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Abstract: The need for an accurate reasoning algorithm is usually 
necessitated by the sensitivity of domain of (medicine as example) 
application of such algorithms. Most reasoning algorithms for medical 
diagnosis are either limited by their techniques or accuracy and efficiency. 
Even the Select and Test (ST) algorithm which is considered a more 
approximate reasoning algorithm is also limited by its approach of using 
bipartite graph in modeling domain knowledge and making inference through 
the use of orthogonal vector projection for estimating likelihood of diagnosis 
at the clinical decision stage (induction). While the bipartite graph knowledge 
base lacks n-ary use of predicate on concepts, orthogonal vector projection on 
the other hand has high computation for the inference process. The aim of 
this paper is to enhance ST algorithm for improved performance and 
accuracy. First, we propose the use of ontologies and semantic web based 
rule for knowledge representation so as to provide support for inference 
making. Furthermore, three major improvements were added to ST algorithm 
to aid the improvement of its approximation. Secondly, we designed an 
inference making procedure to enable interaction with the knowledge base 
mentioned earlier. Thirdly, we model Hill’s Criteria of Causation into clinical 
decision stage of ST to overcome the limitation of orthogonal vector 
projection. Lastly, the improved ST algorithm was largely represented and 
described using set notations (though implemented as linked-list and queues) 
and mathematical notations. The result of the improved ST algorithm 
revealed a sensitivity of 0.81 and 0.89 and specificity of 0.82 and 1.0 in the 
Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic 
Breast Cancer (WDBC) datasets respectively. In addition, the accuracy 
obtained from the proposed algorithm was 86.0% and 88.72% for the 
Wisconsin Breast Cancer Database (WBCD) and Wisconsin Diagnostic 
Breast Cancer (WDBC) datasets respectively. This enhancement in accuracy 
was obtained at a slowdown time due to the reasoning process and ontology 
parsing task added to the enhanced system. However, there was an 
improvement in the accuracy and inference power of the resulting system. 
 

Keywords: Reasoning Algorithm, Medical Expert Systems, Rule 
Language, Ontologies, Inference Making, Rule Set and Diagnosis 

 

Introduction 

Reasoning applies logic (rule application) to a given 
algorithm to arrive at a goal or desired end. While 
reasoning is being carried out, inference making is also 
being tended towards. Chakraborty (2012) gave some 

definitions to reasoning as follows: The act of deriving 
conclusion from certain premises using a given 
methodology; process of thinking; logically arguing. 
Similarly, reasoning is to draw inferences appropriate to a 
given situation (Copeland, 2014). There are different 
methods of reasoning which includes: Deductive, 
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inductive, abductive, analogical, formal, procedural 
numeric, generalization, abstraction and meta-level 
reasoning. As expected with any system, reasoning 
algorithms continue to play significant roles, however, 
they are limited by capability and functionality 
(Chowdhury and Sadek, 2012). Clinical reasoning, which 
is a form of reasoning, is the process of reasoning through 
clinical findings over symptoms/manifestations presented 
by patient, with the aim of making clinical decision to 
identify an appropriate diagnosis. This reasoning process 
consists of the two stages of clinical diagnoses process 
(clinical findings and decision making) which when 
omitted in clinical reasoning algorithm design, can 
adversely affect the approximation and accuracy of the 
algorithm (Fernando and Henskens, 2013; Ramoni et al., 
1992). Furthermore, in (Fernando and Henskens, 2016), 
the authors improved on (Fernando and Henskens, 2013) 
through the use of bipartite graph in modeling domain 
knowledge and making inference through the use of 
orthogonal vector projection for estimating likelihood of 
diagnosis in the clinical decision making process. 

The major contribution of this paper is an enhanced 
medical reasoning algorithm base on Select and Test 
(ST) algorithm for improved performance and accuracy. 
The first approach taken in this paper to achieve the 
enhancement involved the use of ontologies and 
semantic web based rule languages for knowledge 
representation. Also, three major improvements were 
added to ST algorithm to aid the improvement of its 
approximation. Secondly, we designed an inference 
making procedure to enable interaction with the 
knowledge base mentioned earlier. Thirdly, we model 
Hill’s Criteria of Causation into clinical decision stage of 
ST to overcome the limitation of orthogonal vector 
projection. Fourthly, the improved ST algorithm was 
largely represented and described using set notations 
(though implemented as linked-list and queues) and 
mathematical notations. The rest of the paper is organized 
as follows: Sections II and III, we present an overview of 
clinical reasoning and some related literatures on clinical 
reasoning algorithms respectively. In section IV, we 
presented a theoretical approach for defining ONCOb-
ST algorithm and in section V the algorithm was 
presented. Furthermore, sections VI and VII present both 
the knowledge representation and reasoning pattern of 
ONCOb-ST and its implementation. Finally, section VIII 
lists the result of the experiment and concludes with a 
discussion. In section IX, we conclude the paper. 

An Overview of Clinical Reasoing 

Clinical reasoning algorithms may be categorized 
into three: Probabilistic, model based and rule based. 
Some of these algorithms are listed and described briefly 
in this paragraph. Scheme inductive reasoning which is 
based on adding characteristics of syndrome to narrow 
the list of potential diagnoses (Anderson, 2006). In 
scheme inductive reasoning, schemes are drawn to 

resemble that of road maps. It helps clinicians break down 
information into chunks, storing them in their memory and 
then retrieving them subsequently for problem solving 
task. Another example is pattern recognition, which is 
used in machine learning for assigning some outputs to 
some inputs based on the coordination of a given 
algorithm (Umoh et al., 2012). Similarly, hypothetico-
deductive reasoning involves the self-reflection and 
informed clinical decision making process of generating 
and testing hypotheses in association with the patient’s 
presenting symptoms and signs (Kumar et al., 2013). 
Forward chaining system, involves writing rules to 
manage sub goals. Whereas, backward chaining systems 
automatically manage sub goals (Sharma et al., 2012). 
Forward reasoning is efficient and fast, backward 
reasoning can be employed to resolve the conflict between 
two competing hypotheses. A combination of the two 
reasoning method – backward and forward – with 
increased experience leads to increased coordination of 
hypothesis and evidence (Hardin, 2002). Fuzzy logic 
based clinical reasoning algorithm uses linguistic variables 
to represent operating parameters in order to apply a more 
human-like way of thinking (Torshabi et al., 2013). 
Although fuzzy logic performance is limited by data 
clustering for membership function generation, processing 
model for diagnostic reasoning (Stausberg and Person, 
1999). Furthermore, ST algorithm earlier described, is 
considered to be the most approximate (Fernando and 
Henskens, 2013; 2016) medical reasoning algorithm. 
Moreover, other clinical reasoning algorithms like 
Parsimonious Covering Theory (PCT) works on the 
basis of associating a disorder to a set of manifestations. 
It uses two finite sets (disorders and manifestations) to 
define the scope of diagnostic problems (Wainer and 
Rezender, 1997); Certainty Factor (CF), which is used 
for managing uncertainty cases in a rule, based system 
(Heckerman, 1990) and can be interpreted as measures 
of change in belief within the theory of probability 
(Heckerman and Shortliffe, 1992); Bayesian networks 
(uses probabilistic approach) are oriented acyclic graphs 
consisting of nodes (circles), which represent random 
variables; arcs (arrows), which represent probabilistic 
relationships among these variables (Gadewadikar et al., 
2010) which helps in dealing with uncertainties.  

Related Works 

In this section, we review some related works on 
reasoning algorithms. Though, these reasoning 
algorithms have different domain of applications. This 
paper compares their efficiency by concentrating on their 
reasoning structures. 

Fernando and Henskens (2013), the author described 
the approach for clinical diagnostic reasoning based on 
ST Algorithm model which was earlier introduced in 
(Shortliffe and Fagan, 1985). The author adduced the 
fact that most of the algorithms discussed in the previous 
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paragraph are lacking accuracy in their diagnostic 
approximation result. Hence, they showed that their 
approach of using ST algorithm in medical diagnostic 
reasoning yields an approximate reasoning model. The 
author in (Croskerry and Nimmo, 2011) presented two 
models for performing clinical diagnosis. These models 
are intuitive and analytical reasoning based on dual 
process theory. This decision making model combines 
these two models by seeking to recognize patient input 
as a pattern. If the pattern is formed, then the intuitive 
mode is used, but when the pattern is not recognized, the 
slow analytic model is used. In addition, one of the 
authors in (Croskerry and Nimmo, 2011) shows that the 
dual process theory that is based on intuitive and 
analytical models can be used to explain how diagnostic 
error occurs (Croskerry, 2009). Chapman et al. (2006), a 
decision making algorithm for clinical diagnosis was 
presented. The algorithm uses the two stage of performing 
diagnosis: Medial inquiry and clinical decision making. 
The emergency medicine based algorithm also makes 
provision in identifying likely errors at the medial inquiry 
and clinical decision making.  

A research work on application development in 
diagnosis and monitoring of health issues in patients was 
done by (Yinyeh and Alhassan, 2015). The authors 
developed a simple medical expert system that can 
diagnose common ailments and also to provide medical 
professionals with information about diseases. Fuzzy 
systems have been developed in providing solutions in 
medical diagnostic reasoning as in the case of 
(Awotunde et al., 2014). The authors developed a 
diagnostic system using fuzzy logic. They achieved this 
through the formulation of three mathematical models, 
with the assistance of medical professionals. In addition, 
they created a fuzzy rule base for diagnosing malaria- 
which was the aim of the fuzzy diagnostic application. 
Steps in clinical reasoning model consists of: Cue 
acquisition; cue clustering; cue interpretation, generating 
multiple hypotheses; focused cue acquisition; ruling in 
and ruling out hypotheses; making a diagnosis; evaluate 
treatment options relevant to the diagnosis; prescribe 
and/or Implement treatment plan and evaluate treatment 
outcomes (Jefford et al., 2011). Parsimonious covering 
theory which seeks to carry out medical diagnosis base 
on the relationship that exist between a finite set of some 
disorders (causes) and manifestations (effects), is another 
medical reasoning algorithm used by (Wainer and de 
Melo Rezende, 1997) to accommodate the association of 
time appearances of manifestations to their 
causes/effects. The authors used this improved model to 
diagnose food-borne disease. 

Machine Learning (ML) algorithms have also played 
impactful role in sustaining high performance and 
accuracy of medical diagnoses in cases like breast 
cancer. Appproaces like comparing the performance of 
classification algorithms (Bayesian Network, Naïve 
Bayes, Decision trees J4.8, ADTree and Multi-layer 
Neural Network) for prediction of ailements/disease like 

breast cancer (Aloraini, 2012) have being used enhance 
accurcy. Similalrly, (Agarap, 2018) have also compared 
other comibination of ML like GRU-SVM, Linear 
Regression, Multilayer Perceptron (MLP), Nearest 
Neighbor (NN) search, Softmax Regression and Support 
Vector Machine (SVM) to move-up the accuracy of 
medical diagnoses. A different approach was a technique 
on improving and prunig diagnosis rule (Setiono, 2000), 
while others like (Andres et al., 1999; Nabil et al., 2008; 
Alharbi and Tchier, 2016) employed the use of fuzzy 
models and genetic algorithms. This hybridization of 
fuzzy models and genetic algorithms is usally aimed at 
attaining high classification performance which yields 
simple expert systems with few rules. However, the 
argument of this paper is that the performance of such 
approaches are psudoe-like considering the limitations of 
the underlying techniques. Our crticsism is based on the 
weakness of the techniques used. We therefore present a 
systematic multiple inference models with rule sets 
developed with medical experts for improved performce 
and accuracy of breast cancer diagnoses.  

Theoretical Description of the Proposed 

Select and Test (ST) Algorithm 

The ST Model describes a cyclic process which uses 
the logical inferences of abduction, deduction and 
induction procedures in carrying out medical diagnostic 
reasoning. By convention, two stages of reasoning are 
considered when performing medical diagnoses and 
these are clinical findings and clinical decision making 
process. ST algorithm’s design is based on these two 
reasoning process, resulting in the desired approximation 
capability of the algorithm (Fernando and Henskens, 
2013). In this section, a theoretical approach is used to 
describe the propose ST algorithm. Furthermore, a 
model for abstracting patient’s inputs (symptoms) 
through the mapping of patient’s term with acceptable 
medical term is also described in theory (though 
exhaustively treated in (Oyelade et al., 2017a)).  

A. Mapping Patient’s Input to Medical Knowledge 

The formalized input model in (Oyelade et al., 2017) 
first collects raw input (r) - patient’s description of 
manifesting symptoms in his/her own vocabulary - 
during a clerking section with the patient. Taking 
advantage of python’s capability in natural language 
processing, r is tokenized and lemmatized accordingly 
thereby resulting in an array of terms (t). Furthermore, 
the synonyms and hyponyms of t are then compiled 
using the python libraries and stored as patient’s 
supposed input collection (c). Finally, c is syntactically 
and semantically matched against a breast cancer lexicon 
KBl in (Oyelade et al., 2017b), to produce the list of 
acceptable medical tokens (inputs) oncoTokens – words 
associated with breast cancer diagnoses and treatment. 
Hence the mathematical model in Equation 1: 
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( ):oncoTokens KBl c r= − ←   (1) 

 
B. ST Inference Structures 

The reasoning structures of ONCObc-ST consist of 
four levels of sub-modules: Abstraction, abduction, 
deduction and induction. The abstraction level 
conceptualizes the collection of oncoTokens into the ST 
algorithm. The items in oncoTokens are then assigned to 
the set Presenting Symptoms (PS) and Symptoms Found 
(SF) as model by Equation (2): 
 

: :PS SF oncoTokens= =   (2) 
 

Also, in Equation (3), the abduction inference 
generates a set D of differential diagnoses by listing di 
that is associated with each s in SF. Assume that both the 
knowledge base and rule set of abduction are KBa and Ra 
and also assume we denote the process of invoking the 
rule by the function apply(): 
 

( ){ }| , ,
i a a

D d apply SF KB R∈   (3) 

 
Furthermore, all the symptoms (combined in set M) 

of each d in the set D of differential diagnoses are 
generated in deduction reasoning/inference process. This 
is captured in Equation (4): 
 

( ){ }| , ,
i d d

M m apply D KB R   (4) 

 
Equations (3), (4) and (2) are executed in a cyclic 

pattern accordingly. Finally, the induction inference 
process determines all diagnosis (ld) from the set D, with 
likelihood values higher than (or equal to) a given 
threshold as captured in Equation (5): 
 

( )( ){, ,

yields

i icriteria apply D KB R d ld→  (5) 

 
While the abstraction, abduction and deduction stages 

are being redesigned to handle the clinical findings 
procedure in a cyclic pattern, the induction layer handles 
the clinical decision making process and are all further 
detailed in section V. 

C. Knowledge Representation in SEM-ST 

It will be observed that four different knowledge 
bases KBl, KBa, KBd and KBi were mentioned between 
Equations (1) to (5). Also, rule sets R, Ra, Rd and Ri 

were also correspondingly applied to their respective 
knowledge bases. The design of the knowledge bases 
and the rules and their applications are further in 
detailed in section VI. 

V. ONCObc-ST Algorithm 

The last section presented an abstraction of the 
improvement to ST algorithm this paper proposes. In 
this section, the process of inference making in 
medical diagnostic reasoning are detailed using 
algorithmic approach.  

A. Abstraction  

The process of mapping descriptive terms that are 
understood by patients onto well-defined symptom 
entities used in the knowledgebase is known as 
abstraction. In Algorithm 1, manifestations and 
symptoms felt by patient are collected. Practically, these 
could be sourced from patient’s file, through interaction 
with patient, family history and other means. However, 
this paper depends on the human medical experts in the 
domain of consideration to help map information elicited 
through a model designed by these authors in (Oyelade 
et al., 2017a). Afterward, the result of such mapping 
forms the elements of the set PatientProfile which now 
serves as a major input into ONCObc-ST. Furthermore, 
each symptom s in SymptomsToBeElicited is check 
against the set PatientProfile to ensure it was elicited 
from patient, before adding it to another set 
SymptomFound. Thereafter, s is removed from 
SymptomsToBeElicited now considered treated by 
adding it to SymptomsAlreadyElicited. 
 
Algorithm 1: Modified abstraction module of ST 
algorithm  

// Algorithm 1 
Abstract(){ 
PatientProfile ← SymtomsFound 
For each s ∈ SymptomsTobeElicited { 
 if s ∈ PatientProfile, add s to SymptomsFound. 
 remove s from SymptomsToBeElicited 
 Add s to SymptomsAlreadyElicited 
 } 
} 
 
B. Abduction 

The set SymptomFound populated in Algorithm 1 
is now an input into Algorithm 2. Meanwhile, rule set 
and ontology developed in (Oyelade et al., 2017b) by 
this authors are also provided for Algorithm 2. The 
overall aim of this logical inference making is to get all 
the diagnosis related to some given symptoms. It 
involves determining all likely diagnoses related to the 
reported symptoms. These differential diagnoses are 
generated by finding all related diagnosis with respect to 
each s in SymptomFound. During this process, the 
algorithm checks if s is related to a diagnosis d by a 
predicate P in the ontology, then using the rules and 
diagnostic rule engine (practically using JESS (2015)), it 
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checks the possibility of s causing d. if that causal 
property holds d is added to a set called diagnoses. 
Furthermore, each differential diagnoses in the set 
diagnoses is checked if probability of causation is 
greater than or equal to a specified threshold, then such 
diagnosis d is added to the set DiagnosesToBeElicited. 
 
Algorithm 2: Modified abductive module of ST 
algorithm  
//Algorithm 2 
Abduct(){ 
ar ← AbductionRuleSet 
akb ← AbductionKB 
diagnoses ← Ø 
for each s ∈ P(s|d) in akb{ 
   isCasual   ← diagnosticReasoner(d, ar, s) 
  if isCadual 
      diagnoses  ← d 
} 
 for each di in diagnoses 
       where p (di | S) ≥ tD  { 
   if di E/ DiagnosesBeElicited AND  
          di E/ DiagnosesAlreadyElicited, 
 add di to DiagnosesToBeElicited 
 
     } 
 
  } 
 
} 
 
diagnosticReasoner(d, ar, s){ 
    for each rulr in ar 
      diagnoses   ← invoke rule using s ad parameter 
      if d in diagnoses 
        return true 
      else 
        return false 
 
} 
 
C. Deduction 

For each likely diagnosis from the previous stage, all 
the expected symptoms of such diagnosis are drawn out 
based on a logical inference method. In Algorithm 3, 
modeling deduction inference process requires that both 
its rule and ontology be provided. If we can deduce that, 
for each d in differential diagnoses stored in 
DiagnosesToBeElicited, there is an association with 
some s and then get each symptom known to relate with 
d and store them in set symptoms. Afterward, each s in 
symptoms is added into a collective set 
SymptomsToBeElicited. Meanwhile, note that the 
deductive reasoning processing is practically aided by 
using pellet (Sirin et al., 2007). 

Algorithm 3: Modified deductive module of ST algorithm 
//ALGORITHM 3 
Deduct () { 
 for each d ∈ DiagnosesToBeElicited { 
  dr ←  DeductionRuleSet 
  dbk ← DeductionKB 
  symptom ← Ø  

if deductionReasoneer(d, dr, dkb ) { 
 symptoms ← get all 

symptoms from dkb relting to d 
 for each sj ∈ symptoms where 

(sj|d) > tD { 
if sj E/  

symtomsFound AND sj E/  
SymptomsAreadyElicited 
   add sj to 

symptomsToBeElicited. 
  } 
  remove d from 

DiagnosesToBeElicited 
  add d to 

DiagmosesAlreadyElicited 
 } 
} 

} 
deductionReasoner(d, dr, dkb){ 
 load reasoner pellet 
 reason over dkb  
 if inferred instance in dkb 
  return true 
 return false 
} 
 
Algorithm 4: Modified inductive module of ST algorithm  
//ALGORITHM 4 
Induct() { 
 for each d  ∈ DiagnoseAlreadyElicited{ 
  criteria ← computeHillsCriteria(d)  
  SymptomsFoundWeight ← Ø 
  SymptomsWeight ← Ø 
  weight ← 

( ) ( )( )
0

_

n

j jj
factor s manifestion factor s

=

∗∑     

  symptoms_standard_weight 

( )( )
0

1.0
n

jj
factor s

=

∗∑  

  add pair(s1, weight) to 
symptomsFoundWeight 

add pair(s1, 
symptom_standard_weight) to 
symptomsWeight 

if weight <= 
symptoms_standrdd_weight 

 criticalityd  ← weight/n 
if criteria 
 add d to DiagnosesIncluded 

and save criticilatyd  

else 
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 add d and criticalityd  to 
DiasnosesExclulded 

} 
computeHillsCriterias(d){ 
       ir ← InductionRuleSet 
       ikb ← InductionKB 
 temporalCriteria ← prompt user if exposure 

precedes the diseases 
 bioPlausibleCriteria ← does disease cause relate to 

lab findings  
       coherenceCriteria ← does ikb relate to lab findings 
       consistencyCriteria  ← does ikb relate to lab 
findings 
       if temporalCriteria AND bioPlausibleCriteria 
 AND coherenceCriteria AND consistencyCriteria 
 return true 
return false 
} 
 
D. Induction 

Abduction-deduction-abstraction forms a cyclic 
pattern which performs the process of clinical findings – 
it carries out differential diagnoses. The result of the 
cyclic refinement of likely diagnoses is stored in a set 
DiagnosesAlreadyElicited. The aim of inference by 
induction involves matching the acceptable criteria of 
each diagnosis in DiagnosesAlreadyElicited with their 
corresponding criteria according to standards or clinical 
protocols. This will enable the reasoning process isolate 
diagnoses with most likelihood of existence in patient, 
based on manifestations and symptoms presented – a 
process called clinical decision making. Meanwhile, the 
criticality of each d in DiagnosesAlreadyElicited is 
computed by the weight of the presented symptoms by 
patient against the weight of all symptoms known with d. 
This criticality models a form of staging of the 
disease/diagnosis d. 

Now, on how the criteria computation described 
above works, this paper used Hill’s Criteria of Causation 
(Lucas and McMichael, 2005) to standardize the process 
of checking the criteria of ailment/diagnosis at the 
induction reasoning. Here are the definitions of each 
criterion and their application in Algorithm 4.  
 
a. Temporal Criteria: We seek to know if exposure 

precedes the disease. Time must have elapsed 
between exposure and manifestation of disease 

b. Biological Plausibility Criteria: We seek to find 
out if causes can be biologically traced to disease 

c. Consistency Criteria: Coherence between 
epidemiological and laboratory findings increases 
the likelihood of an effect. However, lack of such 
laboratory evidence cannot nullify the 
epidemiological effect on associations 

d. Coherence Criteria: Consistent findings observed by 
different persons in different places with different 
samples strengthens the likelihood of an effect 

 
The implication rule below shows how the induction 

logical inference stage carries out its conclusion of 
suggesting a diagnosis to have met the acceptable 
criteria. The parameters of rule are drawn from the input 
of the three background process shown in Table 1: 
 

[ ]( )

[ ]

1.0
COHERENCE

temporal bio consistency

coherence CRITERIA

criteriais satisfied

∧ ∧ ∧ 
 

≥ ±  

→

 

 
where, temporal associates time between exposure to 
causal-effect and manifestations, bio is a variable that 
gives pointer biological authentication of the disease, 
consistency variable in equation above holds the degree 
at which the findings of disease being diagnosed 
correlates with epidemiological knowledge. Finally, the 
coherence value is what a medical expert submits as 
authentication to the reasoning algorithm when presented 
with the outcome of the reasoning process.  

E. The Complete ONCObc-ST Algorithm 

The ONCObc-ST algorithm now combines the four 
algorithms described above to achieve the process of 
medical diagnostic task. Note that the technique for 
designing this algorithm is the brute force/exhaustive 
search technique and the algorithm specification taking 
the form of pseudocode and the use of mathematical 
notations. Algorithm 5 lists the expected input into the 
algorithm and the prospective output as well. Within 
the body of the algorithm are sets initially declared as 
empty. Meanwhile, before the call to the Abduction(), 
Deduction() and Abstraction() sub-modules, the 
SymptomsAlreadyElicited and the SymptomsFound 
sets are populated by the PresentingSymptoms set 
which itself derives its elements through the input 
model in (Oyelade et al., 2017a). 
 
Algorithm 5: Modified combined ST Algorithm 
//ALGORITHM 5 
Inputs: 
A special graph of ontologies P (sj|sj) and P (d1|sj): 
AbductionKB 
A special graph of ontologies P (sj|sj) and P (d1|sj): 
AbductionKB 
A special graph of ontologies P (sj|sj) and P (d1|sj): 
AbductionKB 
A presenting symptoms set PresentingSymptoms 
Profile of the patient PatientProfile 
Threshold for symptoms ts 
Threshold for diagnoses tc 

A set of rules for reasoning at abduction: 
AbductionRuleSet  
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A set of rules for reasoning at deduction: 
DeductionRuleSet  
A set of rules for reasoning at induction: 
InductionRuleSet  
Output: 
Set of likely diagnoses DiagnosesIncluded 
Set of diagnoses excluded, DiagnosesExcluded 
Set of symptoms that were found in patient 
SymptomsFound 
Set of symptoms that were not found in patient 
SymptomsNotFound 
 
Begin 
SymptomsFound = ∅ 
SymptomsToBeElicited = ∅ 
SymptomsAlreadyElicited = ∅ 
DiagnosesToBeElicited = ∅ 
DiagnosesAlreadyElicited = ∅ 
 
For each s ∈ PresentingSymptoms { 
 Add s to SymptomsAlreadyElicited; 
 Add s to SymptomsFound; 
 For each d1 where P (d1|s) ≥ tD OR C (d1) ≥ tc { 
  Add d1 to DiagnosesToBeElicited; 
 } 
} 
While (DiagnosesToBeElicited ≠ ∅ AND 
SymptomsToBeElicited ≠ ∅) { 

  Abduct(); 
  Deduct(); 
  Abstract(); 
} 
Induct(); 
End  
 
Knowledge Representation for ONCObc-ST 

Recall that in section III, sub sections B and C, we 
modeled and abstracted away some key information of 
the knowledge base for the propose ONCObc-ST 
algorithm. Though the knowledge representation will be 
explained further in this section, however the detail of 
both implementation and content of the knowledge base 
are in (Oyelade et al., 2017b). 

The concept of knowledge base as used in this 
paper consists of both the body of knowledge in a 
particular field of medicine (oncology – breast cancer) 
and the procedures or guidelines for diagnosing. 
These two notions are henceforth referred to as 
relation of concepts (data or entities) in ontology 
forms and rules respectively. Figure 1 therefore is an 
illustration of this view of the knowledge 
representation in this paper. Oyelade et al. (2017b), the 
related concepts were implemented as OWL files and 
the protocols/rules were modeled using two semantic 
web based rule languages (SWR and JESS) in a 
separate paper (Oyelade and Adewuyi, 2018).   

 
Table 1: The comparison table of the results of WBCS and the ONCOBC-ST algorithm 

 WBCS  ONCObc-ST 

 --------------------------------------------------------- ------------------------------------------------------- 

No. Instances Benign Malignant Not-Breast Cancer Breast Cancer 

100 56 44 67 33 

200 116 84 139 61 

300 163 137 191 109 

400 229 171 266 134 

500 303 197 343 157 

600 380 220 424 176 

699 458 241 513 186 
 

 
 

Fig. 1: Model of knowledge representation for ONCObc-ST 

KBR 

Data 

(ontologies) 
Rules 

Induction 

Ontology 
Induction rule 

Deduction 

Ontology 
Abduction 

Ontology 
Deduction rule Abduction rule 
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Let the knowledge representation in Fig. 1 be denoted 
by the tuple in Equation (6): 
 

,KBR tuple OntoOnco RulesOnco= < >  (6) 
 

Also, let’s assume OntoOnco and RuleOnco are sets 
whose elements are also set of other items as shown in 
(7) and (8): 
 

{ }, ,

a d i
OntoOnco KBl KB KB KB=   (7) 
 

{ }, , ,

a d i
RuleOnco Rl R R R=   (8) 
 

Note that KBl, KBa, KBd and KBi are the knowledge 
bases of the breast cancer lexicon, abduction, deduction 
and induction inferences respectively. Furthermore, the 
Rl, Ra, Rd and Ri are all rule sets for matching input 
with lexicon, abduction, deduction and induction 
inferences respectively. Recall that KBa, KBd and KBi 

were read into Algorithm 5 and used within its sub-
modules. This is also similar for the cases of Ra, Rd and 
Ri. Meanwhile, the ontologies represented by KBa, KBd 
and KBi are representations or formal naming of 
relations or properties P of concepts, data or entities 
(like diagnosis and symptoms) that substantiate or 
domain of breast cancer knowledge. Therefore, our 
KBa, KBd and KBi are simply listings of P(d|s) or P(s|d) 
depending of the relation and were both d and s 
represents elements from disease/diagnosis and 

symptoms respectively. Finally, we modeled each 
ontology file in OntoOnco using Protégé editor and Rl, 
Rd and Ri where modeled with Semantic Web Rule 
Language (SWRL) while Ra was model with JESS rule 
language JESS-RL. The application of the rules written 
in SWRL was applied using Pellet while that of JESS-
RL was applied using Java expert system shell (JESS).  

Implementation and Result Presentation 

The implementation of the Algorithm 5, described in 
section IV, was achieved using Java programming 
language as shown in Fig. 2. The datasets used, which 
are discussed further in the next section, consists of 
Wisconsin datasets WBCS, WDBC and WPCS. We have 
earlier mentioned a formalized input model, capable of 
serializing patient’s input into acceptable medical tokens, 
designed by these authors in (Oyelade et al., 2017a). 
However, when testing this implementation of the 
proposed Algorithm 5, a benchmark dataset, the 
Wisconsin datasets were used. This datasets were 
serialized and passed as input into Algorithm 5. In the 
output section of Fig. 2, we will notice that the result of 
criticality of the resulting diagnosis is shown. Also, the 
staging of the breast cancer diagnosis was staged at 
Stage 3A. Finally, the implemented algorithm also 
suggests to the patient action to take for treatment. 
The output in Fig. 2 suggested the patient undergoes 
surgery and radiotherapy with chemotherapy. 

 

 
 

Fig. 2: Implementation of the improved ONCObc-ST algorithm 
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A careful consideration was carried out in selection 
of metrics for quantifying the accuracy of diagnoses 
process in this paper. These metrics were chosen base on 
standards adhered to when measuring diagnostic 
accuracy, moreover, (Fernando and Henskens, 2016) 
also used some of these parameters in measuring the 
accuracy of their algorithm. In (Šimundić, 2008), the 
author stated that diagnostic accuracy of any diagnostic 
procedure or a test gives us an answer to the following 
question: How well this test discriminates between 
certain two conditions of interest (health and disease)? It 
is this discriminative ability that this paper quantifies by 
measuring diagnostic accuracy: 
 
a. Sensitivity: =TP/(TP + FN)  
b. Specificity: =TN/(TN + FP) 
c. Accuracy = (TN + TP)/(TN + TP + FN + FP) 
 

Sensitivity, specificity and accuracy are described 
in terms of Number of True Positive assessment (TP), 
Number of True Negative assessment (TN), Number 
of all False Negative assessment (FN) and Number of 
all False Positive assessment (FP). A good diagnostic 
test has LR+ > 10 and LR-< 0.1. By the standard of 
accessing the values of AUC with respect to 
diagnostic accuracy, values ranging between 0.9-1.0 
are judged to excellent, 0.8-0.9 is very good, 0.7-0.8 
is good, 0.6-0.7 is sufficient, 0.5-0.6 is bad and 
anything less than 0.5 is considered a diagnosis that is 
not useful. Note that TPR means true positive rate and 
FPR also means false positive rate. 

In this paper, definitions of TP, TN, FP and FN are as 
follows: 

a. TP: What was found during elicitation from patient 
(denoted by variable symtomsFound) and proven 
present by the inference process (denoted by the 
variable inferedSymptoms) 

b. TN: What was found absent during elicitation from 
patient (denoted by variable symtomsFound) and 
proven absent or unavailable by the inference process 
(denoted by the variable inferedSymptoms) 

c. FP: What was found present during elicitation from 
patient (denoted by variable symtomsFound) and 
proven absent or missing by the inference process 
(denoted by the variable inferedSymptoms) 

d. FN: What was found missing or absent during 
elicitation from patient (denoted by variable 
symtomsFound) and proven present by the inference 
process (denoted by the variable inferedSymptoms) 

 
Let user input be denoted by UI, inferred knowledge 

be denoted by KI and the entire knowledge base be KB. 
Then base on the definitions (a)-(d), the following sets 
are obtainable: 
 
• FN = count(M) {x∈M|x ∈⌐ UI ^ x∈KI} 
• TN = count(M) {x∈M|x∈ ⌐ UI ^ x∈⌐ KI} 
• FP = count(M) {x∈M|x∈UI ^ x∈⌐ KI} 
• TP = count(M) {x∈M|x∈UI ^ x∈KI} 
 

The WBCS dataset has 699 instances and WDBC has 
559 instances totaling 1258 instances used as participants 
in the testing. However, for clarification purpose, these 
total participants are categorized according to their 
datasets. Tables 1 and 2, shows the result of diagnosis for 
the participating instances in each category. 

 
Table 2: The Comparison Table Of The Results Of WDBC And The ONCObc-ST Algorithm 

 WDBC  ONCObc-ST 

 ----------------------------------------------- ---------------------------------------------------------- 

No. Instances Benign Malignant Not-Breast Cancer Breast Cancer 

100 35 65 61 39 

200 96 104 118 82 

300 154 146 171 129 

400 227 173 219 181 

500 305 195 259 241 

559 353 206 290 269 

 

Table 3: The comparison table of the results of WDBC and the ONCObc-ST algorithm 

Metrics ONCObc-ST WBCS ONCObc-ST WDBC 

Positive 186 241 269 206 

Negative 513 458 290 353 

True Positive 241 241 206 206 

True Negative 458 458 290 353 

False Positive 55 0 0 0 

False Negative 55 0 63 0 

Sensitivity 0.81 1.0 0.82 1.0 

Specificity 0.89 1.0 1 1.0 

Accuracy 86% 100% 88.72% 100% 
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Table 4: Overall performance measure of breast cancer diagnostic algorithms 

Authors/Year Algorithms used Category of machine intelligence Accuracy 

Aloraini (2012) Bayesian Network, Naïve Bayes, Machine learning (ML) 95.6% 

 Decision trees J 4.8, ADTree and 

 Multi-layer Neural Network 

Agarap (2018) GRU-SVM, R, MLP, NN, SR and SVM Machine learning (ML)  >90.0% 

Nabil et al. (2008) Artificial immune genetic algorithm Machine reasoning (MR) 97.36% 

 with fuzzy rule 

Alharbi and Tchier (2016) Fuzzy-Genetic Algorithm Method Machine reasoning (MR) 97.33% 

Setiono (2000) Neuro-rule ANN Machine reasoning (MR) 97.97% 

Andres et al. (1999) fuzzy-genetic algorithm approach Machine reasoning (MR) 97.80% 

WBCS Medical experts  Human intelligence  100% 

This paper (ONCObc-ST)  Select and Test algorithm  Semantic machine reasoning (MR) 88.7% 

 
Now, we compute FN, TN, FP and TP for the results 

of diagnosis in Tables 1 and 2, the values are listed in 
Table 3. Furthermore, we compute and listed in Table 4 
the values of the three metrics (sensitivity, specificity and 
accuracy) for determining medical diagnostic accuracy. 

Note that the datasets of WBCS and WDBC 
comprises of instances derived from cases of patients 
already diagnosed accordingly, hence the reason for 
computed accuracy of 100% in the three categories of 
datasets. On the other hand, in Table 3, sensitivity of 
0.81 and 0.82 when using the datasets of WBCS and 
WDBC respectively in our proposed algorithm indicates 
that the ONCObc-ST has a good probability of getting a 
positive test result in subjects with the disease and it has 
the potential to recognize subjects with the breast cancer. 
Similarly, specificity of 0.89 and 1 of WBCS and 
WDBC respectively represents the probability of 
ONCObc-ST able to find a negative test result in a 
subject without the breast cancer and describes the 
improved algorithm to have ability to recognize subjects 
without breast cancer. In addition, the values obtained 
for the accuracy implies that the diagnosis obtained from 
the proposed algorithm is good. We may then state that 
the results of these metrics demonstrate the improved ST 
algorithm, ONCObc-ST, to be relevant for consideration 
as a medical diagnostic reasoning algorithm and for 
implementation of medical expert systems. 

Meanwhile, our presumption during the translation 
and formatting of the datasets to serve as input into the 
improved ST algorithm might have placed some 
constraint in correctly mapping the numeric values in the 
datasets to symptoms needed in the improved ST 
algorithm. However, assumptions made during this data 
mapping were clearly based on clinical protocols of 
breast cancer consulted, hence the credibility of the 
procedure. We observed that an accuracy of 88.72% 
performance of the improved ST algorithm suffices it for 
adoption in any medical diagnoses procedures.  

Evaluation and Discussion 

In section VI, we drew up the performance of the 
proposed ONCObc-ST algorithm using some selected 

metrics. It was observed that the optimal performance of 
the algorithm was 88.72% and with good results in terms 
of sensitivity and specificity. However, we have decided 
to compare the proposed algorithm with similar 
algorithms that are based on intelligent systems 
(machines). Canonically, algorithms relating with 
machine intelligence may be grouped into Machine 
Learning (ML) and Machine Reasoning (MR). While 
those of ML simply need a related algorithm with both 
training and input datasets, those of MR are strongly 
knowledge based. In addition, ML algorithms may 
diagnose diseases through prediction after learning from 
a training datasets and creation of models, while those of 
MR are purely diagnose through reasoning process with 
the aid of some form rules (most often). Though it may 
appear that the results/outputs of the two techniques are 
same, however, they differ in terms of algorithm 
complexity, problem solving approach and production of 
acceptable explanation systems. The algorithm proposed 
in this paper is classified as MR algorithm. And as 
earlier stated its reasoning capability is driven by two 
inference algorithms (abduction and deduction) and a 
generalization/decision making algorithm (induction). 
These three algorithms ensure that an acceptable 
explanation system (to justify the reason for its output) 
can be generated. In addition, the problem solving 
approach of the proposed algorithm systematically 
arrives as its conclusion/results. Hence, our approach is 
more reliable and correct (even sound and complete) 
than other approaches of ML listed in Table 4.  

In Table 4, six (6) related works were compared with 
the proposed algorithm (ONCObc-ST). Those of 
Aloraini (2012), Agarap (2018) and Nabil et al. (2008) 
which are ML based techniques have accuracy of 95.6%, 
90.0% and 97.36% respectively. The argument presented 
in the last paragraph may explain why ONCObc-ST is 
88.72%. Furthermore, the works of Alharbi and Tchier 
(2016) and Andres et al. (1999) which are both fuzzy-
genetic based algorithms attained accuracy of 97.33% 
and 97.80%. Also, Setiono (2000) which is Neuro-rule 
ANN algorithm attained 97.97% accuracy. However 
(Ernest et al., 2014) clearly stated that fuzzy-genetic 
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algorithms are limited by difficulty of genetic algorithm 
to guarantee optimality and solution weakens with 
increased size of the problem. Similarly, (Wuest et al., 
2016) revealed that ML algorithms may suffer the 
problem of acquisition relevant knowledge or data which 
usually have impact on the performance of ML. This is 
contrary to MR which adapts to more flexible adaptation 
even in big data investigations (Ganeshan, 2018). 
Therefore, we conclude that though our proposed 
algorithm (ONCObc-ST) attained an accuracy of 
88.72%, its technique was rigorously verified and has 
proven acceptable. Furthermore, semantic reasoning 
(which is the approach of this paper) permits the 
representation of knowledge in a very deep and 
meaningfully structured form which yields high inference 
power. In addition, semantic reasoning approach excels in 
provability through formal logic proofs to explain the 
result gotten by the system. Lastly, in domain (medicine), 
deep knowledge representation with complex rules are 
required and which semantic reasoning appropriately 
solves. In conclusion, though the accuracy of 88.72% is 
good, further refinements based on limitations and future 
works highlighted in Section VIII may raise up the 
accuracy to an excellent performance. 

Conclusion 

In this paper, we have presented an enhanced and 
more approximate medical reasoning algorithm named 
ONCObc-ST which was an improvement of ST 
algorithm. The improvement was achieved through the 
design of ontology-based knowledge representation that 
assists logical reasoning. In addition, the ST algorithm 
was also modified at the induction sub-modules to 
reason effectively through the incorporation of Hill’s 
Criteria of Causation and provision of support for some 
inference making processes. The result of the 
improvement showed that the accuracy or approximation 
of ONCObc-ST demonstrates a good performance when 
we consider the following: Sensitivity of 0.81 and 0.82, 
specificity of 0.89 and 1 and accuracy of 86% and 
88.72% for the Wisconsin Breast Cancer datasets 
WBCD and WDBC respectively. Note that while this 
paper applied the improved algorithm in diagnosing 
breast cancer, future works may consider an application 
of other ailments or even a collection of similar ailments, 
with further consideration of hybridizing the rule-based 
system in this paper with a moderately case-based 
features. Furthermore, there is an omission of an 
explanation facility for analyzing the basis and pattern 
for problem solving approach and to convince patients of 
acceptability of the diagnosis result. Finally, machine 
models may be adopted in filtering, classifying and 
cleaning of datasets before serving them as inputs. 
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