Original Research Paper

The Regularity of the Solutions to the Cauchy Problem for the Quasilinear Second-Order Parabolic Partial Differential Equations

Mykola Yaremenko

Partial Differential Equation, KPI, Kyiv, Ukraine

Article history
Received: 01-04-2020
Revised: 07-05-2020
Accepted: 29-05-2020
Email: math.kiev@gmail.com

Abstract: This article is dedicated to expanding our comprehension of the regularity of the solutions to the Cauchy problem for the quasilinear second-order parabolic partial differential equations under fair general conditions on the nonlinear perturbations. In this paper have been obtained that the sequence of the weak solutions \(u^j \in V_{1,0}^z \), \(z = 1,2,\ldots \) to the Cauchy problems for the Equations (15) under the initial conditions \(u^j(0,x) = \phi^j \) converges to the weak solution to the Cauchy problem for the Equation (1) under the initial condition \(u(0,x) = u_0 \) in \(V_{1,0}^z \).

Keywords: Quasi-Linear Partial Differential Equations, Nonlinear Partial Differential Equations, Parabolic, Nonlinear Operator, Weak Solution, A Priori Estimations

Introduction

Let us consider the quasilinear second-order parabolic partial differential equations:

\[
\frac{\partial}{\partial t} u + \lambda u - \sum_{i,j=1}^l \frac{\partial}{\partial x_i} \left(a_{ij}(t,x,u) \frac{\partial u}{\partial x_j} \right),
\]

(1)

\[+ b(t,x,u, \nabla u) = f(t,x),\]

under the initiation conditions:

\[u(0,x) = u_0(x),\]

where the \(u(t,x) \) is the unknown function, \(\lambda > 0 \) is a real number and \(f(t,x) = f \) is a given function. The term \(b(t,x,u, \nabla u) \) is a measurable function of four arguments.

The matrix \(a_{ij}(t,x,u) \) is a measurable elliptical matrix \(l \times l \) size such that there is a number \(\nu : 0 < \nu < \infty \) and:

\[\nu \sum_{i,j=1}^l \xi_i^2 \leq \sum_{i,j=1}^l a_{ij}(t,x,u) \xi_i \xi_j \quad \forall \xi \in \mathbb{R}^l\]

(2)

for almost every \(t \in [0,T] \) and \(x \in \mathbb{R}^l \). Or we will consider a more restrictive condition:

\[\nu \sum_{i,j=1}^l \xi_i^2 \leq \sum_{i,j=1}^l a_{ij}(t,x,u) \xi_i \xi_j \leq \mu \sum_{i,j=1}^l \xi_i^2 \quad \forall \xi \in \mathbb{R}^l\]

Definition

A real-valued function \(u(t,x) \) is called a weak solution to the parabolic partial differential Equation (1) if the integral identity:

\[\langle u(t), v(t) \rangle_b + \int_0^t \left(-u(t), \frac{\partial v(t)}{\partial t} + \lambda (u(t), v(t)) \right) dt + \int_0^t \left(\sum_{i,j=1}^l a_{ij}(t,x,u) \frac{\partial u(t)}{\partial x_j} \frac{\partial v(t)}{\partial x_i} \right) dt + \int_0^t \langle b(t), v(t) \rangle dt = \int_0^t \langle f(t), v(t) \rangle dt\]

(3)

holds for almost every \(t \in [0,T] \), \(x \in \mathbb{R}^l \) and for all \(v \in W_{1,0}^l \).

The main object of this paper is the regularity properties of the solutions to the quasilinear parabolical partial differential Equation (1) under the conditions that its coefficients belong to the certain functional classes and functional spaces.

The conditions of linear growth:

1. \(b(t,x,y, \mathbb{R}) \) is a measurable function of its arguments and \(b \in L^\infty (\mathbb{R}^l) \)
2. Function \(b(t,x,y, \mathbb{R}) \) \(t \in [0, T] \) satisfies inequality:

\[|b(t,x,u, \nabla u)| \leq \mu_1(|u| + \mu_2(x)|u| + \mu_3(x))\]

(4)
for almost everywhere and almost every \(t \in [0, T] \), where the functions \(\mu_i^2 \in PK_{\beta}(A) \), \(\mu_2 \in PK_{\beta}(A) \) and \(\mu_3 \in L^p(S^2) \).

3. The increase of function \(b(t, x, y, z) \) satisfies the inequality:

\[
|b(t, x, u, \nabla u) - b(t, x, v, \nabla v)| \leq \mu_2(x)|\nabla (u - v)| + \mu_3(x)|u - v|.
\]

almost everywhere and almost every \(t \in [0, T] \), where the functions \(\mu_2^2 \in PK_{\beta}(A) \), \(\mu_2 \in PK_{\beta}(A) \).

Here we introduce the class of form-bounded functions \(PK_{\beta} \) according to formula-definition:

\[
PK_{\beta}(A) = \left\{ g \in L^1_{\text{loc}}(R^N, d^x) : \frac{|g^1|}{|h^{1/2}|} \leq \beta \left(A_h^2 + c(\beta) \| h \|_p^2 \right) \right\},
\]

where \(h \in D \left(A_h^2 \right) \) and \(\beta > 0 \) is a form-boundary and \(c(\beta) \) \(\in R \).

The general information on the partial differential equations and the existence of their solutions can be found in the extensive literature on the conditions on their coefficients under which there are the solutions of these equations in a specific functional space (Adams and Hedberg, 1996; Gilbarg and Trudinger, 1983; Ladyzenskaja et al., 1968; Nirenberg, 1994; Veron, 1996; Yaremko, 2017a, 2017b). O. Ladyzenskaya, N. Ural'tseva, O.A. Solomnikov developed the Ennio de Giorgi's method (DeGiorgi, 1968) for establishing a priori estimation of the solution of such equations. 1960 J. Moser enhance the maximum principle and created a new method of studying the regularity of the solutions of elliptic differential equations and Harnack’s inequality under the assumption that the coefficients are bounded measurable and satisfy a uniform ellipticity condition, these results were summarized in the work of Ladyzenskaja et al. (1968).

A Lebesgue space \(L^p(S^2, d^x) \) for \(1 < p < \infty \) can be defined as a set of all real-valued measurable functions defined almost everywhere such that the Lebesgue integral of its absolute value raised to the \(p \)-th power is a finite number with its natural norm:

\[
|u|_p^p = \left(\int_{S^2} |u(x)|^p \, d^x \right)^{1/p}.
\]

The dual or adjoint space of \(L^p(S^2, d^x) \) for \(1 < p < \infty \) has a natural isomorphism with \(L^q(S^2, d^x) \), where \(\frac{1}{p} + \frac{1}{q} = 1 \) or \(q = \frac{p}{p-1} \).

We will use the inequality:

\[
\langle f, g \rangle \leq \|f\|_p \|g\|_q + \frac{1}{\varepsilon^p q} \|f\|_p \|g\|_q,
\]

where \(f \in L^p(S^2), g \in L^q(S^2), \varepsilon > 0 \) and its consequence:

\[
\langle f, f \rangle^{q/2} = \|f\|_{L^q(S^2)}^q = \frac{1}{p} \|f\|_{L^q(S^2)}^p + \frac{1}{q} \|f\|_{L^q(S^2)}^{q-1},
\]

where \(f \in L^p(S^2) \) yields \(f \| f \|^{q/2} \in L^2 \) that justify the last equation (Gilbarg and Trudinger, 1983; Ladyzenskaja et al., 1968).

Let us denote \(W^0_p(S^2, d^x) \) given Sobolev space for \(1 < p < \infty \) with a natural norm:

\[
\|u\|_W^p = \left(\sum_{i=1}^k \|u^{(i)}(x, ..., x, x)\|^p \, d^x \right)^{1/p}.
\]

The dual space of \(W^p_p(S^2, d^x) \) for \(1 < p < \infty \) is \(W^{-p}_0(S^2, d^x) \) and the dual space of \(W^{-p}_0(S^2, d^x) \) for \(1 < p < \infty \) and \(\frac{1}{p} + \frac{1}{q} = 1 \) is \(W^{-q}_0(S^2, d^x) \), Sobolev spaces are reflexive (Fijavz et al., 2007).

Let us consider a linear parabolic equation as an exemplar:

\[
Lu = \left[\frac{\partial}{\partial t} - \sum_{i,j} a_{ij}(t,x) \frac{\partial^2}{\partial x_i \partial x_j} - \sum_{i,j} b_{ij}(t,x) \frac{\partial}{\partial x_j} \right] u(t,x) = 0
\]

under the conditions \(\exists \nu, \mu : 0 < \nu \leq \mu < \infty \) such that:

\[
\sum_{i,j} \zeta_i^2 \leq \sum_{i,j} a_{ij}(t,x) \zeta_i \zeta_j \leq \sum_{i} \zeta_i^2
\]

and linear perturbation-potential \(b_{ij}(t,x) : R^k \rightarrow R \).

In traducing the notations:
\[\nabla = a \nabla u = \sum_{i,j,l} \frac{\partial}{\partial x_j} a_{ij} \frac{\partial}{\partial x_i} u, \]
\[b \nabla u = b \nabla u = \sum_{i,j,l} b_{ij} \frac{\partial}{\partial x_j} u, \]
and assuming \(b = a^{-1} - b \in PK_{\beta}(A) \) for some \(\beta < 1 \) we obtain:
\[\| \nabla h + bh \| \leq \sqrt{\beta} \| Ah, h \| + c(\beta) \frac{1}{2\sqrt{\beta}} \| h \|^2, \]
according to the KLMM-theorem, there is a preserving \(C_0 \) semigroups of \(L^2 \) contraction \(e^{-\beta t} \), \(\frac{2}{2-\sqrt{\beta}} \leq n \leq \infty \) such that \(A_t = A + b - \nabla \). Assuming \(A \) is Laplace operator \(A = \Delta \) we are obtaining an estimation:
\[\| \nabla h + bh \| \leq \sqrt{\beta} \| h \|^2 + k(\beta) \| h \|^2, \quad h \in D(\Delta). \]
The operator \(B_t = \nabla \cdot b \) of the domain \(D(B_t) = \{u \in L^2; \| \nabla u \| + \| b \nabla u \| \} \) is \(A_1 \)-bounded with relative bound zero namely \(D(B_t) \supseteq D(A_1) \) and:
\[\| B_t h \| \leq \alpha \| A_1 h \| + k(\alpha) \| h \|, \quad h \in D(A_1) \]
holds for all \(\alpha > 0 \) and \(k(\alpha) < \infty \). There are \(s > 0 \) and \(\beta(s) \) such that \(\int_0^t B_t e^{-\beta(s)} dt \leq \beta(s) \| h \|, \quad h \in D(A_1) \). The operator \(A_1 + B_1 \) of the domain \(D(A_1) \) generates \(C_0 \) semigroup \(T_t \) consistent with \(T_t = \exp(-t(A + b - \nabla)) \) such that \(\| T_t \| \leq \alpha \exp(-t(1-\beta(s))) t > 0 \).

The Estimation of the Solutions to the Equation (1)
For almost every \(t \in [0, T] \), let us consider the integral identity:
\[\begin{align*}
\langle u(\tau), v(\tau) \rangle &= \int_0^t \left(\langle u(\tau), \frac{\partial}{\partial x_j} v(\tau) \rangle + \lambda \langle u(\tau), v(\tau) \rangle \right) d\tau \\
+ &\int_0^t \left(\sum_{i,j,l} a_{ij} \frac{\partial}{\partial x_j} u(\tau) \right) d\tau + \int_0^t \langle f, v \rangle d\tau,
\end{align*} \]
where functions \(u(t,x) \in W^*_a \) and \(v \in W^*_a \).

For \(t \in [0, T] \) identity (6) can be rewritten as:
\[\langle u(\tau), v(\tau) \rangle + \int_0^t \left(\sum_{i,j,l} a_{ij} \frac{\partial}{\partial x_j} u(\tau) \right) d\tau + \int_0^t \langle f, v \rangle d\tau = \int_0^t \langle f, v \rangle d\tau, \]
where functions \(u(t,x) \in W^*_a \) and \(v \in W^*_a \).

Let us put \(v(\tau) = u|a|^{-2}(\tau) \) and estimate:
\[\begin{align*}
\langle u(\tau), u|a|^{-2}(\tau) \rangle &= + \int_0^t \left(\sum_{i,j,l} a_{ij} \frac{\partial}{\partial x_j} u(\tau) \right) d\tau \\
+ &\int_0^t \lambda \langle u(\tau), v(\tau) \rangle d\tau + \int_0^t \langle f, v \rangle d\tau.
\end{align*} \]

From (1) under the conditions (4) we obtain (6). Next, we estimate every term separately:
\[\| \langle f, u|a|^{-2}(\tau) \rangle \| \leq \| f \| \| u|a|^{-2}(\tau) \|, \]
\[\| \langle \sum_{i,j,l} a_{ij} \frac{\partial}{\partial x_j} u(\tau) \rangle \| \leq \int_0^t \langle f, v \rangle d\tau, \]
\[\| \langle \lambda \langle u(\tau), v(\tau) \rangle \rangle \| \leq \int_0^t \langle f, v \rangle d\tau. \]

Denoting \(w = u|a|^{-2}(\tau) \) and \(\nabla w = \frac{|a|}{2} |a|^{-2} \nabla u : \)
\[\begin{align*}
\langle \mu_1, \nabla u \rangle |a|^{-1} &= \| \langle \mu_2, \nabla u \rangle |a|^{-2} \| \leq \frac{\| \mu_1 \| \| \nabla w \| \| w \| \|}{p} \\
\| \mu_2 \| w \| |a|^{-2} \| &\leq \lambda \langle \nabla w, w \rangle + c(\beta) \| w \|^2, \]
\[\langle \mu_2, \nabla u \rangle |a|^{-1} \leq \| \mu_1 \| |a|^{-1}. \]

Applying a form-boundary condition to \(\frac{2}{p} \langle \mu_1, \nabla w \rangle, |w| \) we have:
\[\| \mu_1 \| |a|^{-1} \geq \| \mu_1 w \| \| \nabla w \| \]
\[\leq \frac{2}{p} \langle \mu_1 w \rangle |a|^{-1}. \]
Using Young and Holder inequalities are obtaining:
\[
\frac{2}{p} \langle \mu_1 \nabla w, w \rangle \leq \frac{2}{p} \| \mu_1 \| \| \nabla w \| = \frac{2}{p} \| \nabla w \| (\mu_1 w)^2
\]
\[
\leq \frac{2}{p} \| \nabla w \| \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right)^{\frac{1}{2}}
\]
\[
\leq \frac{1}{p} \left(\frac{1}{\varepsilon^2} \| \nabla w \|^2 + \varepsilon^2 \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) \right)^{\frac{1}{2}}
\]
\[
\leq \frac{1}{p} \left(\frac{1}{\varepsilon^2} \| \nabla w \|^2 + \varepsilon^2 \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) \right)^{\frac{1}{2}}
\]

Thus, we have obtained an estimation:
\[
\int_0^t \left(\tilde{c}(\mu(\tau), (u(\tau), u(\mu)^{-1}(\tau))) + \left(\sum_{j=1}^d a_j \frac{\partial}{\partial x_j} (u(\mu)^{-1}(\tau)) \right) \right) d\tau
\]
\[
+ \lambda \int_0^t \left((u(\tau), u(\mu)^{-1}(\tau)) \right) d\tau
\]
\[
\leq \int_0^t \left(\frac{\sigma^2}{p} \| f \|^2 + \frac{1}{\sigma^2} \| u(\mu)^{-1}(\tau) \| \right) d\tau
\]
\[
+ \int_0^t \left(\frac{1}{\varepsilon^2} \| \nabla w \|^2 + \varepsilon^2 \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) \right) d\tau
\]
\[
+ \int_0^t \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) d\tau
\]
\[
+ \int_0^t \left(\frac{1}{\sigma^2} \| \nabla w \|^2 + \frac{1}{\sigma^2} \| u(\mu)^{-1} \| \right) d\tau.
\]

For almost all \(t \) applying \((u(\tau), u(\mu)^{-1}(\tau)) \) we have had:
\[
\int_0^t \left(\tilde{c}(\mu(\tau), (u(\tau), u(\mu)^{-1}(\tau))) + \left(\sum_{j=1}^d a_j \frac{\partial}{\partial x_j} (u(\mu)^{-1}(\tau)) \right) \right) d\tau
\]
\[
+ \lambda \int_0^t \left((u(\tau), u(\mu)^{-1}(\tau)) \right) d\tau
\]
\[
\leq \int_0^t \left(\frac{\sigma^2}{p} \| f \|^2 + \frac{1}{\sigma^2} \| u(\mu)^{-1}(\tau) \| \right) d\tau
\]
\[
+ \int_0^t \left(\frac{1}{\varepsilon^2} \| \nabla w \|^2 + \varepsilon^2 \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) \right) d\tau
\]
\[
+ \int_0^t \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) d\tau
\]
\[
+ \int_0^t \left(\frac{1}{\sigma^2} \| \nabla w \|^2 + \frac{1}{\sigma^2} \| u(\mu)^{-1} \| \right) d\tau.
\]

In case of \(p = 2 \) there is the next estimation:
\[
\frac{1}{2} \| u \|^2 + \frac{1}{2} \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \right) \| w \|^2 d\tau
\]
\[
\leq \left(\frac{1}{2} \| u \|^2 + \frac{1}{2} \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \right) \| w \|^2 d\tau
\]
\[
+ \frac{1}{2} \left(\frac{1}{\varepsilon^2} \| \nabla w \|^2 + \varepsilon^2 \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) \right) \| u \|^2 d\tau
\]
\[
+ \frac{\sigma^2}{2} \| f \|^2 d\tau + \frac{\sigma^2}{2} \| u \|^2 d\tau.
\]

Assuming that \(\varepsilon^2 = \frac{1}{\sqrt{\beta}} \) then \(\frac{1}{2} \left(\frac{1}{\varepsilon^2} \| \nabla w \|^2 + \varepsilon^2 \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \| w \|^2 \right) \right) \| u \|^2 d\tau
\]
\[
\leq \left(\frac{1}{2} \| u \|^2 + \frac{1}{2} \left(\beta \nabla (w \cdot a \nabla w) + c(\beta) \right) \| w \|^2 d\tau
\]
\[
+ \frac{\sigma^2}{2} \left(\| f \|^2 d\tau + \frac{\sigma^2}{2} \| u \|^2 d\tau.
\]

The Smoothness of the Weak Solutions to the Quasilinear Second-Order Parabolic Partial Differential Equation (1)

Definition

A real-valued function \(u(t,x) \in W_{1,1}^2 \) such that \(\forall \text{max} |u(t,x)| < \infty \) is called a weak bound solution to the quasilinear second-order parabolic partial differential Equation (1) if the identity:

\[
\langle u(\tau), v(\tau) \rangle \| u \|^2 + \int_0^t \left(- \langle u(\tau), \frac{\partial}{\partial x_j} v(\tau) + \lambda \langle u(\tau), v(\tau) \rangle \right) d\tau
\]
\[
+ \int_0^t \left(\sum_{j=1}^d a_j \frac{\partial}{\partial x_j} (u(\tau)) \right) v(\tau) d\tau + \int_0^t \langle h, v \rangle d\tau = \int_0^t \langle f, v \rangle d\tau
\]
holds for all functions \(v \in W_{1,1}^2 \) such that \(\forall \text{max} |v(t,x)| < \infty, \ t \in [0,T] \).

For arbitrary function \(v \in W_{1,1}^2 \) such that \(\forall \text{max} |v(t,x)| < \infty, \ t \in [0,T] \) from that definition of the weak solution we are obtaining

95
\[\langle u(\tau), v(\tau) \rangle|_{\mathbb{R}} + \int_{\mathbb{R}} \left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x_i \partial x_j} \frac{\partial v}{\partial x_l} \right) d\tau \]

\[\leq \int_{\mathbb{R}} \langle f(\tau), v(\tau) \rangle d\tau - \int_{\mathbb{R}} \langle \lambda \langle u(\tau), v(\tau) \rangle \rangle d\tau \]

\[+ \int_{\mathbb{R}} \left(\mu_1(t,x) \nabla u + \mu_2(t,x) |u| + \mu_3(t,x), v(\tau) \right) d\tau. \]

Let \(u(t,x) \) be a weak solution. We denote \(v_h(t,x) \) the average of function \(v(t,x) \) at \(t \) by formulae:

\[v_h(t,x) = \frac{1}{h} \int_{t-h}^{t} v(\tau,x) d\tau, \quad u_h(t,x) = \frac{1}{h} \int_{t-h}^{t} u(\tau,x) d\tau \]

we transform:

\[-\int_{\mathbb{R}} \langle u_h, v \rangle dt = -\int_{\mathbb{R}} \langle u_h, \partial \rangle dt = \int_{\mathbb{R}} \langle \partial, u_h \rangle dt. \]

Since:

\[\int_{\mathbb{R}} u(t)v(t) dt = \int_{\mathbb{R}} u_h(t)v(t) dt \]

where the function \(v(t,x) \) is tautological equals zero over \(t \leq 0 \) and \(T \geq t \geq T-h. \)

Remark

The order of averaging and differentiation by \(x \) are interchangeable.

Let us rewrite (6) as:

\[\int_{\mathbb{R}} \left(\left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x_i \partial x_j} \right) \frac{\partial v}{\partial x_l} \right) + \left(\sum_{i,j,l} a_{ijl} \frac{\partial \partial u}{\partial x_i \partial x_j} \right) + \langle b, v \rangle \right) d\tau = \int_{\mathbb{R}} \langle f, v \rangle d\tau \]

Since in the last equality the function \(v \in W_{10}^2 \) is arbitrary, we can assume that \(v = u_h \) next integrating with respect to \(t \), we are passing to the limit as \(h \to 0 \) and are obtaining:

\[\frac{1}{2} \| u(t) \|_{\mathbb{R}}^2 + \int_{\mathbb{R}} \langle \nabla u \circ a \circ \nabla u \rangle \right) + \langle b, u \rangle \right) d\tau = \int_{\mathbb{R}} \langle f, u \rangle d\tau. \]

For an arbitrary function \(v \in V_{10}^2 \) the integrals:

\[\int_{\mathbb{R}} \left(\left(\sum_{i,j,l} a_{ijl} \frac{\partial \partial u}{\partial x_i \partial x_j} \right) \frac{\partial v}{\partial x_l} \right) + \langle b, v \rangle \right) d\tau \]

and:

\[\int_{\mathbb{R}} \langle f, v \rangle d\tau \]

converge to:

\[\int_{\mathbb{R}} \left(\left(\sum_{i,j,l} a_{ijl} \frac{\partial \partial u}{\partial x_i \partial x_j} \right) \frac{\partial v}{\partial x_l} \right) + \langle b, v \rangle \right) d\tau \]

and:

\[\int_{\mathbb{R}} \langle f, v \rangle d\tau \]

as \(h \to 0 \) so it is true for \(v = u \).

For an arbitrary \(\iota_1, \iota_2 \in [h, T-h] \) applying (6) we can write:

\[\int_{\iota_1}^{\iota_2} \left(\langle \partial, u_{\iota} \rangle + \lambda \langle u_{\iota} \rangle \right) d\tau \]

\[+ \int_{\mathbb{R}} \left(\left\langle \sum_{i,j,l} a_{ijl} \frac{\partial \partial u_{\iota}}{\partial x_i \partial x_j} \right\rangle \frac{\partial v_{\iota}}{\partial x_l} \right) + \langle b, v_{\iota} \rangle \right) d\tau \]

assume \(v = u_{\iota} \), where \(u_{\iota}(t,x) \equiv \max[u(t,x)-k,0] \) and we denote the set of points \(P_i(t) = \{ x \in \mathbb{R}^l : u(t,x) > k, \ t \in [0, T]\} \), \(R_i, i > 2 \) and \(P_i(t) = \{ (t,x) \in [0, T] \times \mathbb{R}^l : u(t,x) > k, \ t \in [0, T], i > 2 \} \), we have:

\[\frac{1}{2} \| u(t) \|_{\mathbb{R}}^2 + \int_{\mathbb{R}} \langle \nabla u \circ a \circ \nabla u \rangle \right) + \langle b, u \rangle \right) d\tau \]

\[+ \lambda \int_{\mathbb{R}} \| v \|_{\mathbb{R}}^2 \right) + \left(\frac{1}{\sqrt{\beta}} \right) \| u \|_{\mathbb{R}}^2 \right) d\tau \]

\[\leq \left(\frac{1}{\sqrt{\beta}} + \frac{c(\beta)}{2\beta} \right) \| u \|_{\mathbb{R}}^2 \right) d\tau + \sqrt{\beta} \left(\| u \|_{\mathbb{R}}^2 \right) + \| u \|_{\mathbb{R}}^2 \right) d\tau \]

\[+ \sqrt{\beta} \left(\| u \|_{\mathbb{R}}^2 \right) + \| u \|_{\mathbb{R}}^2 \right) d\tau. \]

From \((a+b)^2 \leq 2a^2 + 2b^2 \), we obtain:
\[
\int_0^t |v|_{V_0}^2 \, d\tau \leq 2 \left(\|u - k\|_{V_0}^2 + k^2 \int_{t_0}^{t} \text{mes} P_5(\tau) \, d\tau \right).
\]

Lemma 1

Let element \(u \in V_0^2 \) satisfies following tautology:

\[
\begin{align*}
\int_t^T (-(u, \partial_v, \phi) + \lambda (u, \phi)) \, d\tau \\
+ \int_t^T \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \phi \right) + \{b, \phi\} \, d\tau \\
= \int_0^T \{f, \phi\} \, d\tau, \quad f \in L^2
\end{align*}
\]

where the \(\phi \) is an arbitrary element of functional space \(W_1^2([0,T] \times R^l) \) then element \(u \in V_0^2 \) belongs \(V_1^2([0,T] \times R^l) \).

Space \(V_1^2([0,T] \times R^l) \) is a subspace of \(W_1^2([0,T] \times R^l) \) that consists of all continuous at \(t \) in \(L^2(R^l) \) norm elements with the norm \(\|u\| = \max \{u(t) + |V_u(u(t), x)|\} \) and the following condition \(\int_0^T \frac{1}{h} |u(t + h, \cdot) - u(t, \cdot)|^2 \, dt \rightarrow 0 \) is satisfied.

Proof of Lemma 1

For arbitrary \(\phi \in W_1^2([0,T] \times R^l) \) we denote \(\phi_h(t, x) = \frac{1}{h} \int_{t-h}^t \phi(t, x) \, d\tau \) then:

\[
\begin{align*}
\int_t^T (-(u, \partial_v, \phi) + \lambda (u, \phi)) \, d\tau \\
+ \int_t^T \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \phi \right) + \{b, \phi\} \, d\tau \\
= \int_0^T \{f, \phi\} \, d\tau.
\end{align*}
\]

put \(\phi(t, x) = \chi(t) \psi(x) \), where \(\chi(t) \) is a smooth function of time and \(\psi \in W_1^2(R^l) \). We have:

\[
\begin{align*}
\int_t^T (-(u, \partial_v, \psi) + \lambda (u, \psi)) \, d\tau \\
+ \int_t^T \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \psi \right) + \{b, \psi\} \, d\tau \\
= \int_0^T \{f, \psi\} \, d\tau.
\end{align*}
\]

so:

\[
\begin{align*}
\partial_v (u, \psi) + \lambda (u, \psi) + \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \psi \right) + \{b, \psi\} = \{f, \psi\} \forall \psi \in W_1^2(R^l).
\end{align*}
\]

and:

\[
\begin{align*}
\partial_v (u, \psi) + \lambda (u, \psi) + \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \psi \right) + \{b, \psi\} = \{f, \psi\} \forall \psi \in W_1^2(R^l).
\end{align*}
\]

and for arbitrary \(h_1,h_2 \), we have:

\[
\begin{align*}
\partial_v (u, - u, \psi) + \lambda (u, - u, \psi) \\
+ \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \psi \right) + \{b, \psi\} = \{f, \psi\} \forall \psi \in W_1^2(R^l),
\end{align*}
\]

assuming that \(\psi = u - u \) then we are obtaining:

\[
\begin{align*}
\int_0^T \partial_v (u - u, \psi) + \lambda (u - u, \psi) \\
+ \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \psi \right) + \{b, \psi\} = \{f, \psi\} \forall \psi \in W_1^2(R^l),
\end{align*}
\]

by integrating with respect to time, we have:

\[
\begin{align*}
\int_0^T \|u - u\|^2 + \lambda \|u - u\|^2 \\
+ \left(\sum_{i,j} a_{ij} \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} u \right) + \{b, u\} = \{f, u\} \forall \psi \in W_1^2(R^l),
\end{align*}
\]

Let pass to limit as \(h_1 \rightarrow 0, h_2 \rightarrow 0 \) we obtain:
\[\|u_h - u_n\| + \left\| \frac{\partial}{\partial x} (u_h - u_n) \right\| \\
+ \left\| \sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \right\|_{h_n} \\
+ \|b_n - b_h\| + \|f_n - f_h\| \xrightarrow{h_n \to 0} 0. \]

We denote \(\psi(x) = \Delta_d u = u(t + h, x) - u(t, x) \) then:

\[\int \left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \right) (u(t + h, x) - u(t, x)) \, dt \\
+ \lambda \int \left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \right) \, dt \\
+ \int \left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \right) (u(t + h, x) - u(t, x)) \, dt \\
+ \int (f, u(t + h, x) - u(t, x)) \, dt \\
= \int (f, u(t + h, x) - u(t, x)) \, dt, \]

and we have:

\[\int \frac{\|\Delta_d u\|^2}{h} \, dt + \lambda \int (u, \Delta_d u) \, dt \\
+ \int \Delta \left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \right) \, dt + \int (\Delta_d (b, u_n)) \, dt \\
= \int (\Delta_d (b, u_n)) \, dt. \]

Applying Holder inequality and previous considerations, we have obtained:

\[\int \frac{\|\Delta_d u\|^2}{h} \, dt \leq c(h) \xrightarrow{h \to 0} 0. \]

that proves the lemma.

A Priori Estimation of the Solution to (1)

Let us assume that ellipticity condition and (4), (5) are satisfied and all weak solutions \(u(t, x) \) of the \(V_{1,h}^2 \) are bounded, we will show that \(u \in H^{\alpha, \frac{\alpha}{2}} \) for certain \(\alpha > 0 \) and estimate the norm \(|u|^{\alpha} \).

Assume \(u \in V_{1,h}^2 \) for arbitrary element \(\varphi \in W_{1,h}^2 \), we have tautology (6) and we obtain an estimation:

\[\left\langle u(t), \varphi(t) \right\rangle_{L_h^2} + \lambda \left\langle u(t), \varphi(t) \right\rangle_{L_h^2} \]

so:

\[\left\langle u(t), \varphi(t) \right\rangle_{L_h^2} \]

let us put \(\varphi(t, x) = (\xi(t, x))^2 u(t, x) - \xi^2 u \) and integrate by parts, we are obtaining

\[\int \frac{1}{2} |\xi(t)||\xi(t)|^2_{\mu(t)} \, dt \]

\[\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \left(u \xi(t) \right) \, dt \\
+ \int \left(\sum_{i,j,l} a_{ijl} \frac{\partial^2 u}{\partial x^2} \right) (u \xi^2(t)) \, dt \\
\]

where the \(K(\delta) \) is a cube in \(R^l \) with an edge length of \(\delta \). Next, we estimate:

\[\left\| \mu |\nabla u| u \xi(t) \right\|_{L_h^2} \]

\[\leq \left\| \frac{1}{2} |\xi(t)||\xi(t)|^2_{\mu(t)} \right\|_{L_h^2} + c \left\| \nabla u \right\|^2_{L_h^2}, \]

where \(c \) is a constant.
\[
\|\mu \xi^2(\tau)\|^2 = \left(\mu_\xi^2(\tau)\right)^2 \\
\leq \beta \left(\nabla \xi^2 + a \nabla \xi^2\right) + c(\beta)\|\xi^2\|^2
\]

similarly:

\[
\langle \mu \xi^2(\tau), u \rangle \leq \|\mu \xi^2(\tau)\|\|u\| \\
\leq \left(\beta \left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u\|
\]

and:

\[
\|\nabla u[a]\|^2 \leq \frac{1}{2} \left(\frac{1}{\epsilon^2}\|\nabla u[a]\|^2 + \epsilon^2\|u[a]\|^2\right)
\]

These we have had the following inequality:

\[
\|u(t_\xi)\|^2(t_\xi) \leq \left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi^2 + a \nabla \xi^2\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\| \\
\leq \left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\| \\
+ \left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\| \\
+ \lambda \left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\|
\]

where \(K, K_1, K_2, K_3\) are positive constants depended on the initial conditions and constants \(\epsilon, \epsilon_1, \ldots, \epsilon_i\) are arbitrary constants, such that:

\[
\left(\frac{1}{\epsilon^2}\|\nabla u[a]\|^2 + \epsilon^2\|u[a]\|^2\right) \\
\leq \frac{1}{\epsilon^2}\left\|\left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\|\right\| \\
+ \epsilon^2\frac{1}{\epsilon_i^2}\left\|\left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\|\right\|
\]

it is possible to presume \(\epsilon^2 = c\beta\), where \(c\) is a constant.

Thus we have obtained a prior estimation for the solution to the equation (1).

Let us assume the function \(u \in V^2\) is a solution to the equation (1) then for an arbitrary element \(v \in W^2_{0}(R^d, d^i)\) such that \(\text{vrai max}\|v(t, x)\| < \infty, t \in [0, T]\), we have an integral equality:

\[
\langle u(\tau), v(\tau) \rangle + \int_{0}^{\tau} \left(\frac{\partial}{\partial \tau} - \sum_{i,j} a_{ij} \nabla u[a] \nabla \xi + c(\beta)\|\xi^2\|^2\right) \|u[a]\| d\tau
\]

We put \(v = u\) and obtain:

\[
\frac{1}{2} \|u(t_\xi)\|^2(t_\xi) + \lambda \int_{0}^{\tau} \left(\sum_{i,j} a_{ij} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\| d\tau
\]

The right part can be estimated similarly to previous considerations with an application of Holder and Young inequalities.

The elliptic condition can be presented as:

\[
v\|\xi\|^2 \leq \sum_{\gamma \tau \in \xi} a_{\gamma \tau} \xi \leq \mu\|\xi\|^2 \quad \forall \xi \in R^d
\]

so form \(B(\xi, \nu) = \sum_{\gamma \tau \in \xi} a_{\gamma \tau} \xi \nu\) defines a certain metric and

\[
\sum_{\gamma \tau \in \xi} a_{\gamma \tau} \xi \nu \leq \gamma\|\xi\|^2, \|\nu\|^2, \text{ where the norm } \|\xi\| \text{ is generated by the form } B.
\]

Then there is a constant \(\sqrt{B}\) such that

\[
\|\xi\| \leq \sqrt{B}\|\xi\| \quad \text{so the estimation } \sum_{\gamma \tau \in \xi} a_{\gamma \tau} \xi \nu \leq \gamma\|\xi\|^2\|\nu\| \text{ is true.}
\]

Thus, we have obtained that there is a constant \(C_4\) such that:

\[
\left(\sum_{\gamma \tau \in \xi} a_{\gamma \tau} \nabla u[a]\left(\nabla \xi + a \nabla \xi\right) + c(\beta)\|\xi^2\|^2\right)^{\frac{1}{2}}\|u[a]\| \leq C_4\|\Delta u\|\|u[a]\|.
\]

Theorem 1

Assuming that the Cauchy's problem:

\[
\frac{\partial}{\partial \tau} u + \lambda u - \frac{\partial}{\partial x_i} \left(\sum_{i,j} a_{ij} \nabla u[a] \nabla \xi + c(\beta)\|\xi^2\|^2\right) \|u[a]\| = f(t, x),
\]

\[
u(0, x) = u_0(x),
\]

99
under the form-bounded of \(b \) and \(\nu \) \(\max \left| \frac{\partial a_n}{\partial x_j} \right| < \infty \)
conditions has a solution \(u \in W^2_{12} \), then the solution belongs \(W^2_{12} \).

The Existence of the Solution to the Parabolic Partial Differential Equation (1)

Theorem 2

The quasi-linear parabolic partial differential Equation (1) under the conditions (4), (5) has the solution from \(W^2_{12}([0,T] \times \mathbb{R}^l) \).

Proof

To prove the existence of the solution to (1) we construct the sequence of approximate solutions \(\{u_n(x,t)\}, \quad m = 1, 2, \ldots \) to the equation:

\[
\frac{\partial}{\partial t} u + \lambda u - \frac{\partial}{\partial x_j} \left(a_j(t,x,u) \frac{\partial u}{\partial x_j} \right) + b(t,x,u,Vu) = f,
\]

as \(\{u_n(x,t)\} = \left\{ \sum_{i=1}^m c^*_i(t) \varphi_i(x) \right\} \), where the elements \(\{\varphi_i(x)\} \) \(n = 1, 2, \ldots \) form the basis of \(W_{12}^2(\mathbb{R}^l) \) with the properties \(\varphi_i, \varphi_j = \delta_{ij} \) and \(\max \left| \varphi_i, \varphi_j \right| \leq c < \infty \). The functional coefficients \(c^*_i(t) \) of \(\{u_n(x,t)\} = \left\{ \sum_{i=1}^m c^*_i(t) \varphi_i(x) \right\} \) are determined by:

\[
\langle \frac{\partial}{\partial t} u_n, \varphi_n \rangle + \lambda \langle u_n, \varphi_n \rangle + \sum_{i,j=1}^m a_{ij} \frac{\partial}{\partial x_j} u_n \varphi_i \partial_t \varphi_j + \langle b, \varphi_n \rangle = \langle f, \varphi_n \rangle, \quad n = 1, 2, \ldots, m
\]

and initial conditions:

\[
c^*_i(0) = \langle u_n, \varphi_n(x) \rangle, \quad n = 1, 2, \ldots, m.
\]

From the initial conditions for \(t \in [0,T] \) we are obtaining \(\left| c^*_i \right| \leq \text{const}, \quad n = 1, 2, \ldots, m \), from ellipticity follows uniformly boundedness of the solutions over \(t \in [0,T] \), to show this we multiply the Equation (1) by \(c^*_i \) and a sum of \(n \) up to \(m \) then we obtain the inequality:

\[
\frac{1}{2} \left\| u_n(t) \right\|^2 + \int_0^T (\nabla u_n - \alpha \nabla u_n) \, dt + \lambda \int_0^T \left\| u_n \right\|^2 \, dt \\
\leq \left(\frac{1}{\sqrt{\beta}} + \frac{c(\beta)}{\sqrt{\beta}} + \frac{c(\beta)}{2} \right) \int_0^T \left\| u_n \right\|^2 \, dt
\]

We will apply the following lemma.

Lemma 2

Let \(\psi(t) \) be a positive absolute continuous function such that \(\psi(0) = 0 \) and for almost all \(t \in [0,T] \) holds the inequality:

\[
\frac{d}{dt} \psi(t) \leq c(t) \psi(t) + F(t)
\]

where the \(c(t) \) and \(F(t) \) are positive integratable on \([0,T] \) functions. Then:

\[
\psi(t) \leq \exp \left(\int_0^t c(\tau) \, d\tau \right) \int_0^t F(\tau) \, d\tau,
\]

and:

\[
\frac{d}{dt} \psi(t) \leq c(t) \psi(t) + F(t).
\]

Since \(u_n \in L^2(\mathbb{R}^l) \) there is an estimation:

\[
\max_{i=1}^n \max_{j=1}^m c^*_i(t) \leq \max \left\| u_n \right\| \leq \text{const}.
\]

Functions \(c^*_i(t) = (u^n_*(t,x), \varphi_i(x)), \quad m = 1, 2, \ldots \) are continuous on \([0,T] \). On the interval \([t, t + \Delta t] \), we can estimate:

\[
\int_0^T (\sum_{i,j=1}^m a_{ij} \frac{\partial}{\partial x_j} u_i \frac{\partial}{\partial x_j} \varphi_j) \, dt \\
\leq c_e \int_0^T \left(\sum_{i,j=1}^m a_{ij} \frac{\partial}{\partial x_j} u_i \right) \varphi_j \, dt \\
- \lambda c_e \int_0^T \left| \varphi_j \right|^2 \, dt
\]
Thus, constants \(\text{Const}(n, \varphi, l) \) depend on \(n, \varphi, l \) but do not depend on \(m \) under the condition \(m \geq n \) so:

\[
|c^n_{\varphi}(t + \Delta t) - c^n_{\varphi}(t)| \leq \varepsilon(\Delta t)\|\varphi\|_{L^2} \to 0.
\]

Applying the diagonal method we are obtaining that the sequence \(c^{(n)}_{\varphi}(t), i = 1, 2, \ldots \) converges uniformly on \([0,T]\) to a certain continuous function \(c_{\varphi}(t), n = 1, 2, \ldots \) for every \(n \). The sequence of functions \(c_{\varphi}(t), n = 1, 2, \ldots \) determines the function \(u(t,x) \) as a \(L^2(R^4) \)-weak uniformly on \([0,T]\) limit of the functional sequence

\[
\{u_n(t,x)\} = \left\{ \sum_{i=1}^{\infty} c^n_{\varphi}(t)\varphi(x) \right\}
\]

that converges to \(u(t,x) = \sum_{i=1}^{\infty} c_{\varphi}(t)\varphi(x) \). To show the weak convergence we consider the equality:

\[
(u_{m(t)} - u, v) = \sum_{n=1}^{\infty} (v, \varphi_n)(u_{m(t)} - u, \varphi_n)
\]

and apply estimation:

\[
\left| u_{m(t)} - u, \sum_{n=1}^{\infty} (v, \varphi_n)\varphi_n \right| \leq \text{const} \left(\sum_{n=1}^{\infty} (v, \varphi_n)^2 \right)^{1/2}.
\]

Let \(s \) be large enough number so for any fixed real number \(\varepsilon \) there is inequality:

\[
\text{const} \left(\sum_{n=1}^{\infty} (v, \varphi_n)^2 \right)^{1/2} \leq \frac{\varepsilon}{2}
\]

and for large enough \(m(i) \) the first sum also less that \(\frac{\varepsilon}{2} \) for all \(t \in [0,T] \).

Let us show that the function \(u \) is a solution to the Cauchy problem for (1). For arbitrary function \(v = \sum_{i=1}^{\infty} d_i(t)\varphi_i(x) \), where the \(d_i(t) \) are arbitrary continuous functions with bounded weak derivatives, we consider the equality:

\[
\langle u_n(t), v(t) \rangle + \int_0^t \left\{ (-u_n(t), \partial_t v(t)) + \lambda \langle u_n(t), v(t) \rangle \right\} dt
\]

\[
+ \int_0^t \sum_{i,j=1}^l a_{ij} \partial_{x_i} u_n(t) \partial_{x_j} v(t) dt + \int_0^t (b, v(t)) dt = \int_0^t (f, v(t)) dt.
\]

The \(\varphi_m \) is the set of functions \(u_m \) and \(\varphi = \bigcup \varphi_m \), the set \(\varphi \) is dense in \(W^2_1 \). Passing to the limit as \(m \to \infty \) we obtain:

\[
\left\{ \left(-u(t), \partial_t v(t) \right) + \lambda \langle u(t), v(t) \rangle \right\} dt
\]

\[
+ \int_0^t \sum_{i,j=1}^l a_{ij} \partial_{x_i} u_n(t) \partial_{x_j} v(t) dt + \int_0^t (b, v(t)) dt = \int_0^t (f, v(t)) dt
\]

for any function \(v \in \varphi \).

Let us assume \(v = u_m - \varphi \) then we have:

\[
\langle u_n(t), u_m - \varphi \rangle
\]

\[
+ \int_0^t \left\{ (-u_n(t), \partial_t (u_m - \varphi)) + \lambda \langle u_n(t), (u_m - \varphi) \rangle \right\} dt
\]

\[
+ \int_0^t \sum_{i,j=1}^l a_{ij} \partial_{x_i} u_n(t) \partial_{x_j} (u_m - \varphi) dt + \int_0^t (b, (u_m - \varphi)) dt = \int_0^t (f, (u_m - \varphi)) dt
\]

so:

\[
\left\{ \left(-u(t), \partial_t (u_m - \varphi) \right) + \lambda \langle u(t), (u_m - \varphi) \rangle \right\} dt
\]

\[
+ \int_0^t \sum_{i,j=1}^l a_{ij} \partial_{x_i} u_n(t) \partial_{x_j} (u_m - \varphi) dt + \int_0^t (b, (u_m - \varphi)) dt = \int_0^t (f, (u_m - \varphi)) dt
\]

and:

101
we fix the function φ and pass to the limit as $m \to \infty$ obtain:

$$\iint_{\Omega} \left(-\left(u(t), \partial_t (u - \varphi)(t) \right) + \lambda \left(u(t), (u - \varphi)(t) \right) \right) \, dt \, \mathrm{d}x\, \mathrm{d}y$$

$$+ \int_{\Omega} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} (u - \varphi) \right) \, dt + \int_{\Omega} (b,u) \, dt = \int_{\Omega} (f,u) \, dt.$$

Since $v \in \varphi_n$, for arbitrary m therefore for arbitrary function $v \in \varphi = \bigcup_{m \geq 1} \varphi_n$, we have:

$$\iint_{\Omega} \left(-\left(u(t), \partial_t (u - v)(t) \right) + \lambda \left(u(t), (u - v)(t) \right) \right) \, dt \, \mathrm{d}x\, \mathrm{d}y$$

$$+ \int_{\Omega} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} (u - v) \right) \, dt + \int_{\Omega} (b,u - v) \, dt = \int_{\Omega} (f,u - v) \, dt + \int_{\Omega} (f,u) \, dt.$$

Since the set φ is dense in W_0^1, therefore for any $\varepsilon > 0$ and any function $\varphi \in \varphi$, we can put $v = u - \varepsilon \varphi$ and estimate:

$$\int_{0}^{\infty} \left(-\left(u(t), \partial_t (u - \varepsilon \varphi)(t) \right) + \lambda \left(u(t), (u - \varepsilon \varphi)(t) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} (u - \varepsilon \varphi) \right) \, dt + \varepsilon \int_{0}^{\infty} (b,\varphi) \, dt$$

$$- \varepsilon \int_{0}^{\infty} (f,\varphi) \, dt + \text{function}\left(\varepsilon \varphi \right) \geq 0.$$

We pass to the limit as $\varepsilon \to 0$ have:

$$\int_{0}^{\infty} \left(-\left(u(t), \partial_t \varphi(t) \right) + \lambda \left(u(t), \varphi(t) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \varphi \right) \, dt + \int_{0}^{\infty} (b,\varphi) \, dt - \int_{0}^{\infty} (f,\varphi) \, dt \geq 0.$$

Since the set φ is dense in W_0^1, from the last inequality, the estimation:

$$\int_{0}^{\infty} \left(-\left(u(t), \partial_t \varphi(t) \right) + \lambda \left(u(t), \varphi(t) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \varphi \right) \, dt + \int_{0}^{\infty} (b,\varphi) \, dt - \int_{0}^{\infty} (f,\varphi) \, dt = 0.$$

is true for arbitrary $\varphi \in W_0^1$, which means that function $u \in W_0^1$ is a solution to (1).

Remark

The monotonousness can be proven as:

$$\int_{0}^{\infty} \left(-\left(u_n(t) - v(t), \partial_t (u_n(t) - v(t)) \right) + \lambda \left(u_n(t) - v(t), (u_n(t) - v(t)) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u_n}{\partial x_i} \frac{\partial u_n}{\partial x_j} (u_n - v) \right) \, dt + \int_{0}^{\infty} (b,u_n - v) \, dt$$

$$\geq \int_{0}^{\infty} \left(-\left(u_n(t) - v(t), \partial_t (u_n(t) - v(t)) \right) + \lambda \left(u_n(t) - v(t), (u_n(t) - v(t)) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u_n}{\partial x_i} \frac{\partial u_n}{\partial x_j} (u_n - v) \right) \, dt + \int_{0}^{\infty} (b,u_n - v) \, dt$$

$$\geq \int_{0}^{\infty} \left(-\left(u_n(t) - v(t), \partial_t (u_n(t) - v(t)) \right) + \lambda \left(u_n(t) - v(t), (u_n(t) - v(t)) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u_n}{\partial x_i} \frac{\partial u_n}{\partial x_j} (u_n - v) \right) \, dt + \int_{0}^{\infty} (b,u_n - v) \, dt$$

$$\geq \int_{0}^{\infty} \left(-\left(u_n(t) - v(t), \partial_t (u_n(t) - v(t)) \right) + \lambda \left(u_n(t) - v(t), (u_n(t) - v(t)) \right) \right) \, dt$$

$$+ \int_{0}^{\infty} \left(\sum_{i,j=1}^{m} a_{ij} \frac{\partial u_n}{\partial x_i} \frac{\partial u_n}{\partial x_j} (u_n - v) \right) \, dt + \int_{0}^{\infty} (b,u_n - v) \, dt.$$

102
are satisfied, these equations mean that the coefficient of (15) converge to the coefficients (1) and additional condition:

\[b^*(\tau, u, \nabla u) - b^*(\tau, u^*, \nabla u^*) \leq \mu_4(x)\left(\frac{u - u^*}{\nabla u}\right) \]

is executed.

Then the sequence of the weak solution \(u^* \in V_{i,a}^2, \)
\(z = 1,2, \ldots \) to the Cauchy problems for the equations (15)
under the initial conditions \(u^*(0, x) = \phi_0^* \) converges to the
weak solution to the Cauchy problem for the equation (1)
under the initial condition \(u(0, x) = u_0 \) in \(V_{i,a}^2 \).

Proof

The proving will be accomplished according to the schema:

- compose the integral identity for the solution \(u(t, x) \)
to the Cauchy problem for the equation (1) under the
initial condition \(u(0, x) = u_0 \) and for the sequence of the
weak solutions \(u^* \in V_{i,a}^2, \)
\(z = 1,2, \ldots \) to the Cauchy problems for the equations (15)
under the initial conditions \(u^*(0, x) = \phi_0^* \)
- subtract integral identity for the solution \(u^* \in V_{i,a}^2, \)
\(z = 1,2, \ldots \) from the integral identity for the solution
\(u(t, x), \) the results of these subtractions are written as
the integral identity for the differences \(v^* = u - u^* \)
- obtain the priori estimations for the differences \(v^* = u - u^* \)
- apply the priori estimations to substantiate the passing to the limit \(\lim_{\tau \to \infty} v^* = 0 \) in \(V_{i,a}^2 \) topology.

Let us compose the integral identity for the (1):

\[\langle u(t, \eta(t)) \rangle_{W^1_{i,a}}^\tau + \int_0^\tau \left(-\langle u(t, \eta(t)) \rangle_{W^1_{i,a}}^\tau + \int_0^\tau \left(b^*(\tau, u, \nabla u) - b^*(\tau, u^*, \nabla u^*) \right) d\tau \right) \]

for an arbitrary \(\eta \in W_{i,a}^n \) and the integral identities for the
Equations (15):

\[\langle u^*(t, \eta(t)) \rangle_{W^1_{i,a}}^\tau + \int_0^\tau \left(-\langle u^*(t, \eta(t)) \rangle_{W^1_{i,a}}^\tau + \int_0^\tau \left(b^*(\tau, u, \nabla u) - b^*(\tau, u^*, \nabla u^*) \right) d\tau \right) \]
for an arbitrary \(\eta \in W^1_{t_k} \), after the subtraction, we are obtaining the equation:

\[
\left\langle v'(\tau) - \eta'(\tau) \right\rangle d\tau + \int_0^t \left[-\left\langle v'(\tau), \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \eta \right\rangle + \lambda \left\langle v'(\tau), \eta \right\rangle \right] d\tau \\
+ \int_0^t \left[\sum_{i,j=1}^n \left(a_{ij}(\tau) - a_{ij}^\#(\tau) \right) \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \eta \right] d\tau \\
+ \int_0^t \left[\sum_{i,j=1}^n a_{ij}^\#(\tau) \frac{\partial}{\partial x_j} v^2 \cdot \frac{\partial}{\partial x_i} \eta \right] d\tau \\
+ \int_0^t \left[b(\tau, \cdot, u, \nabla u) - b^\#(\tau, \cdot, u', \nabla u') \right] d\tau \\
= \int_0^t \left(f(\tau) - f^\#(\tau), \eta \right) d\tau.
\]

Let us estimate the term

\[
\lim_{\varepsilon \to 0} \int_\varepsilon^t \left[\sum_{i,j=1}^n \left(a_{ij}(\tau) - a_{ij}^\#(\tau) \right) \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \eta \right] d\tau,
\]

since:

\[
\lim_{\varepsilon \to 0} \int_\varepsilon^t \left[\sum_{i,j=1}^n \left(a_{ij}(\tau, x) - a_{ij}^\#(\tau, x) \right) \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \eta \right] d\tau = \lim_{\varepsilon \to 0} \left[\int_\varepsilon^t \left| \sum_{i,j=1}^n \left(a_{ij}(\tau) - a_{ij}^\#(\tau) \right) \right| d\tau = 0
\]

therefore:

\[
\lim_{\varepsilon \to 0} \int_\varepsilon^t \left[\sum_{i,j=1}^n \left(a_{ij}(\tau) - a_{ij}^\#(\tau) \right) \frac{\partial}{\partial x_j} u \cdot \frac{\partial}{\partial x_i} \eta \right] d\tau = \int_0^t \left(f(\tau) - f^\#(\tau), \eta \right) d\tau = 0,
\]

applying the notation \(v^\# = u - u' \) and fact \(v^\# \in W^1_{t_k} \), we have had:

\[
\lim_{\varepsilon \to 0} \int_\varepsilon^t \left[\sum_{i,j=1}^n \left(a_{ij}(\tau) - a_{ij}^\#(\tau) \right) \frac{\partial}{\partial x_j} v^2 \cdot \frac{\partial}{\partial x_i} \eta \right] d\tau \\
\leq \sum_{i,j=1}^n a_{ij}^\# \left\| \frac{\partial}{\partial x_j} v^2 \right\| \left\| \frac{\partial}{\partial x_i} \eta \right\|
\]

From the conditions we have:

\[
\lim_{\varepsilon \to 0} \int_\varepsilon^t \left(f(\tau) - f^\#(\tau), \eta \right) d\tau = 0.
\]

Since:

\[
\lim_{\varepsilon \to 0} \int_\varepsilon^t \left[b(\tau, \cdot, u, \nabla u) - b^\#(\tau, \cdot, u', \nabla u') \right] d\tau = 0,
\]

and \(\eta = v^\# \), we obtain:

\[
\left\langle b(\tau, \cdot, u, \nabla u) - b^\#(\tau, \cdot, u', \nabla u') \right\rangle d\tau \\
\leq \left\| \mu v^\# \right\| \left\| \nabla v^\# \right\| + \left\| \mu v' \right\| \left\| v' \right\|
\]

\[
\leq \frac{1}{2} \left(\frac{1}{\sigma^2} + \frac{1}{\zeta^2} \right) \left\| \mu v^\# \right\|^2 + \zeta^2 \left\| v^\# \right\|^2
\]

so:

\[
\left\| \mu v^\# \right\|^2 = \left\langle v^\# \right\rangle \left\| v^\# \right\|
\leq \beta \left\| \nabla v^\# \right\|^2 + c(\beta) \left\| v^\# \right\|^2
\]

similarly, the term containing \(\mu \) can be estimated. After reducing similar terms, we obtain the statement of the theorem.

Ethics

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

References

