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Abstract: Problem statement: In this study, we present general analytical solutions to the Neutron 
Boltzmann Transport Equation NBTE using a polynomial expansion scheme. Approach: Some 
simple assumptions have been introduced in the main system thanks to the Boubaker Polynomial 
Expansion Scheme (BPES) in order to make the general analytical procedure simple and 
adaptable for solving similar real life problems. Results: Finding particular solution to the Neutron 
equation by making use of boundary conditions and initial conditions may be too much for the present 
study and reduce the generality of the solutions. Conclusion: The proposed  analytical solution of the 
neutron transport equation has been positively compared to  some recently publish results. I should 
present a relevant supply to studies on reactor modeling.  
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INTRODUCTION 

 
 The deterministic neutron transport equation (or 
Boltzmann neutron transport equation) describes the 
expected or probable neutron angular density with 
respect to position, direction, energy and time. Is 
solutions generally provide average values of the 
neutron angular density which takes into account 
random effects from neutron interactions and sources. 
Since neutrons are neutral particles which possess mass, 
they can penetrate deep into matter in a nondestructive 
way despite  having characteristics strong forces,  a 
quantum mechanical description seems appropriate, 
leading to an involved system of Schrödinger equations 
describing neutron motion between and within nuclei 
(Kulikowska, 2000; Lewis and Miller, 1984; Bell and 
Glasstone, 1970; Stammler and Abbate, 1983; Singh, et 
al.,  2010;Nourazar et al. , 2011).  
 From a theoretical point of view,  a neutron is a 
neutral point particle, experiencing deflection from or 
capture by a nucleus at the center of an atom. If the 
conditions are just right, the captured neutron causes a 
fissile nucleus to fission, producing more neutrons. A 
stochastic partial differential equation is hence derived 
from these events  of neutron transport in a general 
three-dimensional absorbing and anisotropic-scattering 
medium where the neutron angular density depends on 
position, direction, energy and time (Lewis and Miller, 

1984). Sometimes, the nucleus that remains as fission 
product coincides with one of the stable nuclei. The 
product nucleus is then different from other  nuclei, the 
reason being that the product nucleus is not stable. It 
disintegrates further, with a mean life characteristic of 
the nucleus, by emission of an electric charge, until it 
finally reaches a stable state.  
 In the present investigation, the medium is assumed 
to be constant with respect to material composition, i.e., 
zero power noise. Special random effects, for example, 
from randomly varying boundary conditions or from a 
medium that is randomly varying are not considered in 
the present investigation although generalizations to 
approximate such conditions may be possible.  
 

MATERIALS AND METHODS 
 
 The neutron transport equation models the transport 
of neutral particles in a scattering, fission and absorption 
set of events with no self-interactions (Lewis and Miller, 
1984; Chandrasekhar, 1960; Davison, 1957). 
 In a neutron scattering event (Fig. 1),  the quantity 
to be determined is called the partial differential cross 
section related to ∆Ω . This function depends on the 
energy and momentum transferred from the neutron to 
the sample. In the most general case the partial 
differential cross section is a function of four variables 
since the momentum transfer is a vector quantity with 
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three components. In elastic scattering, the neutron does 
not transfer any energy to the sample. The elastic 
differential cross section is consequently a function of 
momentum transfer only. From the number of neutrons 
counted in a detector, the mean values for variables θ 
and φ can be defined (Fig. 1).  θ is the angle through 
which the neutron has been scattered, i.e. the angle 
between the incident and the scattered beam. 
The paths of the neutrons which are scattered through θ 
form a cone so a second (azimuthal) angle, φ, is also 
needed to define the detector position. Several 
analytical and numerical approaches have been used in 
order to solve the neutron transport equation. Jaffel and 
Vidal-Madjar (1989); Case and Hazeltine (1970) and  
Davies (2002) performed dicretizing protocols based on 
Fourier transform, while Cardona and Vilhena (1994); 
Kim and Ishimaru (1999); Kim and Moscoso (2002);  
Boyd (2001); Bernardi and Maday (1992) and Kadem 
(2008) used polynomial expansion schemes.. 
 In the actual investigation, the first assumption is 
that all particles including nuclei are in motion with like 
particle collisions allowed, as stated by  Kulikowska 
(2000);   Mokhtar-Kharroubbi (1997) and Kadem 
(2006). The  govening equation are Eq. 1:  
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With: 
V = The neutron speed 
Σ,Σf = Macroscopic cross-sections 
Σs = Scattering cross-section 
χ (E) = The distribution function 
ψ = The neutron angular flux 
E,E’ = Energies 
Ω, Ω’ = Neutron directions 
Q(r,Ω,E,t) = The source function (Kulikowska, 2000) 
 
 Which give, using  variable separation Eq. 2: 
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Fig. 1:  Neutron scattering event geometrical model 
 
which gives Eq. 3: 
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where, VE represents the average number of neutrons 
per fission. 
 
By setting Eq. 4: 
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 One  obtains: 
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 Since both sides of Eq. 5 are independent of one 
another, they must be equal to a constant ε

2; leading to 
the following equations Eq. 6 and 7:  

 22 2
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 which have as solutions Eq. 8 and 9: 
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 where, P0 and P1 are constants. 
 
 The expression for the flux is hence given as Eq. 10: 
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RESULTS 

 
 Different expressions to Q2, G0, A2, A1 and Ro allow 
obtaining different expressions of the macroscopic cross 
section which is generally expressed as Eq. 11:  
 

ij j ij(r,E, t) N (r, t) (E)Σ = σ   (11) 

 
 For a given nuclide j and reaction type i, where Nj 

(r, t) is the nuclear atomic density and σij (E) is the 
microscopic cross section, then, if we assume that 
nuclear atomic density is independent of time Eq. 12 
and 13:   
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 And the expression for the distribution function 
χ(E) becomes (Kulikowska, 2000; Kadem, 2006; 
Mokhtar-Kharroubbi, 1997) Eq. 14: 
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DISCUSSION 

 
 Criticality and analytical solutions can be discussed 
by considering the special case of the neutron transport 
equation without delayed neutrons, which is traduced 
by the equation: 
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With: 
Qext = The external sources of neutrons 
σ = The microscopic cross-section 
v = The neutron speed 
VE = Average number of neutrons per fission 
 
  This equation assumes that all neutrons are emitted 
instantaneously at the time of fission although small 
fraction of neutrons is emitted later due to certain 
fission products.  
 If we look for an asymptotic solutions to Eq. 15, 
satisfying  the source free boundary conditions (Qext = 
0), it gives: 
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And:  
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Fig. 2:  Energy-dependent neutron flux profile 
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where, k1 k2 are core reactor characteristic constants. 
 For solving Eq. 16-17, the Boubaker Polynomials 
Expansion Scheme BPES is proposed. This scheme is 
applied through setting the expression: 
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 The solution is then assigned to the set of 

pondering real coefficients 
0

k k 1..N=
λ%  which minimizes 

the Minimum Square functional ΨN0: 
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 Which gives the following solution to Eq. 21: 
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With P3 constant.  
 From Eq. 22  and our earlier assumptions, we write 
Eq. 23: 
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 Figure 2 presents the profile of the energy-
dependent neutron flux as per Eq. 24.  The obtained 
patterns are in good agreement with the results recorded 
by Lent et al. (2004); Zeyad et al. (2007) and Zhao et 
al. (2006).  
 

CONCLUSION 
 
 An analytical solution of the neutron transport 
equation applying the Boubaker Polynomial Expansion 
Scheme BPES has been presented.  The solution plots 
and main features  have shown a good agreement with 
some recently published results and should present a 
relevant supply to studies on reactor modeling. Effects 
of power noise, special random effects and variable 
boundary conditions are subjects of future studies. 
 

REFERENCES 
 
Agida, M. and A.S. Kumar, 2010. A boubaker 

polynomials expansion scheme solution to random 
love’s equation in the case of a rational Kernel. 
Elec. J. Theoretical Phys., 7: 319-326.  

Awojoyogbe, O.B. and K. Boubaker, 2009. A solution 
to Bloch NMR flow equations for the analysis of 
hemodynamic functions of blood flow system 
using m-Boubaker polynomials. Curr. Applied 
Phys., 9: 278-283. DOI: 10.1016/j.cap.2008.01.019 

Barry, P. and A. Hennessy, 2010. Meixner-type results 
for riordan arrays and associated integer sequences. 
J. Integer Seq., 13: 1-34.  

Belhadj, A., J. Bessrour, M. Bouhafs and L. Barrallier, 
2009a. Experimental and theoretical cooling 
velocity profile inside laser welded metals using 
keyhole approximation and Boubaker polynomials 
expansion. J. Thermal Analysis Calorimetry, 97: 
911-920. DOI: 10.1007/s10973-009-0094-4 

Belhadj, A., O.F. Onyango and N. Rozibaeva, 2009b. 
Boubaker polynomials expansion scheme-related 
heat transfer investigation inside keyhole model. J. 
Thermophys Heat Transf., 23: 639-640.  

Bell, G.I. and S. Glasstone, 1970. Nuclear Reactor 
Theory. 1st Edn., Van Nostrand Reinhold 
Company, New York, pp: 619.  

Bernardi, C. and Y. Maday, 1992. Approximations 
spectrales de problèmes aux limites elliptiques. 1st 
Edn., Springer-Verlag, Paris, ISBN-10: 
3540595767, pp: 242.  

Boyd, J.P., 2001. Chebyshev and Fourier Spectral 
Methods. 2nd Edn. Courier Dover Publications, 
Mineola, ISBN-10: 0486411834, pp: 668. 

Cardona, A.V. and M.T. Vilhena, 1994. A solution of 
the linear transport equation using Chebyshev 
polynomials and Laplace transform. Kerntechnik, 
59: 278-281.  

Case, K.M. and R.D. Hazeltine, 1970. 
Three‐Dimensional Linear Transport Theory. J. 
Math. Phys., 11: 1126-1135. DOI:  
10.1063/1.1665238 

Chandrasekhar, S., 1960. Radiative Transfer. 1st Edn., 
Courier Dover Publications, New York, ISBN-10: 
0486605906, pp: 393. 

Davies, B., 2002. Integral transforms and their 
applications. 3rd Edn., Springer, New York, ISBN-
10: 0387953140, pp: 367. 

Davison, B., 1957. Neutron Transport Theory. 1st Edn., 
Clarendon Press, London, pp: 450.  

Fridjine, S. and M. Amlouk, 2009. A new parameter: 
An abacus for optimizing pv-t hybrid solar device 
functional materials using the boubaker 
polynomials expansion scheme. Modern Phys. 
Lett.,  23: 2179-2191. DOI: 
10.1142/S0217984909020321 

Ghanouchi, J., H. Labiadh and K. Boubaker, 2007. An 
attempt to solve the heat transfert equation in a model of 
pyrolysis spray using 4q-order m-Boubaker polynomials. 
Int. J. Heat Technol., 26: 49-53. 

Hossein, S.A., A.E. Tabatabaei, T. Zhao, O.B. 
Awojoyogbe and F.O. Moses, 2009. Cut-off 
cooling velocity profiling inside a keyhole model 
using the Boubaker polynomials expansion 
scheme. Heat Mass Transfer. 45: 1247-1251. DOI: 
10.1007/s00231-009-0493-x 

Jaffel, L.B. and A. Vidal-Madjar, 1989. New 
developments in the discrete ordinate method for 
the resolution of the radiative transfer equation, 
Astron. Astrophys., 220: 306-312.  

Kadem, A., 2006. Analytical solutions for the neutron 
transport using the spectral methods. Int. J. Math. 
Math. Sci., 2006: 1-11.  

Kadem, A., 2008. Solving transport equation via walsh 
function and sumudu transform. Appli. Comput. 
Math., 7: 107-118.  

Kim, A.D. and A. Ishimaru, 1999. A chebyshev spectral 
method for radiative transfer equations applied to 
electromagnetic wave propagation and scattering in 
a discrete random medium. J. Comput. Phys., 152: 
264-280. DOI: 10.1006/jcph.1999.6247 

Kim, A.D. and M. Moscoso, 2002. Chebyshev spectral 
methods for radiative transfer. SIAM J. Sci. 
Comput., 23: 2075-2095.  



Phy. Intl. 2 (1): 25-30, 2011 
 

30 

Kulikowska, T., 2000. An introduction to the neutron 
transport phenomena. Proceecings of the Lecture 
given at the Workshop on Nuclear Data and 
Nuclear Reactors: Physics, design and safety. Mar. 
13-14, Trieste, Italy, pp: 1-20.  

Kumar, A.S., 2010. An analytical solution to applied 
mathematics-related Love’s equation using the 
Boubaker polynomials expansion scheme. J. 
Franklin Inst., 347: 1755-1761. DOI: 
10.1016/j.jfranklin.2010.08.008 

Labiadh, H. and K. Boubaker, 2007. A Sturm-Liouville 
shaped characteristic differential equation as a 
guide to establish a quasi-polynomial expression to 
the Boubaker polynomials. Elect. J., 2: 117-133.  

Lent, E.M., K.E. Sale, R.M. Buck, M. Descalle, 2004.  
COG validation: SINBAD Benchmark Problems. 
U.S. Department of Energy.  

Lewis, E.E. and W.F. Miller, 1984. Computational 
Methods of Neutron Transport. 1st Edn., Wiley, 
New York, ISBN-10: 0471092452, pp: 401 

Milgram, A., 2011. The stability of the Boubaker 
polynomials expansion scheme (BPES)-based 
solution to Lotka–Volterra problem. J. Theoretical 
Biol., 271: 157-158. DOI: 
10.1016/j.jtbi.2010.12.002 

Mokhtar-Kharroubbi, M., 1997. Mathematical Topics 
in Neutron Transport Theory: New Aspects. 1st Ed. 
World Scientific Publishing, Singapore, ISBN: 
9810228694,  pp: 244.  

Nourazar, S. S., A. Nazari-Golshan and M. Nourazar, 
2011. On the closed form solutions of linear and 
nonlinear cauchy reaction-diffusion equations 
using the hybrid of fourier transform and 
variational iteration method. Phys. Int., 2:  8-20. 
DOI: 10.3844/pisp.2011.8.20 

Singh, V.,   M.K. Singh and R. Pathak, 2010. Two source 
emission behaviour of alpha fragments of projectile 
having energy around 1 GeV per nucleon. Proceedings 
of the 16th International Symposium on Very High 
Energy Cosmic Ray Interactions, Jun. 28-Jul. 2, Batavia, 
IL, USA., pp: 1-4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Slama, S., J. Bessrour, M. Bouhafs and K.B.B. 
Mahmoud, 2009. Numerical distribution of 
temperature as a guide to investigation of melting 
point maximal front spatial evolution during 
resistance spot welding using boubaker polynomials. 
Numer. Heat Tran. Part A: Appli., 55: 401-408. 
DOI: 10.1080/10407780902720783 

Stammler, R.J. J. and M.J. Abbate, 1983. Methods of 
Steady-State Reactor Physics in Nuclear Design. 
1st Edn., Academic Press, London, ISBN-10: 
0126633207, pp: 506. 

Yildirim, A., S.T. Mohyud-Din and D.H. Zhang, 2010. 
Analytical solutions to the pulsed Klein–Gordon 
equation using Modified Variational Iteration 
Method (MVIM) and Boubaker Polynomials 
Expansion Scheme (BPES). Comput. Math. Appli., 
59: 2473-2477. DOI: 
10.1016/j.camwa.2009.12.026 

Zeyad A.D. and  E.I. Starovoitov, 2007. Physical 
nonlinearity under cyclic loading in neutron flow. 
Am. J. Applied Sci., 4: 653-657.  

Zhao,  Z. and G.I. Maldonado, 2006. Speedup of 
Particle Transport Problems with a Beowulf 
Cluster. Am. J. Applied Sci., 3: 1948-1951. 
DOI:10.3844/ajassp.2006.1948.1951 


