
4ρη 3sinφ -1 -

2R 1- f sinφ

R 1- f sinφ ω cosφ

 
 
 
 
 
 
 
 
 
 
  
  ′  
  
  
  ′
  
  ′
  

  

 (38) 

 
which for the particular latitudes ϕ = 0°, 45°, 90° 

takes the form Equation 39 and 40: 
 

( )

1/ 3-1
2

2 2 -2 / 3E E 2
eq Eh t 2 2

eq eq

1 3γ GM 3GM J
v = + - R ω cosφ t

3 4ρη R 2R

  
      

 (39) 

 

( )

( )

1/ 3-1

E
22

eq2
-2 / 3

h t 2E 2
eq E2

2
eq

GM
+

R 1- f
1 3γ

v = t3GM J 1 f
3 4ρη - 1 - R ω

2 2f
4R 1-

2

  
  ′  
  ′      ′          

 (40) 

 
and finally Equation 41: 

 

( )
( )

( )

1/ 3-1
2

E 2 -2 / 3
h t 22

eq

GM 1- 3J1 3γ
v = t

3 4ρη R 1- f

  
  
  ′   

 (41) 

 
Next, let us proceed with the calculation of the 

velocity of the meniscus height in space and in a 
microgravity environment let us consider the 
acceleration of gravity at the orbital altitude of the 
spacecraft. Since the derivative w. r. t. to time t should 
be taken, we write Equation 8 as a function of time t 
making use of well known transformations of celestial 
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mechanics. For that we use the relation between the 
true anomaly f to the true anomaly M (Murray and 
Dermott, 1999) Equation 42: 
 

( )
2

2

5e
f = f nt »M + 2esinM + sin2M = nt

4

5e
+2esin(nt)+ sin(2nt)...

4

 (42) 

 
Using Equation 40 and substituting in Equation 8 

and then Equation 8 into Equation 4 we obtain that 
Equation 43 and 44: 
 

( ) ( ) ( )
 
  
 

1/ 3
2

γr L
tot

3γ t
h t = h r ,t =

4g nt ρη
 (43) 

 
Where: 
 

( )
( )( )( )

( )
( )( )

( )
( )( )

2

E

tot 22 2

42
E E 2 22

44 2

GM 1+ ecos f nt
g nt = -

a 1- e

3GM R J 1+ ecosf nt
sin isin f nt - 1

2a 1- e

 (44) 

 
where, f(nt) is given by Equation 5 and where n is the 
mean motion of the spacecraft in rad/s and therefore the 
capillary meniscus velocity on a general elliptical orbit 
of eccentricity e and semi-major axis a becomes 
Equation 45 to 49: 
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Where: 
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 (46) 
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 (47) 

 

( )
( )

( ) ( )
( )

 
 
 
 
 
 
 
 

2

1 2

E
22 2

42 2 2
E E 2

44 2

γ
Q =

GM 1+ecosB

a 1- e
ηρ

3GM R J 1+ecosB sin Bsin i - 1
-

2a 1- e

  (48) 

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 


 

E
22 2

42 2
2 E 2 E

44 2

2 2 2
E 2 E

44 2

2
2

E
22 2

42 2 2
E E 2

44 2

2eAsinBGM 1+ecosB
- -

a 1- e

3GM J R Asin2Bsin i 1+ ecosB
γ t

2a 1- e

6eGM AJ R sinB sin Bsin i - 1
+

a 1- e
Q = -

GM 1+ ecosB
-

a 1- e
ηρ

3GM R J 1+ ecosB sin Bsin i - 1

2a 1- e



2
 (49) 

 
Specifically, for circular orbits e = 0 and ϕ = 0°, 45°, 

90° we obtain respectively that Equation 50: 
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Next defining Equation 51: 
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And therefore Equation 52: 
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And finally Equation 53: 
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For elliptical orbits with eccentricity e ≠ 0 and the 

same inclinations as above we obtain the following 
capillary meniscus height velocities when the experiment 
takes place in orbit and therefore for i = 0° we obtain 
Equation 54 and 55: 
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And therefore the meniscus capillary height velocity 

in an equatorial elliptical orbit becomes Equation 56: 
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For the inclination of 45º we similarly obtain that 

Equation 57 to 59: 
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2. NUMERICAL RESULTS  

Next, for the evaluation of our results we are going 
to use the following parameters, a cylinder diameter d = 
10 30 mm, which implies a capillary radius r = 0.005-
0.015 m, filled with silicon oil of liquid surface tension 
γ = 20 mNm−1 and viscocity η = 10-1000 mPas and 
silicon oil density ρ = 760 kg/m3 (Ponomarenko et al., 
2011). Similarly, for the mass/radius of the Earth we 
use ME, = 5.94×1024 kg and RE = 6378.1363 km, 

angular velocity of rotation ωE = 7.292115×10−5 rad/s 
(Vallado, 2001) and the oblateness coefficient J2 = -
0.0010827 (Kaula, 2000) and the period of the 
revolution of the spacecraft at 300 km is Trev = 
5463.282 s and its mean motion n = 0.001149492 rad/s.  
Our results are tabulated in the tables below. 

3. DISCUSSION 

As a first step, Table 1 below presents the numerical 
results for the meniscus capillary height and for an 
experiment that takes place on surface of the Earth, using 
Ponomarenko et al. (2011) result, as well as the corrected 
acceleration at various geocentric latitudes ϕ = 0°, 45°, 
90°, in the time interval t = 100 s. Next, in Table 2, we 
present numerical results Capillary meniscus height for an 
experiment that takes place on the Earth for 100 s and at 
various geocentric latitudes and using our modified 
gravity result as given by Equation 4. 

Similarly, in Table 3-6 we present capillary height 
raise for various orbital eccentricities when the particular 
capillary experiment is taking place aboard an orbiting 
spacecraft 300 km above the Earth surface, using 
Ponomarenko et al. (2011) as well as our corrected 
gravity results. In Table 7 we demonstrate the change of 
the meniscus capillary height as a function of spacecraft 
eccentricity and for the inclination i = 0. The capillary 
height has been calculated for a time t equal 100 sec and 
also 5463.283 s a time that is equal to the period of the 
spacecraft revolution around the planetary body at 300 
km, Earth in our case. Next, we find that the capillary 
meniscus height is higher for an experiment that takes 
place at the equator and lower for experiments at the 
poles in accordance with Equation 4, since h(t)∝ g−1/3. 
Similarly, there is a 9% difference between the 
numerical results derived by Ponomarenko’s formula and 
our derived formula with a corrected gravitational 
acceleration in which the J2 harmonic and the angular 
velocity of the Earth ωE has been taken into account. On 
the surface of the Earth, using our corrected gravity we 
find that h0 = 1.02 h90, where for a 50 times higher 
viscosity we obtain that h0 (η1) = 3.7h0 (η2), where η1 < 
η2. Finally, in Table 8. we obtain the capillary meniscus 
height for an experiment that takes place in a circular 
orbit of various inclinations at the orbital altitude of 300 
km, for the duration of the orbital period of the 
spacecraft T = 5463.283 s using our corrected gravity 
result.  We find that circular polar orbits result to a lesser 
meniscus height raise when compared to the equatorial 
orbit. As an example in Table 1 we see that for circular 
equatorial orbits the meniscus height does change in 
spite the fact that different eccentricities are considered. 
In other words inclination does not affect the meniscus 
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height in circular orbits. This is due to the fact that in 
circular orbits, orbital acceleration remains the same, as 
the spacecraft orbits around the Earth. 
 
Table 1. Capillary meniscus height for an experiment that takes 

place on the Earth for 100 s and at various geocentric 
latitudes and the result of Ponomarenko et al. (2011), 
with η = 20 and 1000 mPs and γ = 20 mNm−1 

Geocentric latitude Time Capillary height 
ϕ° t [s] h [mm] 
0 100 65.080 
45  64.440 
90  63.821 
0 100 17.665 
45  17.492 
90  17.324 
 
Table 2. Capillary meniscus height for an experiment that takes 

place on the Earth for 100 s and at various geocentric 
latitudes and using our corrected gravity result, with η 
= 20 and 1000 mPs and γ = 20 mNm−1 

Geocentric latitude Time Capillary height 
ϕ° t [s] h [mm] 
0 100 59.129 
45  58.547 
90  57.985 
0 100 16.050 
45  15.892 
90  15.740 
 
Table 3. Capillary meniscus height for an experiment that takes 

place in an equatorial circular orbit at the orbital 
altitude of 300 km, in 100 s and 5463.283 s using 
Ponomarenko et al. (2011) result 

  Capillary height 
Orbital eccentricity e = 0 h [mm] 
Inclination i = 0° 66.993 
 i = 45° 66.993 
 i = 90° 66.993 
Inclination i = 0° 254.205 
 i = 45° 254.205 
 i = 90° 254.205 
 
Table 4. Capillary meniscus height for an experiment that 

takes place in an equatorial circular orbit at the orbital 
altitude of 300 km, in 100 s and 5463.283 s using our 
corrected gravity result 

Orbital eccentricity Capillary height 
e = 0 h [mm] 
Inclination i = 0° 60.863 
i = 45° 60.863 
i = 90° 60.863 
Inclination i = 0° 230.945 
i = 45° 230.945 
i = 90° 230.945 

Table 5. Capillary meniscus height for an experiment that 
takes place in an elliptical orbit at the orbital altitude 
of 300 km, in 100 s and 5463.283 s using 
Ponomarenko et al. (2011) result 

Orbital eccentricity Capillary height 
e = 0.1 h [mm] 
Inclination i = 0° 66.552 
i = 45° 66.050 
i = 90° 65.562 
Inclination i = 0° 252.533 
i = 45° 250.624 
i = 90° 248.772 
 
Table 6. Capillary meniscus height for an experiment that 

takes place in an equatorial circular orbit at the orbital 
altitude of 300 km, in 100 s and 5463.283 s using our 
corrected gravity result 

Orbital eccentricity Capillary height 
e = 0.1 h [mm] 
Inclination i = 0° 60.470 
i = 45° 60.010 
i = 90° 59.567 
Inclination i = 0° 229.441 
i = 45° 227.707 
i = 90° 226.024 

 
Table 7. Capillary meniscus height for an experiment that takes 

place in an equatorial orbits of various eccentricities 
at the orbital altitude of 300 km, for the duration of 
the orbital period of the spacecraft T = 5463.283 s 
using our corrected gravity result 

Orbital eccentricity  Capillary height 
Inclination i = 0 h[mm] 
Eccentricity e = 0.0 230.960 
e = 0.1 229.441 
e = 0.2 224.855 
e = 0.3 217.112 
e = 0.4 206.048 
e = 0.5 191.403 
e = 0.6 172.800 
e = 0.7 149.600 
e = 0.8 121.102 
e = 0.9 90.577 
 
Table 8. Capillary meniscus height for an experiment that 

takes place in a circular orbit of various inclinations at 
the orbital altitude of 300 km, for the duration of the 
orbital period of the spacecraft T = 5463.283 s using 
our corrected gravity result 

Orbital eccentricity Capillary height  
e = 0 velocity v[mm/s] 
Inclination i = 0° 0.014092 
i = 45° 0.014016 
i = 90° 0.013942 
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Since we are interested in experiments that take place in 
spacecrafts in orbit, we have calculated all the 
corresponding meniscus heights for one orbital 
revolution period at the orbital altitude of the spacecraft, 
i.e., t = T = 5463.282 s. 

Fig. 1 gives demonstrates the wetting effect between two 
solid rods of the same or different sizes. For the same 
elapsed time, high viscosity fluids result to significantly 
smaller meniscus heights. Similarly, as the eccentricity of 
an orbit of certain inclination increases the corresponding 
meniscus height decreases drastically, for any given time of 
observation, with equatorial circular orbits resulting to the 
smaller decrease. In Fig. 2, we plot the meniscus height as a 
function of geocentric latitude, which demonstrates a 
maximum height at the equatorial latitude of zero degrees. 
In Fig. 3, we give a 3-D plot of the capillary meniscus 
height as a function of time t and the acceleration of gravity 
g for an experiment that takes place on the surface Earth 
using the result obtained by Ponomarenko et al. (2011), 

where in Fig. 4 represents a similar plot using the result 
derived by the authors of this study. A high meniscus 
height requires a small gravitational acceleration and a 
higher interaction time and we find that 

 
 
 

-2 / 3

cor Pon

t
h = 0.422h

g
, where hcor is the meniscus height 

derived by our corrected gravity and hPon is the meniscus 
height calculated by Ponomarenko’s result. Next, in Fig. 5 
we give a 3-D plots of the capillary meniscus height as a 
function of time t and the mass of the spherical body M on 
the surface of which the experiment that takes place using 
the result derived by the authors of this study, where Fig. 
6 plots the meniscus height as a function of viscosity η 
and fluid surface tension γ. Furthermore, for the time of a 
full orbital period we find the following ratio between the 
height of capillary for an experiment taking place in a 
circular equatorial orbit, to that taking place in a highly 
elliptical orbit of eccentricity e = 0.9, i.e., hcir = 2.55hell.  

 

 
 

Fig. 1.  Wetting effect: (Ponomarenko et al., 2011) 
 

 
 

Fig. 2. Plot of meniscus height as a function of geocentric latitude 
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Fig 3. 3-D plot of the capillary meniscus height as a function 

of time t and acceleration of gravity g for an experiment 
that takes place on the Earth using the result by 
Ponomareko et al. (2011) 

 

 
 
Fig 4. 3-D plot of the capillary meniscus height as a function of 

time t and acceleration of gravity g for an experiment that 
takes place on the Earth by the authors of this study 

 

 
 
Fig. 5. 3-D plot of the capillary meniscus height as a function 

of time t and the mass of the spherical body M on the 
surface of which the experiment that takes place using 
the result derived by the authors of this study 

 
 
Fig. 6. 3-D plot of the capillary meniscus height as a function 

of time t and the mass of the spherical body M on the 
surface of which the experiment that takes place using 
the result derived in this study 

 

 
 
Fig. 7. 3-D plot of the capillary meniscus height as a 

function of semi major axis a and true anomaly f, of 
the orbit for an experiment in an elliptical orbit with 
eccentricity e = 0.1, taking place aboard an orbiting 
spacecraft using the result derived in this study for a 
time t equals to the spacecraft’s orbital period 

 
In relation to the capillary height time rate of change, we 
find that laboratory sites at the equator will exhibit larges 
time rates of change for the meniscus height. Similarly, for 
experiments above a spacecraft we find that circular 
equatorial orbits exhibit the highest time rates of change, 
where elliptical orbits exhibit smaller time that reduce as 
the eccentricity increases. Since capillary experiments are 
major part Earth based experiments as well as of the 
research taking place above the International Space 
Station (ISS) (Weislogel et al., 2008), our work can prove 
to be essential in high accuracy experiments, in which the 
inclusion of the Earth’s rotation as well as the J2 will be 
required (Fig. 7-9). 
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Fig. 8. 3-D plot of the capillary meniscus height as a function 

of semi major axis a and true anomaly f, of the orbit 
for an experiment in an highly elliptical orbit with 
eccentricity e = 0.83, taking place aboard an orbiting 
spacecraft using the result derived in this study, for a 
time t equals to the spacecraft’s orbital period 

 

 
 
Fig. 9. 3-D plot of the capillary meniscus velocity as a function 

of semi major axis a and time t, of the orbit for an 
experiment in an circular orbit with eccentricity e = 0, 
taking place aboard an orbiting spacecraft using the 
result derived in this study, for a time t equals to the 
spacecraft’s orbital period 

 
In Fig. 7 we plot the meniscus height as a function of 
the spacecraft’s semimajor axis and true anomaly, 
orbiting in an elliptical orbit an eccentricity e = 0.1. We 
find that the height h exhibits an increasing behaviour 
that reaches a maximum at the value of the true 
anomaly f = 180° and then progressively declines. In 
Fig. 8, a highly eccentric orbit i.e., e = 0.85 results in a 
sharper but compressed peak for the meniscus height 
exhibits a maximum around f = 140°, that decreases 
asymmetrically with respect to the central peak. 

4. CONCLUSION 

In this study we have considered the capillary rise of 
wetting in liquids in the corners. For, that we have 
examine and extended Ponomarenko et al. (2011) result 
by taking into account a term that Ponomareko omits in 
the derivation of his result. We find that the inclusion of 
this term results in the following relation i.e., 

( ) ( )0.9085new Ponh t h t≅ . In particular and on the surface of 

the Earth we have corrected the gravitational 
acceleration for the oblateness coefficient J2 and also for 
the Earth’s rotation via its angular velocity  ωE. We 
father extent the meniscus height in the case a wetting 
experiment takes place above and orbiting spacecraft by 
writing the gravitational acceleration g as a function of 
the satellites orbital elements. We find that on the surface 
of the Earth experiments at the equator result to higher 
capillary heights, where experiments on the poles result in 
lower capillary heights. Similarly, equatorial circular 
orbits result to higher capillary heights when compared to 
elliptical orbits of various eccentricities. Highly elliptical 
equatorial orbits considerably reduce the capillary height, 
when compared with the capillary height resulting from 
equatorial circular orbits. These observations are 
suggestive of implications in biological systems where 
capillary formations are integral for their growth and 
function. Water transport and storage in plants depends 
strongly in the capillary action of xylem formations, the 
finding that capillary height varies significantly from the 
pole to the equator may have implications on the flora 
distributed in a range of geographic latitudes. For 
example, it may be a favorable factor for the growth, 
development and sustainability of gigantic plants such as 
the trees found in the tropics. More over, capillary-driven 
root module designs for growing plants in microgravity 
which require minimal external control have been 
proposed (Jones, 1999). Matching growth media and 
water retention characteristics to the porous membrane 
characteristics is essential for supplying adequate liquid 
flux and gas exchange (Jones, 1998). The dependence of 
capillary height in the flight path suggests testing of these 
materials in different orbital conditions in order to achieve 
functional adjustments. 
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