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Abstract: Problem statement: Artificial Neural Network (ANN) are simple models fmimic some
essential features of the complex central nervoissesr. ANN models are realistic due to their
inherent stochastic nature of neural computatiah strong synchronicity. Different ANN models are
associated with directed and signed graphs. Thaeptestudy proceeded by relaxing certain
simplifying assumptions in the ANN modéhpproach: It was assumed that the connected graph
associated with the ANN is a multipartite direcggdph whose connection comprising of four blocks
and two blocks are either both symmetric or botth symmetric. The convergence of such network
was studied in the present research with the helpyapunov functionalResults: Attractors (fixed
points) of such ANN and also limit cycles of diféeit orders are investigated. Bounds of transient
length of the neural network were also calculatédmerical simulation in support of the results was
also depicted.Conclusion: It was shown that under synchronous updating rwileh snetworks
converge to a fixed point or to a limit cycle ofripel 2 or 4. The bound of transient length was
discussed. Conclusions were drawn from the sinaatudies carried out in support of the results.

Keywords:. Artificial neural network, asymptotic behavior, ratttors, fixed points, limit cycles,
transient length

INTRODUCTION the network and the accumulated Post Synaptic
o _ Potential (PSP) decays instantly to zero and thkl bu

Artificial Neural Networks (ANN) are simple up of the PSP starts all over again. So the cadleaif
models to capture some essential features of thieate signals, making up the input to a neuron, doegeuity
nervous system. The basic processing unit igepresent a well defined network state in the dyinam
(McCulloch and Pitts, 1943) binary units (or linear gyg|ution of the network.
thr_eshold gate) _Which i_s activated only when the It is known that on the average every neuron
weighted sum of its input is larger than some ol 5o mpts to fire an action potential in every tnitotal

_ B cycle-time, independently of all other neurons. sThi
c-SgnZ W% =) @) implies a mean updating rate is the inverse ofbidwEc
cycle-time. It is difficult to capture such comglied
where the vectow =(w,,..,w,) is a vector of weights dynamics and instead two simplified versions of
representing the strength of n pinging synapses fio neétwork dynamics, namely, synchronous (or parallel)
other neurons with a activatiorx=(x,..,x,)::  and sec;luentlal dynamics. In para_llelddynamlcsc,jRBbé’ A

. on each neuron at time t = n is determine the
x,0{0.1}". 8 is a threshold value. The output of the activation of all other neurons in the time intérvg

network isc = 1 if the formal neuron fires a high 1<t<n. Atthe beginning of each period the neurtants
frequency train of spikes o5 = 0 if it remains fom 4 zero PSP, that is, after every unit of tiale
inactivated. Geometrically (1) says that every ey, tg these resting membrane potential. This tyf
e!emen_tary processor _Of an ANN corresponds to rEjynamics has already been introduced (Caianiello,
dimensional hyperplane: 1961; Amari, 1972; Little, 1974). Such dynamicsliso
very favorite in the study of cellular automata
(Hoffman, 1987). But ANN models are realistic doe t
It is also assumed that a neuron has not fireldimvit their inherent stochastic nature of neural comjmuat

the absolute refractory period, the basic cycleetiofi — and strong synchronicity.

w.x=0
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Different forms of the synaptic matrix give rise t MATERIALSAND MATHODS
different asymptotic dynamics of an ANN under
different updating rule. The computational perfont& The modd: Let 7:{0,4" - {0,}" be a mapping whose
of a network, namely, memory, recall is associatéd
the asymptotic dynamics of the network. There ar&omponent:
three types of basic asymptotic dynamics in an ANN
namely, chaotic, limit cycle, fixed points. ANN meld 0i(,2,...,mE x3{ 01"
may never mimic the richness and novelty of human
cognition under normal or pathological conditiorheT
ANN, however, may be considered as a metaphor for ™*)=[1 if >a;x;—b 20 2
high brain function which can lead to manifestatain '
schizophrenia and mania in such disorder (Littlel an
Shaw, 1978).

In ANN models (Hoffman, 1987) many Where, A = (g is a (nxn) real matrix known as the
simplifying assumptions were made from neuro-connection matrix, @0 means excitatory synaptic
biological perspective. This can be summarized asveight and <0 an inhibitory weight and (bb,...,by)
follows: is a real threshold vector. The synchronous itenati

scheme omtis given by:

n,,...n, are threshold functions:

0 otherwise

(i) Each formal neuron has as many excitatory and
inhibitory synapses emanating from axon X, (t+1)= "(j;au' x(®-b)

(i) Each of the neuron can receive input from every (3)
neuron and can send output to it and each neuro'® = {12,310
does not connect directly to itself

(iil) Symmetric connectivity where,1(x) is the threshold function.

(iv) Updating rule is synchronous/asynchronous Here we have considered the finite neural network

with connection matrix A of the form:

Hopfield (1982) workconsists of modeling of
Associative Memory by neural network. Given a det o A =(Ol P ]
Boolean vector to be memorized, he defines an ANN QO
whose symmetric weights are defined by the Hebbian
rule between patterns. Using the analog with spassgy Where the blocks @nd Q are null matrices and the
problem he proved that such pattern is a fixed poin  blocks P and Q are non null matrices:
the network. He further showed that the sequential Let:
network dynamics is driven by a Lyapunov operator.

In the present study we have relaxed slightly the 11={1,2,....p} I2= {p+1,p+2,...n}
assumptions (i) and (iii). It is assumed that the 5 ={1.2,....,n-p}; = (n-p+1,....n}
connected graph is associated with the ANN is
multipartite directed graph and efficacy of the ayses Such that:
communicating the output neuron j to i is not alaay
equal to the efficacy of the synapse communicatiieg ligla=Elinl=0; o k=1 k=9

output of neuron i as input to neuron j. More pseby

we have considered connection matrix comprising fou We also suppose; b b: ieJ, such that by b,=b

blocks out of which two blocks along with the leind  and h,b,= ¢.

diagonal are null matrices and remaining two blcates

either (i) both symmetric or (i) both antisymmetri | yapunov functional: We introduce here the Lyapunov

The convergence of such network is studied in thdunctional driving the network dynamics. These apmns

present study with the help of Lyapunov functiofiials ~ were first introduced by (Hopfield, 1982) and

shown that under synchronous updating rule sucBubsequently by Goles, (1990); Hoffman, (1987) to

networks converge to a fixed point or to a limitieyof  analyze the fixed point behavior of random seqaénti

period 2 or 4. The bound of transient length isoals iteration of associative network. As for that agglions

discussed. Some simulation results in support of outhe study of synchronous updating rule and of mgmor

results are also included. updating were defined and developed in (Hoffmag;7).9
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RESULTS

So we conclud@Es < 0 andAE<O iff x;(t) # x(t-
2). Therefore Ex(t)) is a Lyapunov functional for the

Case 1: We first consider the case when the non nullgiven dynamics (3) with (4).

blocks P and Q of the connection matrix A are both

Since the network evolves in a finite set {0,1the

symmetric in nature. We can write the blocks P @d synchronous iteration scheme defined by (3) and (4)

in matrix form as follows:
P = (Fﬁ)n-px n_p: |8|2 and EJ]_
Q = (qj)pxp: isll and F‘]Z

The synchronous dynamics given by (3) with the

strictness condition:

> ax (- b # 00l (4)

jel
We define the Lyapunov functional as follows:

E(x(®) == (2% (- 1Y 3 (2% (= 1- 1)

il jel 5
+2.(2b -2 g )@x (- 1+2x (+ 1 1 )

el jel

Now since = 0 Hiel,, jeJ, or Oiel,, jeJ,.
We have:

E,(x() ==Y, (2x (0- 1)) 3 (¢ (- 1 1)

Y @x0-F 3 (2 (- - D

+2.(2h -2 g )@x (M- 1+2x (F 1F 1)

iely jedy

+3(2h - Y g )(2x (O 1+2x (£ 1 1)

izl2 jr,.'ll

Lemma 1: If A be the connection matrix of a neural
network then Ex(t)) is a Lyapunov functional for the

synchronous iteration given by (3) with (4).

Proof: Let:

AE, = E(x(1))-E(X(t-2)-2 x )

iely

X (t-2) Y 3 (2% (- D~

- 22 x (t)l-; (t-2) le a (2x (- 1 1)
+2§:2(xi O -x (t-2) (le - JZJ: a)
+2§ (. (6) = (t- 2)) (2b _é 2)

= -422(xi % (t-2) T a@xt-1-h)

isll jsJZ

converges for any initial configuration in a finite
number of steps to a steady state, that is, tanige fi
cycle. Therefore there exists number p(x) called th
period of the cycle of the network, such that:

X(t+p(x)) = x(t)

Theorem 1. If A be the connection matrix consisting of
the non null blocks P and Q of symmetric in natine
orbit of the synchronous iteration are only fixeair
and /or cycle of length two.

Proof: Let (x(0),...,x(T-1)) is a cycle of period T. Then
E«(x(t)) is necessarily constant for t = 0,...,T-1.TH#2
we have x(2)# x(0), then from the definition of the
Lyapunov functional Ex(2))<Eg(x(1)), which is a
contradiction. Hence the theorem.

Case 2: Next we consider the case when the blocks P
and Q of the connection matrix A are both
antisymmetric in nature and the updation rule iegi

by (3) with (4) with the self-dual condition givéy:

b =33 R +534 ®)

jle jed >

Here also we consider the Lyapunov functional
defined by (5). Now using the self dual condition
defined by (6) the Lyapunov functional takes therfo

E, (X)) =-Y (2x - 1) 3 (2% (= 1) 1)

==Y (2 0-DX g (¢ (- - 1
- @x0-DY 3 (2f (- - 1)
->x0-1Y. 3 (2f (- 1- 1)

iely jedy
- Y (2x0-1Y 3 (2% (- D~ 1)
ir,l2 jr,;l2
Since @= 0 Oiel,, jeJ, or Diel,, jed,.
We have:

E.(x(®) =2 (2x ()- 1 g (2¢ (= 11 1)

el jed,

->@ex0O-DY.5 (@f (- - 1,

iely jedy
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Now we show thaE, (x(t)is Lyapunov functional

when the connection matrix A consists of both
anisymmetric blocks with the synchronous updating

rule:

AE, = E (x(1)- E,(x(t- 1))
=2 (% () +x (t-2)-1)

iely

28 (2% =)= 1= B (x

jedy

+x,(t-2)-1Y 8 (2 (- I 1)
jedy

iel

Since > a; (x ()~ b )# 00l .

jed
We have:

AE,= 0 iff xi(t) # xi(t-2)
and

AE<O iff x;(t) = x(t-2)
Hence we obtained the result.

Theorem 2: If E,(x(t)) be the Lyapunov functional,
then the orbit have a period T = 4.

Proof: Let (x(0),x(2),...,x(T-1)) is an orbit of period T
of the given dynamics theE, (x(t)) = E, is constant for

t=0, ..., T-1. Hence;§&+4) # x(t) for all t. Hence the

orbit have a period T = 4.

Bound to transient length: Since {0,1} is a finite set,
we can bound the Lyapunov functional & the
following way.

Let {x(t)/;=o,.. o3 be a transient trajectory, that is:

X(0)-Xx(1)- ... > X(g-1)-x(q) - ...

where, q(x) is the first vector belonging to theasty
state associated to the initial configuration x(The
transient length of the neural network is definsdtzse
greatest of such lengths. Since in the transieas@hi
is strictly decreasing there exists:

e=kt<g-IpE PO
and since:

> a;x — b # 0forany x{0,3"

jed

We can define positive quantity:
47

e =mind g x- px{0.4"i=12. r
A= S0a

Now:

E,(x() = 2 (B, (x(®); =2 (B (M), +2_ (& (x()))

iel isll islz
Hence we can found the lower bound as follows:

EON =X 1p - 2128-3 p

jedy jedy

216 =228 -3 ¢ |
1531 jEJl
Where:
ip=[i: ied,
{O otherwise
i,=[i: ied,
{O otherwise

E,(x())2IPIF 2][2b- PH [|Q 220 ¢

Where:
P=2%1n

=(1,1,...,1is a constant vector

To get the upper bound as wri(E (x(t))), as
follows:

(Es(x(1); = —2¢ +| Zbl _Z P [+1 29_2 id

jedy jedy

Where:
=i ied

{O otherwise
i,=i: ied,

{O otherwise

E, (x()<-2) g+ [12p- P 120 Q

il

Since in the
functional E is decreasing:

E,x(®)< E,((t-1)- es E (x(O))- te

Hence fort=q:

transient phase the Lyapunov
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E, (x(a)) < E, (x(0))- ge with threshold vector b = (2,3,1,4.1,5.3). The aattor
N 2 set consist of two fixed points namely (00000) and
=PI 2]l2b- PH| |[G 2[L,2b Q1| (011001) (Fig. 1a and b):
<E(x(0))- ge
- 2 Let:
=qes- e+ (312~ P 126 QLI 00 0 1 3
+IPlQll 0 0 -1 0 3
Ogs@/e)-D e+ 3(2- PH |26 Q1 A=[0 0 -2 -3 0
+HIPIE QD 010 00
-1 0 0 0 O

DISCUSSION

with threshold vector b = (1.5,0.5,-2.5,0.5,-0.5).
Let: The attractor here is unique limit cycle of length
four for every initial configurations (Fig. 2). THenit

0 0 03 4 cycle is (00001~ 11101, 11110 0001.
0 0 301 If condition (6) is violated the nature of attraicts
The connection matrix |0 0 4 1 0 also changed (Fig. 3).
0 -1 00 O
(01001) (01100)
-1 00 0O (01101)

o1 (01000)

(01001)

(000013 (01110}

,11001} 01011y« (11011) (00011)
L

(10001)

(00001}

(00000)
(10111)
. (10011)*
(11000) - (01000) ' (10101)* /
(00000) (10001) (10100)

(10000)

Fig. 1a: Convergent dynamics (00000) as fixed poin

when both P and Q are symmetric in nature ‘:ig. 2: Limit cycle with period 4 when condition i§

satisfied

11010011

(11110
(11111)

(01010} 4(00010) (01001) 19000y

(00010)
(01111) (0101D)

(uﬂ?Dlm 00101
/(01110?

) (11111
(01101) (01101 (10110) (10100 (10001)
( ( (00110) (10000)
©01011) (10101) (00100) / /j/
(10110) (10011) (11010) 110010 711110)
(11010) - ’
( (001101) ’01100}/ \\ \ (11000)
' (10111) . AT100)
(01010) oD [ (11001)

o110y (11 (10101)
(10111)

(01000)

(10011) 01101

(00100)

(00011) s
(10010)
(01100)

Fig. 1b: Convergent dynamics (01100) as fixed point
when both P and Q are symmetric in nature  Fig. 3: Fixed point attractor the condition 6 ishated
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CONCLUSION Little, W.A., 1974. Existence of persistence staites
brain. Math. Biosci., 19: 101-120.
It was shown that under synchronous updating rule  http://www.ams.org/tran/1998-350-12/S0002-
such networks converge to a fixed point or to aitlim 9947-98-02083-2/S0002-9947-98-02083-2.pdf
cycle of period 2 or 4. The bound of transient tang Little, W.A. and G.L. Shaw, 1978. Analytical study
was discussed. Conclusions were drawn from the the memory storage capacity of a neural network.

simulation studies carried out in support of theutts. Math. Biosci., 39: 281-290.
http://www.ams.org/tran/1998-350-12/S0002-
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