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Abstract: The percentage CD4+ T-lymphocytes is used to monitor pediatric 

HIV disease. However, in resource-limited settings, enumerating the 

percentage of CD4+ T-lymphocytes is hampered by the lack of laboratory 

infrastructure and trained technicians. In this paper, we investigated the 

performances of the percentage and absolute CD4+ T-lymphocytes as 

markers of pediatric HIV disease progression using data from HIV-infected 

children enrolled through the Yale Prospective Longitudinal Pediatric Cohort 

study. A Lehmann family of Receiver Operating Characteristic (ROC) curves 

were used to estimate and compare the performance of the two biomarkers in 

monitoring pediatric HIV disease progression. The area under the ROC 

(AUC) curve and its empirical estimator have previously been used to assess 

the performance of biomarkers for a cross-sectional data. However, there is a 

paucity of literature on the AUC for correlated longitudinal biomarkers. 

Previous works on the estimation and inference of the AUC for longitudinal 

biomarkers have largely focused on independent biomarkers or failed to 

consider the effect of covariates. The Lehmann approach allowed us to 

estimate the AUC of the aforementioned correlated longitudinal biomarkers 

as functions of explanatory variables. We found that the overall 

performance of the two biomarkers was comparable. The area under the 

ROC curves for CD4+ T cell count and percentage were 0.681 [SE = 0.029; 

95% CI: 0.624-0.737] and 0.678 [SE = 0.024; 95% CI:0.630-0.725], 

respectively. Our results suggest that absolute CD4+ T-lymphocyte counts 

could be used as a proxy for percentage of CD4+ T-lymphocytes in 

monitoring pediatric HIV in resource-limited settings. 

 

Keyword: HIV, CD4+ T Cells, Receiver Operating Characteristics (ROC) 

Curve, Lehman Family of ROC Curves 

 

Introduction 

HIV infects CD4+ T cells and leads to cell death and 

subsequent depletion of CD4 cells. The progressive 

depletion of CD4+ T cells results in an increased risk for 

the development of opportunistic infections, Acquired 

Immune Deficiency Syndrome (AIDS) and death 

(Nishanian et al., 1998; Pantaleo et al., 1993; Vlahov et al., 

1998). Antiretroviral therapy (ART) suppresses HIV 

viral replication and leads to maintenance or increase in 

CD4+ T cells, thereby restoring immune function. In 

resource-rich countries, the standard of care for 

monitoring ART is the routine laboratory monitoring of 

CD4+ T cell count and HIV viral load (Hammer et al., 

2006; Mellors et al., 1997). In the US, CD4+ T cell 

count and HIV viral load are measured at the time of 

diagnosis and at least every 3-4 months on ART. These 

laboratory services and frequency of measurements are 

not routinely available in many resource-limited settings 

(Diagbouga et al., 2003). The WHO recommendation for 

ART monitoring in low and middle income countries has 

evolved from CD4+ T cell monitoring every six months 
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and viral load testing only when the capacity exists to 

routine viral load monitoring being the preferred 

monitoring approach to diagnose and confirm treatment 

failure (WHO, 2010; 2015). There is a preponderance of 

evidence to suggest that viral load monitoring is more 

sensitive in detecting patients with ART failure than 

clinical or immunological (CD4+ T cells) monitoring 

(Hosseinipour et al., 2009; Rawizza et al., 2011; 

Reynolds et al., 2009). However, if viral load is not 

routinely available, the WHO recommends that CD4+ T 

count and clinical monitoring should be used to diagnose 

treatment failure (WHO, 2015). This later recommendation 

is based on the fact that routine laboratory monitoring, 

particularly viral load determination, is not feasible in 

most resource-limited countries due to cost, lack of 

technical expertise and lack of infrastructure (Taiwo and 

Murphy, 2008). Moreover, there are instances where 

patients on ART may have suppressed viral load 

without CD4+ T cell recovery. Hence, CD4+ T cell 

assessment is the most popular ART monitoring tool 

and will continue to play an important role in ART 

monitoring, particularly, where viral load monitoring is 

not available (Ford et al., 2015). 

Due to the well-known large natural decline and 
variation in absolute CD4+ T cell numbers during early 
childhood (Stein et al., 1992; Wade and Ades, 1998), the 
percentage of these cells is used in children, particularly 

in those less than 5 years of age (Hughes et al., 1994). 
We previously reported that in a pediatric HIV cohort, 
the changes in percentage CD4+ T cells with treatment 
were similar to that of absolute CD4+ T cell count, 
regardless of age (Paintsil et al., 2008). In many 
resource-limited settings, clinicians rely on clinical and 

immunologic criteria to identify children failing first-line 
therapy (Jittamala et al., 2009; Ruel et al., 2011). CD4+ 
T cells are enumerated with flow cytometry technique 
based on either dual or single platform technologies 
(Mandy et al., 2003). The dual-platform technology 
determines absolute T-lymphocyte numbers using two 

different instruments (a hematology analyzer and a flow 
cytometer). The absolute CD4+ T cell  number is the 
product of three laboratory measurements: The white 
blood cell count, the percentage of white blood cells that 
are lymphocytes (determined by hematology analyzer) 
and the percentage of lymphocytes that are CD4+ 

(determined by flow cytometry). The single-platform 
technology is designed to determine both absolute and 
percentage lymphocyte subset values using a single tube. 
Because of the high cost of equipment, reagents and 
maintenance of the single and dual platform 
technologies, most resource-limited settings use 

relatively less expensive and technically less complex 
devices for CD4 enumeration (Lyamuya et al., 1996; 
Taiwo and Murphy, 2008). However, most of these 
devices provide the absolute CD4+ T cell counts and not 
the percentage of CD4+ T cells, thus they are not 

pediatric friendly (Diagbouga et al., 2003). There is a 
need for further research to determine whether absolute 
CD4+ T cell count can be used in place of percentage 
CD4+ T cells in managing HIV-infected children of all 

ages especially in areas where available devices for CD4 
enumeration do not measure percentage CD4+ T cells 
(Diagbouga et al., 2003). 

The objective of our study was two-fold: (1) To 
estimate the predictive accuracy of absolute CD4+ T 
count and CD4+ T percentage in monitoring pediatric 

HIV disease progression and (2) compare performances 
of the two markers. HIV disease progression was 
assessed by the proportion of detectable viremia defined 
as any detectable viral load above the limit of detection 
offered by the assay (Paintsil et al., 2016). We analyzed 
longitudinal data from HIV-infected children enrolled in 

the Yale Prospective Longitudinal Pediatric HIV Cohort 
study comprising of children born to HIV infected 
mothers in the greater New Haven area, since 1985. We 
assessed the performance of the two markers in a longer 
follow-up duration period spanning different treatment 
strategy eras (i.e., pre-highly active antiretroviral therapy 

(HAART) and HAART) and also provide evidence to 
support the use of absolute CD4+ T cell count in HIV-
infected children, regardless of age. 

Statistical Methods 

Receiver Operating Curve (ROC) and Area Under 

ROC 

Let Di denotes the detectable viremia status for the ith 

subject. D is a binary random variable and takes the 

values 0 or 1 depending on the frequency of detectable 

viremia episodes. D=0 for individuals who had 

detectable viremia during less than or equal to 50% of 

their clinic visits (infrequent episodes of detectable 

viremia). For individuals who had detectable viremia 

during more than 50% of their clinic visits (frequent 

episodes of detectable viremia), D takes the value 1. 

Suppose Y
1
 and Y

2
 are continuous positive random 

variables and represent the absolute CD4+ T cell count 

and percent of an individual, respectively. Let 1
y

S  and 

2
y

S  denote the survival functions for Y
1
 and Y

2
 in 

individuals with frequent episodes of detectable viremia; 

and 1
y

G  and 2
y

G  are the corresponding functions for the 

group with infrequent episodes of detectable viremia. 

The sensitivity (true positive rate) and 1-specificity (false 

positive rate) of the k
th
 (k = 1, 2) marker at cut-off t are 

given by | 1
k

Y t D ≥ = P  = ( )k
y

S t  and 1-

| 0
k

Y t D < = P  = | 0
k

Y t D ≥ = P  = ( )k
y

G t . The 

Receiver Operating Curve (ROC) is a plot of ( )k
y

G t  (x-

coordinate) versus ( )k
y

S t  (y-coordinate) for every 
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possible threshold t. That is, the ROC curve is the entire 

set of possible values of k
y

G  and k
y

S  obtained by 

dichotomizing Y
k
 with different values of t ∈(-∞, +∞). 

The ROC curve has many advantages over single 

measurements of sensitivity and specificity. ROC curve 

incorporates both of these measures and gives a full 

picture of the performance of the classifier marker at 

different thresholds. Furthermore, ROC curves show the 

trade-offs between these two measures as the threshold 

changes. While the ROC curve gives a full picture of the 

performance of the classifier at different thresholds, a 

quantitative summary index frequently used as an overall 

assessment of classifier performance is the area under 

the ROC curve (AUC) which is given by ( )
1

0

ROC u du∫ . 

The area under the ROC curve is interpreted as the 

average value of sensitivity (specificity) for all possible 

values of specificity (sensitivity) and corresponds to the 

probability of correctly identifying subjects with 

frequent (+) and infrequent (-) episodes of detectable 

viremia. That is, AUC is equal to the probability 

( )k k
Y Y
+ −
>P . For a given threshold t, the sensitivity which 

corresponds to specificity ( )0
1 k

y
z G t= −  is ( )k

y
S t = 

( )( )1

0
1k

ky y
S G z

− − . From this, we can write the AUC as 

( )( )
1

1

0 0
0

1k k
y y

S G z dz
− −∫ = ( ) ( )k k

y y
S t dG t

∞

−∞

−∫ = ( )k k
Y Y
+ −
>P . 

Thus, the AUC is a measure of the separation in location 

between k
y

S  and k
y

G . 

ROC Curves for Correlated Longitudinal Markers 

The area under the ROC (AUC) and its empirical 
estimator have previously been studied for a cross-sectional 
data (Hanley and McNeil, 1982; Venkatraman and Begg, 
1996). However, there is a paucity of literature on the 
AUC for correlated longitudinal markers. Obuchowski 
proposed a nonparametric approach for the estimation 
and inference of AUC of two correlated longitudinal 
markers (Obuchowski, 1997). However, her approach 
did not consider the effect of covariates. Covariates 
should be incorporated in the ROC curve analyses as 
they affect the performance of diagnostic markers (Pepe, 
2003). In this paper, we used the Lehmann model 
(referred as the proportional hazards model) (Gönen and 
Heller, 2010; Holling et al., 2012) to estimate and 
compare the performance of absolute CD4 count and 
CD4 percentage as markers of pediatric HIV disease 
progression. Using the Lehman approach, the association 
between sensitivity and 1-specificity can be modeled as: 
 

( ) ( )k k
y y

S t G t
θ

=  (1) 

 

where, 0 < θ ≤ 1 is measure of marker performance with 

values close to zero indicating higher diagnostic 

accuracy. Thus, the Lehmann family of ROC curve can 

be written using the equation y = x
θ
 and the 

corresponding AUC is 
1

0

1

1
x dx
θ

θ
=

+
∫ . Moreover, from 

Equation (1), 
( )

( )

log

log

k

k

y

y

S t

G t
θ=  which is equivalent to the 

Cox Proportional Hazards (Cox PH) model used in 

survival analyses (Cox, 1972). The connection between 

the Lehmann and Cox model will enable us to estimate θ 

which in turn allows us to obtain the corresponding ROC 

and AUC. The Cox PH model states that covariates have 

proportional effect on the hazard function of failure time 

distribution. That is, if hi(t) denotes the hazard for the ith 

individual at time t, the Cox PH model can be written as 

( ) ( ) 1 1
...

0

i p ipx x

i
h t h t e

β β+ +

= . h0 denotes the hazard function 

for an individual whose covariates all have values of 0 

and (xi1,…, xip) are set of p covariates. 

Let k

ijY denotes values of the kth marker (k = 1, 2) for 

the ith (i = 1, 2,…,n) patient at the jth (j = 1, 2,…, ni) time. 

The response vector for the kth marker is 

( )
1 2

11 12 21 22 1 21 2
, ,..., , , ,..., ,..., , ,...,

n

k k k k k k k k k k

n nn n nn
Y Y Y Y Y Y Y Y Y Y= . Y

k
 is the 

kth marker values of all individuals stacked into a single 

response vector. The hazard functions for Y
k
 are defined as 

hs(y) = 
[ ]| ,

0

P y Y y y Y y D s

ylim
y

< < +∆ ≥ =

∆ →

∆
, for s = 0, 1. To estimate 

the area under the ROC curve of each longitudinal marker, 

Cox PH model was used with the marker values Y
k
 as 

dependent variable and the detectable viremia status 

indicator D as independent variable: 
 

( ) ( ) 1

1 0
| .

D
h y D h y e

β
=  (2) 

 

Note that 
( )

( )
1

1

1

, 1

, 0

h y D
e

h y D

β
=

=

=

 and using Lehmann model 

(1) the marker performance measure 
1
e
β

θ = . An estimate 

of 
1

β̂ can be obtained using Cox's partial maximum 

likelihood estimation procedure available in many 

statistical software packages (Cox, 1975). By the 

invariance property of maximum likelihood estimators 

θ is estimated by 1
ˆˆ

e
β

θ = . Repeated marker 

measurements made on the same individual are 

correlated. Thus, we used the robust sandwich variance 

estimator in order to obtain the correct inferences and 

variance of 
1

β̂ (Wei et al., 1989). We then used the 

Delta method to obtain approximate variance for θ̂ . 

That is, we approximated variance of θ̂ by 
1

2 2

ˆ
ˆ

β
θ σ , where 

1

2

β̂
σ is variance of 

1
β̂ . Similarly, the variance for the 

AUC was estimated by ( )
1

4
2 2

ˆ

ˆ ˆ1
β

θ σ θ
−

+ . 
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The Lehmann (Cox PH) model can be also used to 

obtain covariate-adjusted ROC curves. We present here 

the effect of a single covariate but the model can be 

easily extended to include multiple covariates. Suppose 

X2 denotes a covariate that may affect the performance of 

each marker and β2 denotes the corresponding regression 

coefficient. Then the adjusted Cox PH model is: 
 

( ) ( ) 1 2 2 3 2

1 2 0
| ,

D X DX
h y D X h y e

β β β+ +

=  (3) 

 
In the above model, covariate effect is assessed using the 

regression coefficient of the interaction term. Using the 

connection between the Lehman (1) and Cox (3) models, 

the covariate-adjusted marker performance parameter is 

θ(x2) = 1 3 2
x

e
β β+  (note that 

( )
( )

1 3 2
1 2

1 2

, 1,

, 0,

x

h y D x
e

h y D x

β β+
=

=

=

). Thus, 

the covariate-adjusted ROC curve is ( ) ( )2

2
,

x

y x x x
θ

= . 

The objective of our study was twofold: Estimate and 

compare the performance of the two biomarkers of HIV 

disease progression. As described above, Cox PH 

models were used in assessing the performance of each 

longitudinal biomarker in the absence or presence of 

covariates. In this section, we evaluate the performance 

of the two markers by comparing their corresponding 

ROC curves. Let Y = (Y
1
, Y

2
) be the combined marker 

values, i.e., the absolute and percent CD4+ T cells of all 

patients are stacked into a single response vector. Let C 

define a dummy variable with C = 0 for k = 1 (CD4+ T 

cells absolute count) and C = 1 for k = 2 (CD4+ T cells 

percent). Then, using the combined marker values, the 

Cox PH model can be written as: 

 

( ) ( ) 1 2 3

1 0
| , .

D C CD
h y D C h y e

β β β+ +

=  (4) 

 

For the first marker, 
( )

( )
1

1

1

, 1, 0

, 0, 0

h y D C
e

h y D C

β
= =

=

= =

 and for the 

second marker 
( )

( )
1 3

1

1

, 1, 1

, 0, 1

h y D C
e

h y D C

β β+
= =

=

= =

. These show 

that the ROC curves of the two markers are the same 

when β3 = 0. Thus, the performance of the two markers 

can be compared by testing the null hypotheses Ho: β3 = 

0. The statistic for testing Ho is computed as 
3

2 2

ˆ3

ˆ /T
β

β σ= , 

where 
3

2

β̂
σ is the robust sandwich variance of 

3
β̂ . Under 

Ho, T has an asymptotic chi-squared distribution with 

one degree of freedom (Wald chi-squared statistic). 

Simulation Study 

We ran a large set of simulation studies to evaluate 

the performance of the Lehmann model. In each 

simulation, the response for the ith (i = 1, 2,…, n) patient 

at the jth (j = 1, 2,…, ni) time (i.e., Yij) was generated 

from a Weibull distribution with scale parameter 1 for 

the population with infrequent episodes of detectable 

viremia. For the population with frequent episodes of 

detectable viremia, Yij followed a Weibull distribution 

with scale parameter 1/θ
1/s
 for a given choice of shape 

parameter s. We have considered various values of the 

Weibull shape parameter s. The Clayton copula with 

dependence parameter c was used to model the 

correlation structure of the ith patient response vector 

( )1 2
, ,...,

i
i i i in
Y Y Y Y= . We generated 5,000 independent 

data sets and model 2 was applied to the generated 5,000 

independent data sets to obtain 
1

β̂ and 
3

2

β̂
σ . For each 

data set, the asymptotic confidence interval of β1(β1 = 

log(θ)) was constructed using ( )
1 1
ˆ ˆ1 1

ˆ ˆ,q q
β β

β σ β σ− + , 

where q = Φ
−1
(1−α/2) and Φ is the standard normal 

cumulative distribution function. A significance level α 

= 0.05 corresponding to the nominal confidence level 

0.95 was considered. The empirical coverage probability 

was obtained by computing the proportion of times the 

confidence interval contained the true β1. 

The results presented here are representative of the 

many simulations performed. Figure 1 presents results 

for ni = 5 (i = 1, 2,…,n) and c = 2, i.e., five repeated 

observations per person with Clayton copula dependence 

parameter = 2. Various sample sizes, values of the 

Weibull shape parameter and values of β1 were 

considered. The true AUC value was obtained from β1 

using Equation (1), i.e., 
1

1
AUC

θ
=

+

 where 
1
e
β

θ = . The 

results in Figure  1 show that the empirical coverage rates 

of the nominal 1-α = 0.95 confidence intervals improve 

from approximately 0.9 when the sample size is 10 to 

approximately 0.94 when the sample size is 40. When the 

sample size is small, the coverage is somewhat poorer for 

higher true AUC values. The shape parameter does not 

appear to affect strongly the coverage in this design. 

Data Analyses 

Study Population and Measures 

The study population was comprised of HIV-infected 

children enrolled through the Yale Prospective 

Longitudinal Pediatric Cohort study at Yale-New Haven 

Hospital. All the children either had mothers already 

known to be HIV-1 seropositive during pregnancy or at 

the time of delivery or were discovered to be infected 

with HIV-1 after presenting with an AIDS defining 

illness. In the analyses contained herein, we used 

longitudinal data collected from 104 HIV-infected 

children from January 1996, when plasma HIV-1 RNA 

quantification became available, to November 2013. The 
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study participants were seen and examined at the 

pediatric clinic every 2-3 months and more frequently as 

necessary. Routine blood tests, HIV-1 RNA 

quantification and CD4+ T- lymphocyte counts and 

percentages were done every 2-3 months to follow HIV 

disease progression. HIV-1 RNA quantification was 

done using the Amplicor Monitor test (Roche Diagnostic 

Systems, Inc., Branchburg, New Jersey, USA). CD4+ T-

lymphocyte levels were quantified using a standard dual-

platform flow cytometry technology. The study protocol 

was reviewed and approved by Institutional Review 

Board at the Yale School of Medicine. 

The outcome variable was viral blip defined as any 

detectable viral load above the limit of detection offered 

by the assay (Paintsil et al., 2008). The children were 

categorized into two groups based on the frequency of 

detectable viral load episodes: (1) Infrequent episodes of 

detectable viremia (children who had detectable viremia 

during less than 50% of their clinic visits) and (2). 

frequent episodes of detectable viremia (children who 

had detectable viremia during more than 50% of their 

clinic visits). The predictor variables included time 

varying (absolute CD4+ T-lymphocyte count and 

CD4+ T-lymphocyte percentage) and time-invariant 

(e.g., gender, race, age at study entry, age at HIV 

diagnosis, caregiver type, history of AIDS defining 

illness, time since HIV diagnosis, antiretroviral 

treatment status and CDC clinical staging of HIV 

infection) covariates. 

 

 

 
Fig. 1: Coverage probabilities for the AUC obtained by the Lehman model 
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Results 

The demographic and HIV disease characteristics of 

the study participants are described in Table 1. 

Continuous characteristics were summarized using 

median and Inter Quartile Range (IQR); categorical 

characteristics were summarized using frequency and 

percent (%). Wilcoxon rank sum and Fisher's exact tests 

were used to compare continuous and categorical 

patients characteristics, respectively, between subjects 

with infrequent and frequent episodes of detectable 

viremia. The median age of the study participants at 

study entry and the time of diagnosis were 7.83 (IQR = 

5.02-11.98) and 1.79 (0.44-4.91) years, respectively. 

Majority of the participants (81%, n = 86) had frequent 

episodes of detectable viremia. Fifty four percent were 

males, 59% were African Americans and 57% had 

biological parents as caregivers. The majority of the 

participants had congenital HIV (93%), moderate to 

severe CDC classification (65%) and other comorbidities 

(55%). As previously reported (Paintsil et al., 2016), 

there were no statistically significant differences in 

patient characteristics between patients with frequent and 

infrequent episodes of detectable viremia. 

Figure 2 displays CD4+ T cell count and percentage 

trajectories by frequency of detectable viremia status. 

The average trend lines in Figure  2 show that CD4+ T 

cell count and percentage values for both groups slowly 

increased from baseline values and decreased at later 

time points over the study period. Moreover, Fig. 2 

shows that children with infrequent episodes of 

detectable viremia had higher CD4+ T-cell counts and 

percentage over time compared with those with frequent 

episodes of detectable viremia. 

The association between episodes of detectable 

viremia and the two longitudinal biomarkers of interest 

was examined using model (2). More specifically, the 

model was used to construct the ROC curves of the two 

markers and compute the corresponding areas under the 

ROC curves. Figure 3 displays the ROC curves for the 

two biomarkers. The overall diagnostic accuracy of the 

two biomarkers were comparable. Both biomarkers had 

about a 68% probability of correctly distinguishing a 

frequent from an infrequent episodes of detectable 

viremia patient. The area under the ROC curves for 

CD4+ T cell count and percentage were 0.681 [SE = 

0.029; 95% CI: 0.624-0.737] and 0.678 [SE = 0.024; 

95% CI:0.630-0.725], respectively. We compared the 

two ROC curves by testing the null hypotheses Ho: β3 = 

0 against Ha: β3 ≠ 0 in model 4. The two-sided Wald P-

value was 0.59 and this shows that there was no 

statistically significant difference between the ROC 

curves of the two biomarkers. 

 

 
 
Fig. 2: Trajectories of  CD4+ T Cell lymphocytes by Frequency of Detectable Viremia Status (LOESS Lines): Absolute CD4+ T-

cells (Left), Percent CD4+ T-cells (Right) 
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Fig. 3: ROC curves for absolute and percent CD4+ T cells 

 

 
 

Fig. 4: ROC Curves for Absolute and Percent CD4+ T Cells: Younger Patients (Left), Older Patients (Right) 
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Table 1: Characteristics of study participants stratified by frequency of detectable viremia 

 Detectable viremia 

  ----------------------------------------------------------- 

Study covariates All (N = 104) Infrequent (N = 18) Frequent (N = 86) P-value 

Baseline CD4/mm3 436 (125-725) 550 (26-820) 420 (140-663) 0.48 

Baseline VL (Log10) 4.79 (4.13-5.32) 4.60 (2.60-5.50) 4.79 (4.20-5.18) 0.85 

Age at study entry (years) 7.83 (5.02-11.98) 7.74 (3.70-13.07) 7.83 (5.20-11.76) 0.92 

Age at diagnosis (years) 1.79 (0.44-4.91) 2.04 (0.21-5.32) 1.79 (0.52-4.91) 0.82 

Time since Diagnosis (years) 5.14 (2.32-7.35) 3.03 (0.60-8.88) 5.42 (2.52-7.32) 0.40 

Gender    1.00 

Female 48 (46%) 8 (44%) 40 (47%) 

Male 56 (54%) 10 (56%) 46 (53%) 

Race/Ethnicity    0.80 

Black 61 (59%) 10 (56%) 51 (59%) 

Other 43 (41%) 8 (44%) 35 (41%) 

Other Illness    1.00 

No 43 (45%) 7 (47%) 36 (44%) 

Yes 53 (55%) 8 (53%) 45 (56%) 

Caregiver    0.79 

Parent 59 (57%) 11 (61%) 48 (56%) 

Other 44 (43%) 7 (39%) 37 (44%) 

Source: Paintsil et al., J AIDS Clin Res. 2016 Apr; 7(4). pii: 565 

 

Given the greater variability of absolute CD4+ T-

lymphocyte counts compared with percentage among 

children under 5 years of age (Paintsil et al., 2008), we 

investigated whether the performance of the two 

biomarkers will vary by age. Using model (3), we have 

shown that the performance of each biomarker did not 

change with age although there was a slight improvement in 

older patients. The area under the ROC curve for CD4+ T 

cell absolute count in younger (≤5 years) and older patients 

(5+ years) were 0.702 [95% CI: 0.647-0.757] and 0.739 

[95% CI: 0.606-0.873], respectively; and the corresponding 

two sided Wald P-value was 0.650. Similarly, the area 

under the ROC curve for CD4+ T cell percent in younger 

and older patients were 0.677 [95% CI: 0.624-0.729] and 

0.772 [95% CI: 0.706-0.837], respectively; and the 

corresponding two-sided Wald P-value was 0.097. Figure 4 

display the ROC curves of the two biomarkers for the two 

age groups. 

Conclusion 

In this paper, we developed model based AUC to 

estimate and compare the performance of absolute CD4+ 

T-lymphocyte count and CD4+ T-lymphocyte 

percentage. We found that the cross validated AUC for 

CD4+ T-lymphocyte count and percentage were 

approximately 0.681 (0.678) with the corresponding 

95% confidence intervals [0.624-0.737] ([0.630-0.725]). 

Furthermore, there was no statistically significant 

difference between the AUC of the two biomarkers. This 

finding is of special interest with regard to the control of 

pediatric HIV in resource-limited settings where HIV 

prevalence is highest. Due to the variations in CD4+ T-

lymphocyte numbers, the CD4+ T-lymphocyte 

percentage is traditionally used to monitor HIV disease 

progression and the effects of HAART in children 

(Paintsil et al., 2016). However, due to the high cost of 

equipment and lack of adequate laboratory infrastructure, 

most laboratories in resource-limited settings use simple 

protocols that enumerate only the absolute CD4+ T-

lymphocyte counts. Our findings demonstrate that absolute 

CD4+ T-lymphocyte count could be as useful as the 

percentage CD4+ T-lymphocytes in monitoring pediatric 

HIV in resource-limited settings regardless of age. 
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