
 

 

 © 2020 Marcela C Rocha, Eric B Ferreira and Daniel F Ferreira. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 

Journal of Mathematics and Statistics 

 

 

 

Original Research Paper 

Canonical Correlation-based Tests for the Agreement of 

Sensory Panelists 
 

1Marcela C Rocha, 2Eric B Ferreira and 3Daniel F Ferreira 

 
1Federal Institute of Education, Science and Technology of South of Minas Gerais, Machado, Brazil 
2Department of Statistics, Federal University of Alfenas, Alfenas, Brazil 
3Department of Statistics, Federal University of Lavras, Lavras, Brazil 

 
Article history 

Received: 09-10-2019 

Revised: 22-11-2019 

Accepted: 08-01-2020 

 

Corresponding Author: 

Eric B Ferreira 

Department of Statistics, Federal 

University of Alfenas, Alfenas, 

Brazil 
Email: eric.ferreira@unifal-mg.edu.br  

Abstract: The reliability of the results of sensory analysis is directly 

linked to the performance of panel of assessors what, in general, 

means the ability of judges to identify small differences between 

products, the replicability of their ratings for the same product and the 

panel consonance. The panel consonance - usually called 

unidimensionality - can be understood as the agreement between the 

judges, thus it reflects the degree of training. Several methods have 

been proposed for assessing panel unidimensionality but always 

checking one attribute at a time. We proposed a generalization of the 

unidimensionality concept based on canonical correlation and 

enabling to consider several attributes simultaneously.  
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Introduction 

The search for improving the quality of products and 

their suitability for the consumer market is constant and, 

therefore, sensory analysis has been increasingly used in 

several industry segments, both in product development 

and in quality control. Its purpose is to interpret, measure 

and understand the human responses to properties of a 

product perceived by the senses Hummer (1998) 

Martens (1999) Dutcosky (2011). 

The reliability of the results of sensory analysis is 

directly linked to the performance of panel that, in 

general, results from the ability of judges to identify 

small differences between products, the replicability of 

their ratings for the same product and the panel 

consonance Amorim et al. (2010). 

The panel consonance can be understood as the 

agreement between the judges, thus it reflects the degree 

of training. In a trained panel, the judges score the same 

product in the same way. Thus, the development of 

techniques to assess the level of agreement among the 

judges is essential to improve reliability of the sensory 

evaluation. 

Therefore there is an increasing number of studies on 

that topic. Bi (2003) and Latreille et al. (2006) propose 

methods for assessing agreement between judges based 

on mixed linear models. Pinto et al. (2014) shows 

Cronbach’s alpha index as an alternative for evaluating 

the consonance. Furthermore, in several studies, the 

consonance of the sensory panel is measured through its 

unidimensionality. 

The concept of unidimensionality was inserted in the 

context of sensory analysis by Dijksterhuis (1995), 

which proposed a method based on Principal Component 

Analysis (PCA) to evaluate the consonance of a panel, 

for a given attribute. 

Considering an experiment with n products, p judges 

and q attributes; the data may be arranged in a X 

hypermatrix of size n  q  p, with entries xijk; with i = 

1, 2,…,n, j = 1,2,…,q and k = 1,2,…,p. The hypermatrix 

X consists of q slices n  p, i.e., taking a matrix Xj is 

setting up all the scores for the j-th attribute. 

Dijksterhuis (1995) states that if a PCA on Xj results 

in a great first eigenvalue or high variance accounted for 

the first component then the panel should be considered 

unidimensional, i.e., there is a high degree of agreement 

between the judges for the single attribute. The 

comparison between the first dimension with the others, 

for the j-th attribute, can be made by: 
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where, 2

i  is the i-th eigenvalue of the matrix 

j jX X Dijksterhuis (1995). 

Based on the concept of unidimensionality of a 

sensory panel, Fernandes (2012) proposed a Monte Carlo 

Eigenvalues Test (MCET) to infer about the equality of 

the last p-1 last eigenvalues, that is, the null hypothesis 

established by the author was H0: 2 = 3 = … = p = 0. 

According to the author, under the null, all variability 

should be contained in the first principal component, i.e., 

the first eigenvalue. Thus, the sum of the p eigenvalues 

must be equal to the first eigenvalue and thus the null 

hypothesis can be rewritten as 
0 1

1

:
p

i

i

H  


  and, thus, 

the test statistic is given by: 
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which can be used to the test H0 with significance . 

Alternatively, the test can be done in an empirical 

distribution, generated as follows. B samples are 

generated from a random variable Xp1, which are 

scores vectors from p judges regarding n products, 

such that Xp1  N(0, ) and  represents an 

equicorrelated structure. 

Both the observed and simulated vectors should go 

under PCA to determine the first eigenvalue ( 1 1
ˆ ˆe  , 

respectively, with ℓ {1,…,B}) and the test statistic 

given in (1). Then, an empirical p-value can be 

computed as p-value = 
 

1

B

c c

l

I z z

B




, where I is the 

indicator function. 

Amorim et al. (2010) proposed a Monte Carlo 

Undimensionality Test (MCUT). According to the 

authors, the variance accounted for the first principal 

component  2

1  is estimated by: 
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where, p is the number of panelists and  is the 

equicorrelation between them. 

To test the hypothesis 2 2

0 1 10:H   , where 2

1  is 

estimated by the expression (2) and 2

10  is a value 

previously established, one must generate B Monte Carlo 

samples under H0 of a random variable Xp1 such that 

Xp1  N(0, ) and: 
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with 2 = 1 without loss of generality. 

Thus, the p-value for this test is given by p-value = 

 2 2

1 1

1

B

I R R

B




, where I is the indicator function. 

In addition to the tests proposed by Fernandes (2012) 

and Amorim et al. (2010), in this work we address two 

parametric bootstrap tests proposed by Gebert (2010) 

and the Fujikoshi test proposed by Ferreira (2011) which 

are essentially tests for retaining principal components 

and are inserted in the sensory context by Fernandes 

(2012). It is worth noting that the tests are presented in 

the same way they have been proposed, i.e., to infer 

about the variation accounted for the k first principal 

components  2

k . However, during the generalization 

we consider just variance explained by the first principal 

component, i.e., the particular case where k = 1. 

The Fujikoshi test (FUJI) has been proposed to assess 

the proportion of the variance explained by k first 

principal components of the sample which can be 

calculated by: 
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where  2 0,1kR   and ˆ
i  are the eigenvalues of the 

sample covariance matrix S. 

According to Ferreira (2011), the distribution of 2

kR  

can be known, using the results given by Fujikoshi (1980), 

which states that    2 2 21 0,k kn R N   , where 2

k  is 

the proportion of variance explained by the k first 

principal components and 2 is estimated by the 

expression: 
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Based on this result, the test was proposed for the 

null H0 : 2 2

0k k   and test statistic was given by the 

expression: 
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The construction of the parametric bootstrap tests 

proposed by Gebert (2010) depend on a normal 

distribution with p variables following: 

 

1. The mean should be the zero vector, that is, b = 

[0…0]. 

2. The covariance matrix (b) should satisfy the 

condition 2 2

0k k  . 

 

Considering a random sample in p  and covariance 

matrix , the proportion of the variance explained by k 

first principal components  2

k has estimator 

 2

kR obtained by expression (3). 

The matrix b can be constructed from the spectral 

decomposition b = ˆ ˆ
bP P , where P̂  is the matrix of 

eigenvectors of S, which is the sample covariance matrix 

and b is a diagonal matrix defined for the proportion of 

the variance explained by k first principal components is 

equal to 2

0k  Gebert (2010) Gebert and Ferreira (2013). 

Given the parameters b and b, B random samples of 

size n are generated from a normal distribution with p 

variables with these parameters so that each bootstrap 

sample are under the assumption H0 : 2 2

0k k  , 

ℓ{1,2,…,B}. 

In the first bootstrap test, known as Parametric 

Bootstrap Test Based on the Proportion of the 

Variance Explained by k First Principal Components 

(PBr), 2

kR is calculated by the expression (3) from ℓth 

bootstrap sample. 

Thus, its p-value is defined as 
 2 2

1

B

k kI R R
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, where I 

is the indicator function. 

In the second bootstrap test, named Parametric 

Bootstrap Test Based on zcℓ (PBz), the test statistic is 

defined by: 
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where, zcℓ  N(0,1) and 2

kR  is calculated according to 

expression (3) for the ℓth bootstrap sample. 

In the same way, the p-value of this test is given by 

the proportion of cases where the calculated values for 

zcℓ are below the value of zc (expression (4) calculated 

for the original sample), i.e., 
 

1

B

c cI z z

B




, where I is 

the indicator function. 

Considering that the use of the tests mentioned above 

is restricted for one attribute, to assess agreement among 

the judges, the aim of this study is to generalize such 

tests. In addition, the objective was to evaluate the 

performance of generalized tests in terms of power and 

type I error, via Monte Carlo simulation and recommend 

the test with better performance. 

The generalization proposed here is to use the 

canonical correlation matrix as input for the tests. Thus, 

it is possible to infer about the panel agreement 

considering all attributes simultaneously. 

The following section presents the proposed method; 

the next one describes the simulation study; then the 

results and discussion section brings the power curves, 

where the tests can be compared. 

On the Proposed Method 

Consider the evaluation of n products, for p judges 

that use q attributes (variables). 

Assume that 1 2, ,...,ij ij ij ijqX X X X     is a vector of 

dimensional q scored by jth judge regarding the ith 

product, with i{1,2,…,n} and j{1,2,…, p}. Thus, 

the matrix X (n  pq) with the panel scores can be 

conceived as: 
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 (5) 

 

From the matrix (5) we want to test the hypothesis 

H0: The panel is unidimensional. 

In order to reduce the dimension of X so that it is 

possible to apply the tests for unidimensionality of 

sensory panels, the sample covariance matrix (S) is 

replaced by the canonical correlation matrix (R). So, the 
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initial step consisting in constructing the R matrix is 

described below and is common to all tests. 

The generalizations are proposed for the cases where 

the number of attributes evaluated is greater than one (q 

> 1) and consisting initially in reducing the size for the 

one-dimensional case, that is, the column of the data 

matrix dimension is reduced from pq to p. The proposed 

adaptation is due to the fact that the application of 

generalized tests in this study only be possible for a fixed 

attribute. Therefore, the advantage offered by the 

generalization of the testing is to analyze simultaneously 

all sensory attributes. 

Given two matrices Xj and Xj, that contains the 

scores of two different judges (say j and j), linear 

combinations j j jY a X  and j j jY b X    are sought 

such that the sample correlation 
,j jY Y

r


 is maximized. 

This maximum is easily obtained using the theory of 

canonical correlations. If this process is repeated for 

all pairs of judges, the sample correlation matrix R 

can be expressed as: 
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Given matrix R, each of the proposed test is finalized 

by one of the tests for the unidimensionality of sensory 

panels described above. 

It is worth noting that the parametric bootstrap test 

based on 2

kR  (PBr), parametric bootstrap test based on 

zcℓ (Bpz) and Fujikoshi test infer about the proportion 

of the variation explained by the first principal 

component. Thus, generalizing the tests involve 

testing the hypothesis H0: 1  0 or, equivalently, H0: 
2 2

0k k  . 

The Monte Carlo Eigenvalues Test infers about the 

equality of the last eigenvalues. Thus, considering 1, 

2,…, p eigenvalues of , estimated by the respective 

eigenvalues of R a null hypothesis can be expressed by 

H0 : p+1 = p+2 = … = pq = 0. 

The steps described earlier in this section are shown 

in Figure 1. 
It is noteworthy that, although there are differences 

between pairs of hypotheses presented for generalizations, 
the non-rejection of H0 in both cases involves the finding 
that the panel can be unidimensional. 

In any case, the idea is that once rejected the null 
hypothesis of multivariate unidimensionality, 
unidimensionality tests to be applied for each attribute. 
Thus, it is possible to see an analogy between the 
proposed procedure and analysis of variance F test 
followed by a multiple comparison test. 

 

 
 

Fig. 1: Representation of the steps of generalization of the tests 
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Simulation Experiment 

Simulations experiments were carried out to evaluate 

and compare the tests regarding their performance in 

terms of power and type I error rate. For that reason, 

routines were written in R code (R CORE TEAM, 2014), 

both for the implementation of testing and for validation 

and comparison, which were performed by Monte Carlo 

simulation. 

For the computer simulation, we considered 216 

situations, generated from the combination of the 

number of attributes q{2,5,10,20}, number of 

products n{5,10,15,20}, number of assessors 

p{2,5,10,15} and correlations between assessors 

r{0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. The scenarios were 

established so that n > q and n  p. 

The degree of training or proportion of the variation 

accounted for the first principal component  2

1 , used 

for constructing graphs, indicates the level of agreement 

of the sensory panel and varies according to the 

configuration scenario because it is calculated based on 

the number of judges (p) and the correlation between 

them (). As results presented by Fernandes (2012), can 

be obtained by the expression: 

 

 2

1

1 1p

p




 
  

For each of the scenarios were simulated N = 1000 

Monte Carlo samples. Furthermore, in all experiments, 

samples were simulated populations with multivariate 

parameter q so that the degree of training of raters were 

confined to the range between 0 and 1. 

For the generation of multivariate samples of this 

study, it should be noted that there is a correlation 

between sensory attributes (variables) and among the 

panelists. The covariance between attributes and between 

judges were fixed by the composition procedure of the 

data, which follows the linear model: 

 

,ijm j m ijmY e       

 

where, Yijm is the observation of the jth variable for the 

product i, for the judge m,  is a common constant to all 

observations (zero without loss of generality), j is the 

effect of the variable (attribute) j, m is the random effect 

of the judge m and eijm is the random error associated 

with Yijm. The composition of each observation is 

illustrated in Fig. 2 and explained below. 

It was initially generated a hyper zero matrix of size n 

 q  p. Thus, the constant m = 0 was assigned to all 

observations. 

Then was added the effect of attribute (j) to each of 

the n  p slices of the hypermatrix. 

 

 

 
Fig. 2: On the left, the sample, right, an observation Yijm 

n products 

p judge 

q attributes 

Yijm =  + j + m + eijm 
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For that, q variables were drawn from a 

distribution Nq(, q), where  = 0 the mean vector of 

attributes and q the covariance matrix between the 

attributes. In this study, the correlation between the 

sensory attributes was set at zero. 

Similarly, for each of the slices n  q from the 

hypermatrix, the effect of the judge m (m) was added to 

all the marks awarded by the same. Thus, for the draw of 

the effects of judge (settling the quality of the desired 

training, ), was used a distribution Np(0, p), where: 
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Note that R is equicorrelated and the correlation 

(which indicates the quality of training) assumes the 

values mentioned above {0.1, 0.3, 0.5, 0.7, 0.9, 

0.99}. 2 = 1 was set without loss of generality. 

Finally, the random errors were drawn from a 

standard normal distribution and added to each of the 

observations. 

In each sample generated were performed all 

generalized tests, setting up the ideal correlation of 0 = 

0.75. Were calculated percentages of rejection of the null 

hypothesis for the N = 1,000 samples for the nominal 

significance level  = 5% and thus the estimator of the 

Power Function (PF), that is, the proportion of rejections 

of H0 is given by: 
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N
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 (6) 

 

where, p-valueℓ is the p-value of ℓth Monte Carlo sample 

simulated and I is the indicator function. The 

significance  was set to 5% for all cases. 

Results and Discussion 

The following are the results of Monte Carlo 

simulation which brings the graphs for the performance 

of the Monte Carlo eigenvalues test, Fujikoshi test, 

parametric bootstrap test based on 2

kR , parametric 

bootstrap test based on zcℓ and Monte Carlo 

undimensionality test, generalized in this work. 

In the figures, the dotted line parallel to the ordinate 

at the point where the degree of training corresponds to 

the correlation between the judges equal to 0.75 is the 

separation between the regions under H1 and under H0 

and the horizontal dotted line determines the level of 

significance ( = 0.05). 

To verify the existence of differences between the 

nominal level of significance adopted () and type I 

error rates we calculated the exact confidence interval 

for proportion, with 99% of confidence whose 

extremes are represented by the dashed line parallel to 

the abscissa. 

Although some figures have been omitted due to the 

space limitation, the detailed description of the behavior 

of the tests is shown below. 

Evaluating q = 2 attributes and p = 2 judges, 

Fujikoshi test do not reject the null hypothesis for all 

levels of training set, while the Monte Carlo 

undimensionality test and bootstrap parametric tests 

(PBr and PBz) reject forever. As we can see in Fig. 3, 

this result is recurrent, even with the increased 

number of products. 

 

 
 
Fig. 3: Power of tests MCET, FUJI, MCUT, PBr e PBz, 

considering q = 2 attributes, p = 2 judges, n = 5 

products (left) and n = 20 products (right) 
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In these scenarios, the Monte Carlo eigenvalues test 

presents low power (37:8%) analysing n = 5 products 

and not control type I error rates in the region close to 

the level of training taken as reference, but its power 

grows with the increasing number of products (n), 

exceeding 85% for n = 20. Furthermore, the Monte Carlo 

eigenvalues test takes control of Type I error rates were 

considered when ten or more products. 

Thus, analyzing the scenarios with two attributes, the 

power of Monte Carlo eigenvalues test improves with 

increasing number of products (n). Can also be noted 

that, as shown in Fig. 4, the control of Type I error rates 

of the Monte Carlo test of the eigenvalues decreases with 

increasing the number of attributes (q), while the 

performance of other tests remains unchanged. 

 

 

 

Fig. 4: Power of tests MCET, FUJI, MCUT, PBr e PBz, 

considering q = 10 attributes (left) and q = 15 attributes 

(right), n = 20 products and p = 2 judges. 

For the minimum number of assessors (p = 2), only 

the MCET differentiated the simulated scenarios 

under H0 of the scenarios under H1. When evaluating 

the performance of tests for an attribute, Gebert 

(2010) obtained different results, as it considered 

satisfactory performance of the parametric bootstrap 

tests when considered p = 2 products. Amorim et al. 

(2010), to propose and evaluate the performance of 

the MCUT to one sensory attribute, states the test was 

more liberal to a small number of judges, but in 

general, obtained performed well. 

From Fig. 5 it can be seen that, if compared with 

the cases where p = 5, the FUJI, MCUT and 

parametric bootstrap tests showed improvement in 

their performance. 

 

 
 
Fig. 5: Power of tests MCET, FUJI, MCUT, PBr e PBz, 

considering q = 2 attributes, p = 5 judges, n = 5 

products (left) and n = 20 products (right) 
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According to Fig. 5 and considering a small number of 

attributes (q = 2), the power presented by the parametric 

bootstrap tests based on 2

kR  and parametric bootstrap based 

on zcℓ (89.27% and 95.04%, respectively) exceeded the 

power of tests on eigenvalues Monte Carlo (78.10%) and 

MCUT (65.80%). Considering 5 judges and the minimum 

number of attributes (q = 2), although it has shown a low 

power when n = 5 (below 35%), the FUJI showed an 

improvement over the power with the increasing number of 

products and in such cases, control better Type I error rates 

in all situations, unlike what happened with the other tests. 

In general, for p  5, the FUJI was slightly less liberal 

than the other tests on some of the simulated scenarios. In 

tests performed for one attribute, according to Fernandes 

(2012), the FUJI was more liberal than the others. The 

performance of the FUJI contrasts with the results of Gebert 

(2010) that when comparing the tests for one attribute, said 

the FUJI had underperformed to bootstrap tests. 

 

 
 
Fig. 6: Power of tests MCET, Fuji, MCUT, Bp e Bpz, 

considering q = 5 attributes (left) and q = 15 attributes 

(right), n = 20 products and p = 5 judges 

Furthermore, as shown in Fig. 6, with the increase in 

the number of attributes (q), the MCET, MCUT, FUJI, 

PBr and PBz start to have power curves increasingly 

similar to each other, while the FUJI continues slightly 

lower than the other tests in relationship to power, but 

looks better control the type I error rate. 

Power curves of the two bootstrap parametric tests, 

MCET, MCUT and FUJI approaches to increase the 

number of assessors. A similar result was found by 

Fernandes (2012), which compared the performance of 

the tests for q = 1 attribute. 

Figure 7 shows results for q = 2 and p = 10. In these 

cases, the curves of power of tests are closer to each other. 

In general, the tests have high power, but do not control the 

type I error rate in the region near the critical point. 

Considering further p = 15 and q  10, it is noted from 

Fig. 10 that, with increasing the number of attributes, the 

bootstrap tests did not control the Type I error rate in any 

scenario and the MCUT is liberal when n = p. 
 

 
 
Fig. 7: Power of tests MCET, Fuji, MCUT, Bp e Bpz, 

considering q = 2 attributes, p = 10 judges, n = 10 

products (left) e n = 15 products (right) 
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In scenarios where p  5 increasing the number of 

products (N) resulted in a improves the behavior of all 

the tests with increased power and increased control in 

type I error rate, the result was also obtained by 

Fernandes (2012) for q = 1. 
Increasing the number of attributes (q) results in an 

increase of type I error rates and this growth was more 
detrimental to the performance of the parametric 
bootstrap tests. However, increasing the number of 
products (n) improves the control of Type I error rate, 
as in the simulations performed by Gebert (2010), 
Amorim et al. (2010) and Fernandes (2012) which 
evaluated the performance of tests for an attribute. 

It is worth noting that the performance of the tests is 

best whenever n  pq, since they have higher power and 

better control of type I error rates. However, this situation is 

little used in practice in sensory analysis, because it is quite 

common for the number of attributes and/or the number of 

panelists products exceeds the number of products. 
 

 
 
Fig. 8: Power of tests MCET, Fuji, MCUT, Bp e Bpz, 

considering q = 2 attributes (left) and q = 15 attributes 

(right), n = 20 products and p = 10 judges 

The FUJI and MCET have their power curves 

almost coincident when p = 10 and further show more 

similar with increasing the number of attributes (q) 

and the number of products (n), in this situation, the 

two bootstrap parametric tests and MCUT are more 

liberal insofar as it increases the number of attributes 

(as shown in Fig. 8). Furthermore, all tests show a 

slight improvement in the control of type I error rate 

with increasing of n. 

In Figure 9 the results of computer simulation are 

shown in the scenarios composed of two attributes and 

fifteen assessors. Note that tests have high power 

(100% in most scenarios simulated under H1) and 

show similar behavior to each other. Furthermore, the 

proximity of its power curve is proportional to number 

of products (n). 

 

 
 
Fig. 9: Power of tests MCET, Fuji, MCUT, Bp e Bpz, 

considering q = 2 attributes, p = 15 judges, n = 15 

products (left) and n = 20 products (right) 
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Fig. 10: Power of tests MCET, Fuji, MCUT, Bp e Bpz, 

considering q = 10 attributes, p = 15 judges, n = 15 

products (left) and n = 20 products (right) 

 

Final Remarks 

Given the need to evaluate the unidimensionality of 

sensory panels considering all sensory attributes 

simultaneously, were proposed generalizations of five 

tests for retention of principal components available in 

the literature. 

The Monte Carlo eigenvalues test was higher than the 

other tests when the number of judges was minimal (p = 

2) because it was the only one that differentiated the 

simulated situations under H0 those simulated under H1. 

Thus, other tests are not recommended for a small 

number of judges. 

For large samples, especially with the increasing 

number of attributes (q), the Monte Carlo eigenvalues 

test and Fujikoshi test are more recommended than the 

parametric bootstrap tests and the Monte Carlo test for 

unidimensionality because have high power and better 

control the type I error rate. 

In general, the proposed generalizations are liberal in 

the vicinity of the critical point, particularly for a large 

number of attributes. However, the control of the Type I 

error rate is better as increases number of products. 
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