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Abstract: Problem statement: Artificial Neural Network (ANN) are simple models to mimic some 
essential features of the complex central nervous system. ANN models are realistic due to their 
inherent stochastic nature of neural computation and strong synchronicity. Different ANN models are 
associated with directed and signed graphs. The present study proceeded by relaxing certain 
simplifying assumptions in the ANN model. Approach: It was assumed that the connected graph 
associated with the ANN is a multipartite directed graph whose connection comprising of four blocks 
and two blocks are either both symmetric or both anti symmetric. The convergence of such network 
was studied in the present research with the help of Lyapunov functional. Results: Attractors (fixed 
points) of such ANN and also limit cycles of different orders are investigated. Bounds of transient 
length of the neural network were also calculated. Numerical simulation in support of the results was 
also depicted. Conclusion: It was shown that under synchronous updating rule such networks 
converge to a fixed point or to a limit cycle of period 2 or 4. The bound of transient length was 
discussed. Conclusions were drawn from the simulation studies carried out in support of the results.  
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INTRODUCTION 
 
 Artificial Neural Networks (ANN) are simple 
models to capture some essential features of the central 
nervous system. The basic processing unit is 
(McCulloch and Pitts, 1943) binary units (or linear 
threshold gate) which is activated only when the 
weighted sum of its input is larger than some threshold: 
 
 i i

i

Sgn ( w x θ)σ = −∑  (1) 

 
where the vector ( )1 nw w ,...,w=  is a vector of weights 

representing the strength of n pinging synapses from n 
other neurons with a activation ( )1 nx x ,..., x := : 

1x ∈{0,1} n. θ is a threshold value. The output of the 

network is σ = 1 if the formal neuron fires a high 
frequency train of spikes or σ = 0 if it remains 
inactivated. Geometrically (1) says that every 
elementary processor of an ANN corresponds to n 
dimensional hyperplane: 
 

w.x = 0 
 
 It is also assumed that a neuron has not fired within 
the absolute refractory period, the basic cycle-time of 

the network and the accumulated Post Synaptic 
Potential (PSP) decays instantly to zero and the build 
up of the PSP starts all over again. So the collection of 
signals, making up the input to a neuron, does not really 
represent a well defined network state in the dynamical 
evolution of the network. 
 It is known that on the average every neuron 
attempts to fire an action potential in every unit in total 
cycle-time, independently of all other neurons. This 
implies a mean updating rate is the inverse of the basic 
cycle-time. It is difficult to capture such complicated 
dynamics and instead two simplified versions of 
network dynamics, namely, synchronous (or parallel) 
and sequential dynamics. In parallel dynamics, the PSP 
on each neuron at time t = n is determined by the 
activation of all other neurons in the time interval n-
1<t<n. At the beginning of each period the neuron starts 
from a zero PSP, that is, after every unit of time all 
return to these resting membrane potential. This type of 
dynamics has already been introduced (Caianiello, 
1961; Amari, 1972; Little, 1974). Such dynamics is also 
very favorite in the study of cellular automata 
(Hoffman, 1987). But ANN models are realistic due to 
their inherent stochastic nature of neural computation 
and strong synchronicity. 
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 Different forms of the synaptic matrix give rise to 
different asymptotic dynamics of an ANN under 
different updating rule. The computational performance 
of a network, namely, memory, recall is associated with 
the asymptotic dynamics of the network. There are 
three types of basic asymptotic dynamics in an ANN 
namely, chaotic, limit cycle, fixed points. ANN models 
may never mimic the richness and novelty of human 
cognition under normal or pathological condition. The 
ANN, however, may be considered as a metaphor for 
high brain function which can lead to manifestation of 
schizophrenia and mania in such disorder (Little and 
Shaw, 1978).  
 In ANN models (Hoffman, 1987) many 
simplifying assumptions were made from neuro-
biological perspective. This can be summarized as 
follows: 

 
(i) Each formal neuron has as many excitatory and 

inhibitory synapses emanating from axon 
(ii)  Each of the neuron can receive input from every 

neuron and can send output to it and each neuron 
does not connect directly to itself 

(iii)  Symmetric connectivity 
(iv) Updating rule is synchronous/asynchronous 

 
 Hopfield (1982) work consists of modeling of 
Associative Memory by neural network. Given a set of 
Boolean vector to be memorized, he defines an ANN 
whose symmetric weights are defined by the Hebbian 
rule between patterns. Using the analog with spin glass 
problem he proved that such pattern is a fixed point of 
the network. He further showed that the sequential 
network dynamics is driven by a Lyapunov operator. 
 In the present study we have relaxed slightly the 
assumptions (ii) and (iii). It is assumed that the 
connected graph is associated with the ANN is 
multipartite directed graph and efficacy of the synapses 
communicating the output neuron j to i is not always 
equal to the efficacy of the synapse communicating the 
output of neuron i as input to neuron j. More precisely 
we have considered connection matrix comprising four 
blocks out of which two blocks along with the left hand 
diagonal are null matrices and remaining two blocks are 
either (i) both symmetric or (ii) both antisymmetric. 
The convergence of such network is studied in the 
present study with the help of Lyapunov functional. It is 
shown that under synchronous updating rule such 
networks converge to a fixed point or to a limit cycle of 
period 2 or 4. The bound of transient length is also 
discussed. Some simulation results in support of our 
results are also included. 

MATERIALS AND MATHODS 
 

The model: Let { } { }n n
π : 0,1 0,1→  be a mapping whose 

components 1 nπ ,...,π are threshold functions: 

 

{ }n
i(1,2,...,n), x 0,1∀ ∀ ∈  

 

 
ij j i

i

π(x) = 1 if a x b 0

0 otherwise

 − ≥



∑  (2) 

 
where, A = (aij) is a (n×n) real matrix known as the 
connection matrix, aij>0 means excitatory synaptic 
weight and aij<0 an inhibitory weight and (b1, b2,…,bn) 
is a real threshold vector. The synchronous iteration 
scheme on π is given by: 
  

 
( )

{ }

i ij j i
j=1

x t 1  ( a x (t) b )

i I  1,2, ,n ,  t0

+ = π −

ε = …

∑
 (3) 

 
where, π(x) is the threshold function.  
 Here we have considered the finite neural network 
with connection matrix A of the form: 
 

1

2

PO
A

OQ

 
=  
 

 

 
where the blocks O1and O2 are null matrices and the 
blocks P and Q are non null matrices: 
 Let: 
 

I1 = {1,2,…,p}; I2 = {p+1,p+2,…n} 
J1 = {1,2,…,n-p}; J2 = (n-p+1,…,n} 

 
 Such that: 
 

I1 ∪ I2 = I; I1∩I2 = φ; J1 ∪ J2 = I; J1∩J2 = φ 
 
 We also suppose b1 = bi: iεJ2 such that b1 ∪ b2 = b 
and b1∩b2 = φ. 
 
Lyapunov functional: We introduce here the Lyapunov 
functional driving the network dynamics. These operators 
were first introduced by (Hopfield, 1982) and 
subsequently by Goles, (1990); Hoffman, (1987) to 
analyze the fixed point behavior of random sequential 
iteration of associative network. As for that applications 
the study of synchronous updating rule and of memory 
updating were defined and developed in (Hoffman, 1987). 
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RESULTS 
 
Case 1: We first consider the case when the non null 
blocks P and Q of the connection matrix A are both 
symmetric in nature. We can write the blocks P and Q 
in matrix form as follows: 
  

P = (pij)n-p × n-p: iεI2 and jεJ1 
 

Q = (qij)p × p: iεI1 and jεJ2 
 

 The synchronous dynamics given by (3) with the 
strictness condition:  
 
 ij j i

jεI

a x (t) b 0 iεI− ≠ ∀∑  (4) 

 
 We define the Lyapunov functional as follows: 
 

i ij j
iεI jεI

i ij i i
iεI jεI

E(x(t)) = (2x (t) 1) a (2x (t 1) 1)

+ (2b a )(2x (t) 1+ 2x (t 1) 1)

− − − −

− − − −

∑ ∑

∑ ∑
 (5) 

 
 Now since aij = 0 1iεI ,∀ 1jεJ or 2 2iεI , jεJ .∀   

We have: 
 

s i ij j
iεI jεJ1 2

i ij j
iεI jεJ2 1

i ij i i
iεI jεJ1 2

i ij i i
iεI jεJ2 1

E (x(t)) = (2x (t) 1) a (2x (t 1) 1)

(2x (t) 1) a (2x (t 1) 1)

+ (2b a )(2x (t) 1+ 2x (t 1) 1)

(2b a )(2x (t) 1+ 2x (t 1) 1)

− − − −

− − − −

− − − −

+ − − − −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

 
Lemma 1: If A be the connection matrix of a neural 
network then Es(x(t)) is a Lyapunov functional for the 
synchronous iteration given by (3) with (4). 
 
Proof: Let: 
 

( )( ) ( )( )t s  s s i
iεI1

i ij j
jεJ2

i i ij j
iεI jεJ2 1

i i i ij
iεI jεJ1 2

i i i ij
iεI jεJ2 1

i i
iεI1

E  E x t E x t 1 2 (x (t)

x (t 2)) a (2x (t 1) 1)

2 (x (t) x (t 2)) a (2x (t 1) 1)

2 (x (t) x (t 2)) (2b a )

2 (x (t) x (t 2)) (2b a )

4 (x (t) x (t 2)) ( a

∆ = − − −

− − − −

− − − − −

+ − − −

+ − − −

= − − −

∑

∑

∑ ∑

∑ ∑

∑ ∑

∑ ij j i
jεJ2

(2x (t 1) b )− −∑

 

 So we conclude ∆tEs ≤ 0 and ∆tEs<0 iff xi(t) ≠ xi(t-
2). Therefore Es(x(t)) is a Lyapunov functional for the 
given dynamics (3) with (4). 
 Since the network evolves in a finite set {0,1}n, the 
synchronous iteration scheme defined by (3) and (4) 
converges for any initial configuration in a finite 
number of steps to a steady state, that is, to a finite 
cycle. Therefore there exists number p(x) called the 
period of the cycle of the network, such that:  

 
x(t+p(x)) = x(t) 

 
Theorem 1: If A be the connection matrix consisting of 
the non null blocks P and Q of symmetric in nature the 
orbit of the synchronous iteration are only fixed point 
and /or cycle of length two. 

 
Proof: Let (x(0),…,x(T-1)) is a cycle of period T. Then 
Es(x(t)) is necessarily constant for t = 0,…,T-1. If T>2 
we have x(2) ≠ x(0), then from the definition of the 
Lyapunov functional Es(x(2))<Es(x(1)), which is a 
contradiction. Hence the theorem. 

 
Case 2: Next we consider the case when the blocks P 
and Q of the connection matrix A are both 
antisymmetric in nature and the updation rule is given 
by (3) with (4) with the self-dual condition given by: 
  

 i ij ij
jεJ jεJ1 2

1 1
b = p + q

2 2
∑ ∑  (6) 

 
 Here also we consider the Lyapunov functional 
defined by (5). Now using the self dual condition 
defined by (6) the Lyapunov functional takes the form:  
 

a i ij j
iεI jεJ

i ij j
iεI jεJ1 1

i ij j
iεI jεJ1 2

i ij j
iεI jεJ2 1

i ij j
iεI jεJ2 2

E (x(t)) = (2x (t) 1) a (2x (t 1) 1)

(2x (t) 1) a (2x (t 1) 1)

(2x (t) 1) a (2x (t 1) 1)

(2x (t) 1) a (2x (t 1) 1)

(2x (t) 1) a (2x (t 1) 1)

− − − −

= − − − −

− − − −

− − − −

− − − −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

 
 Since aij = 0 1iεI∀ , 1jεJ or 2 2iεI , jεJ .∀  

 We have: 
 

a i ij j
iεI jεJ1 2

i ij j
iεI jεJ2 1

E (x(t)) = (2x (t) 1) a (2x (t 1) 1)

(2x (t) 1) a (2x (t 1) 1)

− − − −

− − − −

∑ ∑

∑ ∑
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 Now we show that aE (x(t)) is Lyapunov functional 

when the connection matrix A consists of both 
anisymmetric blocks with the synchronous updating 
rule: 
 

t a a a

i i
iεI1

ij j i
jεJ iεI2 2

i ij j
jεJ1

E   E (x(t)) E (x(t 1))

2 (x (t) + x (t 2) 1)

a (2x (t 1) 1) 2 (x (t)

+ x (t 2) 1) a (2x (t 1) 1)

∆ = − −

=− − −

− − −

− − − −

∑

∑ ∑

∑

 

 
  Since ij j i

jεJ

a (x (t) b ) 0 iεI− ≠ ∀∑ . 

 We have:  
 

∆tEa = 0 iff xi(t) ≠ xi(t-2) 
 
and 
 

∆tEa<0 iff xi(t) = xi(t-2) 
 
Hence we obtained the result. 
 
Theorem 2: If aE (x(t))  be the Lyapunov functional, 

then the orbit have a period T = 4. 
 
Proof: Let (x(0),x(1),…,x(T-1)) is an orbit of period T 
of the  given dynamics then a 0E (x(t)) E=  is constant for 

t = 0, …, T-1. Hence xi(t+4) ≠ xi(t) for all t. Hence the 
orbit have a period T = 4. 
 
Bound to transient length: Since {0,1}n is a finite set, 
we can bound the Lyapunov functional Es in the 
following way. 
 Let {x(t)/t = 0,…,q-1} be a transient trajectory, that is: 

x(0)→x(1)→…→x(q-1)→x(q)→… 
where, q(x) is the first vector belonging to the steady 
state associated to the initial configuration x(0). The 
transient length of the neural network is defined as the 
greatest of such lengths. Since in the transient phase, Es 
is strictly decreasing there exists: 
 

min

t se = 1 t q 1|∆ E | 0≤ ≤ − >   

 
and since: 
 

{ }n

ij j i
jεJ

a x b 0 for any xε 0,1− ≠∑  

 
 We can define positive quantity: 

{ }n

i ij j i
J

ij
i j

e = min| a x b |; xε 0,1 i  1,2, ,n

A = | a |

− = …∑

∑∑
 

 
 Now: 
 

s s i s i s i
iεI iεI iεI1 2

E (x(t)) = (E (x(t))) = (E (x(t))) + (E (x(t)))∑ ∑ ∑  

 
 Hence we can found the lower bound as follows: 
  

s i ij i ij1
jεJ jεJ2 2

ij i2 ij
jεJ jεJ1 1

(E (x(t))) | p | 2|2b p |

+ | q | 2|2b q |

≥ − −

− −

∑ ∑

∑ ∑
 

Where: 
 1 1i = i : i εJ

0 otherwise





  

 2 2i = i : i εJ

0 otherwise





 

 

s 1 2
ˆ ˆE (x(t)) || P || 2 || 2b P1|| || Q || 2 || 2b Q1||≥ − − − − −  

 
Where:  

ij
i j

P = | p |∑∑  

1 = (1,1,...,1)is a constant vector 

 
 To get the upper bound as write s i(E (x(t))) as 

follows: 
  

s i i i ij i ij1 2
jεJ jεJ2 1

(E (x(t))) 2e + | 2b p | + | 2b q |≤ − − −∑ ∑  

 
Where: 
 1 1i = i : i εJ

0 otherwise





 

 2 2i = i : i εJ

0 otherwise





 

 

s i 1 2

i I

ˆˆ ˆE (x(t)) 2 e || 2b P1|| || 2b Q1||
ε

≤ − + − + −∑  

 
 Since in the transient phase the Lyapunov 
functional Es is decreasing:  

sE (x(t)) ≤ s sE (x(t 1)) e E (x(0)) te− − ≤ −  

 
 Hence for t = q: 
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s s

1 2

s

i 1 2

i 1 2

E (x(q)) E (x(0)) qe

ˆˆ ˆ|| P || 2 || 2b P1|| || Q || 2 || 2b Q1||

E (x(0)) qe

ˆˆ ˆqe 2 e (3(|| 2b P1|| || 2b Q1||)

|| P || Q ||

ˆˆ ˆq (1 / e)( 2 e 3(||2b P1|| || 2b Q1||)

|| P || || Q ||)

≤ −

⇒ − − = − −

≤ −

⇒ ≤ − + − + −
+

∴ ≤ − + − + −

+ +

∑

∑

 

 
DISCUSSION 

 
 Let:  
  

0 0 0 3 4

0 0 3 0 1

The connection matrix A  0 0 4 1 0

0 1 0 0 0

1 0 0 0 0

 
 
 
 =
 

− 
 − 

 

 

 
 
Fig. 1a: Convergent dynamics (00000) as fixed point 

when both P and Q are symmetric in nature 
 

 
 
Fig. 1b: Convergent dynamics (01100) as fixed point 

when both P and Q are symmetric in nature 

with threshold vector b = (2,3,1,4.1,5.3). The attractor 
set consist of two fixed points namely (00000) and 
(011001) (Fig. 1a and b): 
 
  Let: 

0 0 0 1 2

0 0 1 0 3

A 0 0 2 3 0

0 1 0 0 0

1 0 0 0 0

 
 − 
 = − −
 
 
 − 

 

 
with threshold vector b = (1.5,0.5,-2.5,0.5,-0.5). 
 The attractor here is unique limit cycle of length 
four for every initial configurations (Fig. 2). The limit 
cycle is (00001 11101 11110 00010)→ → → . 
 If condition (6) is violated the nature of attractor is 
also changed (Fig. 3). 
 

 
 
Fig. 2: Limit cycle with period 4 when condition 6 is 

satisfied 
 

 
 
Fig. 3: Fixed point attractor the condition 6 is violated 
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CONCLUSION 
 

 It was shown that under synchronous updating rule 
such networks converge to a fixed point or to a limit 
cycle of period 2 or 4. The bound of transient length 
was discussed. Conclusions were drawn from the 
simulation studies carried out in support of the results. 
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