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Abstract: Preserving the robustness of the procedure has, at the present 

time, become almost a default requirement for statistical data analysis. 

Since efficiency at the model and robustness under misspecification of the 

model are often in conflict, it is important to choose such inference 

procedures which provide the best compromise between these two 

concepts. Some minimum Bregman divergence estimators and related tests 

of hypothesis seem to be able to do well in this respect, with the 

procedures based on the density power divergence providing the existing 

standard. In this paper we propose a new family of Bregman divergences 

which is a superfamily encompassing the density power divergence. This 

paper describes the inference procedures resulting from this new family of 

divergences and makes a strong case for the utility of this divergence 

family in statistical inference. 
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Introduction 

In statistical modeling, parameter estimation is an 

inevitable and formidable task. Accurate estimation of 

the model facilitates the characterization and the 

subsequent understanding of the mechanism that 

generates the observed data. Statistical distances can be 

useful tools for the estimation of the model parameters. 

Statistical distances can be naturally applied to the 

case of parametric statistical inference. The most 

important idea in parametric minimum distance 

inference is the quantification of the degree of closeness 

between the sample data and parametric model as a 

function of an unknown set of parameters through a 

suitable distance-like measure. Thus the estimate of the 

parameter is obtained by minimizing this “distance” over 

the parameter space. 

It is worthwhile to mention here that the class of 

distances which we will consider are not mathematical 

metrics in the strict sense of the term. They may not be 

symmetric in their arguments and may not satisfy the 

triangle inequality. The only properties that we require of 

these measures are that they should be nonnegative and 

should equal zero if and only if the arguments are 

identically equal. However, we will, somewhat loosely, 

continue to call them distances, or “statistical distances”. 

In a practical sense, the word “divergence” is a good 

descriptor of these measures. We will, in fact, use the 

“minimum distance” and the “minimum divergence” 

terminologies interchangeably. 

Density-based divergences form a special class of 

statistical distances. Several minimum distance 

estimators in this family have high model efficiency. In 

particular, the Maximum Likelihood Estimator (MLE) 

also belongs to the class of density-based minimum 

distance estimators, being the minimizer of the 

likelihood disparity (Lindsay, 1994), which is a version 

of the Kullback-Leibler divergence. But one of the major 

drawbacks of the MLE is that it is notoriously nonrobust 

and even a small proportion of outlying observations can 

lead to meaningless inference. In fact it is the failure of 

the classical methods like maximum likelihood to deal 

with outliers and mild deviations from the model which 

had led to the emergence of the field of robustness; see, 

for example, Huber and Ronchetti (2009), Hampel et al. 

(1986), Maronna et al. (2019) and Basu et al. (2011). 

However, some of the other members of the class of 

minimum distance estimators have been observed to do 
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much better in the sense of combining strong robustness 

with high model efficiency. See, for example, Csiszar 

(1963), Ali and Silvey (1966), Lindsay (1994), Pardo 

(2005) and Basu et al. (2011) for a description of the -

divergence class of minimum distance measures. 

A more modern class of minimum distance estimators 

is based on the family of Bregman divergences. The 

Bregman divergence (Bregman, 1967) is a distance like 

measure between points and has been used in mathematics 

and information theory for some time. When the points 

are represented by probability distributions, the 

corresponding Bregman divergence is a statistical 

distance. See, for example, Jones and Byrne (1990), 

Csiszar (1991), Banerjee et al. (2005) and Stummer and 

Vajda (2012) for some examples of statistical and related 

applications of the Bregman divergence. The principal 

representatives of Bregman divergence estimators in the 

current statistical literature are the Minimum Density 

Power Divergence Estimators (MDPDEs), based on the 

Density Power Divergence (DPD) class of Basu et al. 

(1998). Over the last two decades, this class of 

divergences has provided a popular and frequently used 

method to balance the trade-off between robustness and 

efficiency in parameter estimation, hypothesis testing and 

related inference. The minimum divergence estimators 

based on the DPD have been shown to provide a high 

degree of stability under model misspecification, often 

with minimal loss in model efficiency. Our primary 

purpose in this paper is to refine the minimum distance 

procedure based on the DPD, so as to achieve even better 

compromise between efficiency and robustness. 

The Bregman Divergence 

Consider a parametric family of densities 

 : pf  F . Let X1,X2,…,Xn be i.i.d. 

observations from a distribution G having probability 

density function (pdf) g. For the sake of a unified 

notation we will continue to use the term pdf irrespective 

of whether the distribution of G is continuous or discrete. 

Let the common support of g and f be X . The 

Bregman divergence between the density g and model 

density f is given by: 
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where the index function B() is strictly convex and B'() 

represents its first derivative with respect to its 

argument. In practice, where f is the pdf of the 

parametric family, g is the true density, the minimization 

of the above divergence over the parameter space  will 

generate the corresponding minimum distance functional 

which can lead to meaningful inference, depending on 

the form of the function B(). The DPD, defined later in 

this section, is a special case of the Bregman divergence 

for  
1y

B y






 , 0. 

When the model is differentiable, the general 

estimating equation under the divergence in Equation 1 is: 
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or equivalently: 
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where, u (x) = log f(x) is the score function of the 

model f(x),  represents derivative with respect to  and 

B() represents the second derivative of B() with respect 

to its argument. Since G is unknown, we construct an 

empirical version of the divergence in Equation 1, or the 

estimating equation given in Equation 3, by replacing G 

(the true data generating distribution) by its empirical 

counterpart Gn. This leads to a class of unbiased (under 

the model) estimating equations: 
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 (4) 

 

The root of the Equation 4 is defined to be the 

Minimum Bregman Divergence Estimator (MBDE). 

Here the robustness of the corresponding minimum 

distance estimator may be at least partially understood 

by observing the effect of the downweighting function 

B(f(x)) f(x) on u (x) for less probable values of x 

under f. For the DPD, this weight becomes 

   1 f x

  . 

In this paper we attempt to find a refinement of the 

DPD downweighting scheme and, by reconstruction, a 

corresponding divergence. We will show that the 

corresponding minimum distance procedure provides a 

better compromise between robustness and efficiency in 

many cases compared to the minimum density power 

divergence estimator (MDPDE). 

The Density Power Divergence 

As mentioned earlier, the Density Power Divergence 

(DPD) is obtained by substituting  
1y

B y






 in 
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Equation 1. The general form of this divergence, as a 

function of a nonnegative tuning parameter , is: 

 

  1 11 1
, 1 .DPD g f f gf g  

   
 

   
     

  
  (5) 

 

For simplicity we have dropped the dummy variable 

in the above equation. One can define the minimum 

DPD functional T(G) at G through the relation: 

 

    , inf , .
T G

DPD g f DPD g f


  


  (6) 

 

Under the estimation set up of this paper, the 

empirical objective function, ignoring the terms 

independent of , becomes: 
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1
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and under differentiability of the model, the estimating 

equation becomes (by equating the negative of the 

derivative of the above objective function to 0): 

 

       1

1

1
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It is evident that as   0+, Equation 7 converges to 

the maximum likelihood score equation: 
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1
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n

i

i

u X
n




  (8) 

 

Note that in the part involving real data in Equation 

7, a downweighting effect is exerted on the score 

function u (x) by the factor  f x

 . This downweighting 

philosophy will be crucial for developing the new class 

of procedures. Note that there is no downweighting for 

the case  = 0. 

The asymptotic properties of the MDPDE have been 

well studied and are available, for example, in Basu et al. 

(2011), where the asymptotic distribution of the MDPDE 

has been explicitly derived. It is useful to note that the 

MDPDE solves an estimating equation of the form 

 
1

, 0
n

ii
X 


 , where: 

 

         1, .x u x f x u x f x dx 

         (9) 

 

Hence it belongs the class of M-estimators. So, the 

asymptotic properties of the MDPDE also follow from 

M-estimator theory. 

A New Divergence 

Our key philosophy for constructing new divergences 

and estimation strategies involves manipulating the 

downweighting factor B(f(Xi)) f(Xi) in Equation 4. 

Here we are going to develop a stronger downweighting 

effect compared to the MDPD estimating equation. Our 

exploration will generate an estimation scheme with two 

tuning parameters and we will explore the possibility of 

coming up with specific candidates which might beat the 

MDPDEs both in terms of efficiency and robustness. 

Choosing the B Function 

The downweighting effect on the score u(x) applied 

by the MDPD estimating equation is  f x

 . As we want 

to impose a stronger downweighting in relation to this, 

we wish to choose the B function (or rather, the B 

function) so that as x0+, xB(x) converges to zero 

faster than x for  > 0 fixed. (Note, from Equation 4, 

the downweighting term for u(x) in the general 

Bregman divergence is fB(f)). In particular, we will 

assume the following conditions on B: 

 

 (P1) B(x) > 0  x > 0, so that B is a strictly convex 

function over   

 (P2) xB(x) is an increasing function over x in (0,). 

Thus the less likely observations will be 

downweighted more 

 (P3) For all (0,1), 
 

0
lim
x

xB x

x


= 0, i.e., the Bregman 

formulation attaches weights to the score function 

which go to zero at a rate faster than the corresponding 

weights in the MDPD estimating equation 

 (P4) B(x) = x(x, ) (0 <   1, 0 <   1). Where 

(x,) is a continuous and positive function over 

(0,1] and x > 0. Furthermore, we demand 

 
0

1
lim ,x

x
 

  

 

To prove that such choice of B() satisfying (P1)-(P4) 

can help us generate divergences which have the desired 

properties and provide superior inference compared to 

the DPD, let us first demonstrate the general asymptotic 

properties of the minimum Bregman divergence 

estimators. For ease of representation, we refer to the 

divergence generated by the B() function satisfying (P1) 

to (P4) as -DPD. 

General Asymptotic Properties of the 

MBDE 

We need some regularity assumptions to prove the 

asymptotic properties of the general MBDE, which we 

list below: 
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 (A1) The pdfs f of X have common support, so that 

the set   | 0x f x X  is independent of . The 

distribution G is also supported on X , on which the 

corresponding density g is greater than zero 

 (A2) There is an open subset  of the parameter space 

, containing the best fitting parameter g 

    , inf ,gB BD g f D g f    such that for almost all 

xX  and all , the density f (x) is three times 

differentiable with respect to  and the third partial 

derivatives are continuous with respect to . (The best 

fitting parameter g depends on the index function B() 

also, but we suppress that notation for brevity) 

 (A3) The integrals     2B f x f x dx 
 and 

      B f x f x g x dx 
  can be differentiated with 

respect to  and the derivatives can be taken under 

the integral sign 

 (A4) The p  p matrix JB() defined by: 

 

 

       

  

,B kl

g kl

J

B f x f x B f x dx
E

B f X

  





         
    

  

 

is positive definite where Eg represents the 

expectation under the density g. Where kl 

represents the partial derivative with respect to the 

indicated components of . 

 (A5) There exists functions Mjkl(x), j,k, l = 1,…,p, 

such that: 

 

           
 ;

jkl

jkl

B f x f x B f x dx B f X

M X

   

 

    
 

  


 

 

where, Eg[Mjkl(X)] < mjkl <   j, k, l. 

Theorem 1 

Under the conditions (A1)-(A5), the following results 

hold: 

 

(a) The MBDE estimating equation given in Equation 4 

has a consistent sequence of roots ˆ
n . 

(b)  ˆ g

nn   has an asymptotic multivariate normal 

distribution with mean vector zero and covariance 

matrix 1 1

B B BJ K J  , where JB = JB(g), KB = KB(g), 

KB() =Varg(u (X) f(X)B(f(X))). 

 

When g = f for some  then the above 

expressions simplify to: 
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We are now going to establish that the DPD belongs 

to the class of -DPD. We will also show that under 

certain conditions a judicial choice of () yields 

estimators which may fit with our aims. Now our 

unbiased estimating equation for -DPD is: 
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and under assumptions similar to (A1)-(A5) and g = f, 

the expressions in Equation 10 simplify to: 
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A straightforward simplification of the expressions in 

part (b) of Theorem 1 under -DPD leads to the general 

expressions: 
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Remark 

Notice that 
 

   
 

, 1
1 ,

, ,

x x
x x

x x x

 
 

   

 
    

. If 

0
lim

 
 and 

x




 are interchangeable for () then by 

(P4) it can be concluded that  converges to i as 

0+. 
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Theorem 2 

If u(x) f(x)1+, u(x) u(x)T f(x)1+2, u(x)u(x)T 

f(x)1+ are integrable and f(x)(f(x), ) is bounded by 

some universal constant then the following hold: 

 

(a) The usual DPD defined in Equation 5 is a special 

limiting case of -DPD 

(b) If g = f for some  and if for the DPD there 

exists ,  such that the Asymptotic Relative 

Efficiency (ARE) of the estimator under tuning 

parameter  is greater than that of the estimator 

under tuning parameter , then there exists  such 

that -DPD with tuning parameter (, ) generates 

an estimator with higher ARE than the MDPDE 

with tuning parameter  

 

If (x, ) = 
1

log 1
x





 
 

 
, then for x > 0, f(x, ) < 1 

(as log(1 + y) < y for y > 0) and u(x) f(x)1+, u(x)u(x)T 

f(x)1+2, u(x)u(x)T f(x)1+ are integrable under 

standard parametric models. So Theorem 2 holds for 

such a choice of (). Symbolically, the divergence 

generated by the B() function obtained through this 

formulation will be referred to as the logarithmic -

DPD (or LDPD). We will denote this divergence 

between the densities g and f corresponding to tuning 

parameters  and a as LDPD, (g, f). 

Our choice for B() in the LDPD case is B(x) = 

1
log 1x

x

 



 
 

 
0 < 1, 0 < 1, x > 0. The 

corresponding B function may be expressed in the 

integral form as: 

 

 
0 0

1
log 1 .

x t

B x s dsdt
s

 



 
  

 
   (16) 

 

Obviously other choices are possible, but we have 

found the LDPD to be a very useful divergence for our 

purpose and for the rest of the paper all our illustrations 

will be in relation to the LDPD. We will refer to the 

corresponding minimum distance estimator as MLDE. 

The Influence Function of MLDE 

It is easy to see that the MLDE is also an M-

estimator. Let the minimum LDPD functional T,(G) 

be defined as: 
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T G

L DPD g f L DPD g f
 

    


 


  

 

Under g = f the influence function of this minimum 

distance estimator simplifies to: 
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2 log 1u f
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  are finite then the expressions in 

Equation 13 are finite if    
 

1 log 1u y f y
f y



 




 
  

 
is 

finite which is indeed the case for most parametric 

models suggesting the observed robustness of the 

MLDE under those parametric models. 

In Fig. 1 it is clearly seen that the tuning parameter  

has a significant impact on the robustness of the estimator 

and the influence functions redescend faster for larger 

values of . On the other hand, for fixed  the influence 

functions are somewhat closer for different  as seen in 

Fig. 2. It suggests that  has a less pronounced impact on 

robustness than , although the graphs in Fig. 2 indicate 

that larger  lead to relatively stronger downweighting. 

The Breakdown Point Under the Location Model 

Now we will establish the breakdown point of the 

minimum LDPD functional under the location family 

of densities F = {f(x) = f(x-): }. Let B() be the 

function defined in Equation 16. Define the quantities: 
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,

2

, 1
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1

1
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f
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B f x dx B f x dx M

B f x f x B f x dx

B f x f x B f x dx
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Define d(g, f) = B(g)-B(f)-(g-f)B(f) and let D(g, f) = 

d(g, f). From Equation 16 we have d(g, 0) = 
0

lim
f 

 d(g, 

f) = B(g). 

Consider the contamination model H,n = (1-e)G + Kn, 

where {Kn} is a sequence of contaminating distributions. 

Let h,n, g and kn be the corresponding densities. We say 

that there is breakdown in the minimum LDPD 

functional for  level contamination if there exists a 

sequence Kn such that |T, (H,n)-T, (G)|   as n. 

We write below n = T, (H,n) and assume that the true 

distribution belongs to the model family, i.e., gg f


 . We 

make the following assumptions: 
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 (BP1)     min , 0nf x k x dx  as n uniformly 

for ||c for any fixed c, i.e., the contamination 

distribution is asymptotically singular to the true 

distribution and to specified models within the 

parametric family 

 (BP2)     min , 0g
n

f x f x dx
 

 as n if || 

as n, i.e., large values of  give distributions 

which become asymptotically singular to the true 

distribution 

 (BP3) The contaminating sequence [kn} is such that: 
 

     
 

 1 2

, , 1
,  ,  n f f

D k f D f f M M    
 


    

 

for any  and 0 < < 1 and 

   1

,limsupn n fB k M   . 

Theorem 3 

Under the assumptions (BP1)-(BP3) above, the 

asymptotic breakdown point * of the LDPD functional 

is at least 0.5 at the location model. 

 
 

Fig. 1: Influence function of the MLDE for various values of b with fixed  = 0.001 under N(,1) model at N(1,1) 
 

 
 

Fig. 2: Influence function of the MLDEs for various values of  with fixed  = 0.5 under the N(,1) model at N(1,1) 
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Simulation Study Under LDPD and the 

Advantages of MLDE 

Description and Results 

Here we have performed a simulation study to 

analyze the performance of the LDPD and the 

associated minimum distance estimators under the N(,1) 

model at a given level of contamination. In the following 

study data are generated from two normal mixtures, 

0.9N(0,1) +0.1N(5,1) and 0.8N(0,1) +0.2N(5,1), where 

N(0,1) represents the target distribution and the second 

component is the contamination. The sample size is 50. 

The empirical MSE for the location model has been 

calculated by replicating the process 1000 times, 

evaluating the estimate for each replication and taking 

average squared error loss against the target value, i.e.,  

= 0. In Table 1 the theoretical asymptotic relative 

efficiency of minimum LDPD estimator and MDPDE is 

shown for different values of (, ) while in Table 2 and 

3 the simulated mean square errors are presented under 

contaminated normal data under two different 

contamination levels. 

The LDPD Versus the DPD 

We briefly note our observations as may be evident 

from Table 1 and 2. The asymptotic efficiencies of the 

minimum divergence estimators decrease with increasing 

 and increasing . Note that given an (0, 1), it may 

be possible to choose (0, ) and (0, 1) so that, in 

relation to our numerical study, MLDE,  beats 

MDPDE both in terms of asymptotic model efficiency 

and the empirical mean square error under 

contamination. As an illustration, consider MDPDE0.5 in 

the first contaminated model. The corresponding MSE 

and asymptotic relative efficiency are 0.0294 and 83.8% 

respectively. Now choose the LDPD parameter (, ) = 

(0.3, 0.01). In this case, the corresponding MSE and 

efficiency of the MLDE are 0.0281 and 89% 

respectively. Similarly MLDE0.2,0.04 appears to 

dominate MDPDE0.4 both in terms of asymptotic 

efficiency and empirical mean square error. In fact, for 

practically all the MDPDEs that are considered in the 

Tables 1 and 2 (as also in Tables 1 and 3), there exists a 

better MLDE, both in terms of asymptotic model 

efficiency and obtained mean square error under 

contamination. In most of these cases there are several 

(, ) combinations which provide the domination over a 

given MDPDE. Tables 2 and 3 also show that the robust 

minimum distance estimators hold out well against the 

outliers at both 10 and 20 percent contamination. 

Simulation results not presented here indicate that the 

same holds for higher levels of contamination smaller 

than 1/2, a consequence of the high breakdown point of 

the method under location models. 

 
Table 1: Asymptotic relative efficiency of the MLDE and DPDE (%) for different (, ) under N(0,1) location model. Here the  = 

0 column represents the MDPDE 

  = 0  = 0.01  = 0.02  = 0.03  = 0.04  = 0.05  = 0.06  = 0.07  = 0.08 

0.1 98.8 95.7 94.0 92.8 91.7 90.8 90.0 89.4 88.7 

0.2 95.9 92.6 90.8 89.5 88.4 87.4 86.6 85.9 85.3 

0.3 92.1 89.0 87.2 85.9 84.8 83.9 83.0 82.3 81.7 

0.4 88.0 85.2 83.5 82.2 81.1 80.2 79.4 78.7 78.1 

0.5 83.8 81.3 79.7 78.5 77.5 76.6 75.9 75.2 74.6 

0.6 79.7 77.4 76.0 74.9 74.0 73.2 72.5 71.8 71.2 

0.7 75.7 73.8 72.5 71.4 70.6 69.8 69.1 68.5 68.0 

0.8 71.9 70.2 69.0 68.1 67.3 66.6 66.0 65.4 64.9 

0.9 68.3 66.9 65.8 64.9 64.2 63.6 63.0 62.5 62.0 

1 65.0 63.7 62.7 61.9 61.2 60.7 60.1 59.7 59.2  

 

Table 2: Empirical MSE of the MLDE and DPDE for different values of (, ) under 10% contaminated data for location model. 

Here the = 0 column represents the MDPDE 

  = 0  = 0.01  = 0.02  = 0.03  = 0.04  = 0.05  = 0.06  = 0.07  = 0.08 

0.1 0.1000 0.0293 0.0278 0.02900 0.0259 0.0271 0.02780 0.0282 0.0259 

0.2 0.0560 0.0273 0.0277 0.02540 0.0252 0.0248 0.02680 0.0260 0.0266 

0.3 0.0360 0.0281 0.0257 0.02670 0.0277 0.0264 0.02790 0.0268 0.0266 

0.4 0.0268 0.0267 0.0261 0.02650 0.0270 0.0261 0.02890 0.0273 0.0265 

0.5 0.0294 0.0277 0.0276 0.02760 0.0276 0.0307 0.02840 0.0296 0.0291 

0.6 0.0275 0.0272 0.0298 0.03070 0.0293 0.0305 0.02950 0.0293 0.0296 

0.7 0.0277 0.0276 0.0296 0.02940 0.0301 0.0320 0.03110 0.0311 0.0300 

0.8 0.0292 0.0305 0.0327 0.03080 0.0342 0.0300 0.02880 0.0336 0.0315 

0.9 0.0309 0.0299 0.0313 0.03445 0.0309 0.0295 0.03580 0.0326 0.0320 

1 0.0313 0.0320 0.0350 0.03620 0.0369 0.0361 0.03368 0.0340 0.0335  
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Table 3: Empirical MSE of the MLDE and DPDE for different values of (, ) under 20% contaminated data for location model. 

Here the  = 0 column represents the MDPDE 

  = 0  = 0.01  = 0.02  = 0.03  = 0.04  = 0.05  = 0.06  = 0.07  = 0.08 

0.1 0.3214 0.0329 0.0314 0.0308 0.0306 0.0305 0.0304 0.0304 0.0305 

0.2 0.0786 0.0312 0.0306 0.0305 0.0305 0.0305 0.0306 0.0307 0.0306 

0.3 0.0414 0.0308 0.0306 0.0307 0.0309 0.0310 0.0311 0.0309 0.0313 

0.4 0.0342 0.0311 0.0312 0.0314 0.0316 0.0318 0.0320 0.0322 0.0322 

0.5 0.0327 0.0317 0.0320 0.0323 0.0326 0.0328 0.0330 0.0323 0.0324 

0.6 0.0329 0.0327 0.0331 0.0334 0.0351 0.0372 0.0226 0.0303 0.0310 

0.7 0.0366 0.0413 0.0409 0.0346 0.0366 0.0364 0.0418 0.0421 0.0423 

0.8 0.0382 0.0388 0.0394 0.0399 0.0403 0.0407 0.0410 0.0408 0.0412 

0.9 0.0424 0.0428 0.0432 0.0436 0.0438 0.0442 0.0445 0.0447 0.0309 

1 0.0437 0.0442 0.0446 0.0390 0.0293 0.0445 0.0267 0.0452 0.0467  
 

Algorithm for Finding the Optimal (, ) 

The LDPD can generate many different kinds of 

estimators, starting from the most efficient estimator to 

highly robust estimators. For example, in the limit 

0 and 0, one gets the likelihood disparity which 

is minimized by the classical maximum likelihood 

estimator. On the other hand, relatively larger values 

of  and  lead to estimators with extremely high 

outlier stability. In a given situation, therefore, it is 

imperative that one is able to choose the most suitable 

tuning parameters for that particular case. Here we 

consider a data driven algorithm for selecting the 

“optimal” tuning parameters (,) which would 

provide best compromise for the given situation. For 

this purpose we modify an approach of Warwick 

(2002), pp. 78-82 and minimize an empirical version 

of the asymptotic summed mean square error. The 

optimization technique is a two stage process. 

Suppose that the data are generated by a contaminated 

version of a model distribution and let 0 be the 

parameter for the model component. Although the 

data are generated by a contaminated version, the 

parameter 0 of the model component is our target 

parameter. The spirit of such a set up is described in 

Warwick and Jones (2005). Let ,  = T, (G) be the 

corresponding minimum distance functional and 
,

ˆ
   

is the solution of the unbiased equation of LDPD with 

tuning parameter (, ) based on the data. The summed 

mean square error of the minimum LDPD estimator 

has the asymptotic formula: 
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 (17) 

 

Here * is the pilot estimator playing the role of 0 

and tr{} represents the trace of matrix. The asymptotic 

covariance matrix of  , ,
ˆn      is J1KJ1, where J 

and K are as in Equation 12 with (x, g) = 
1

log 1
x





 
 

 
. 

So the estimated asymptotic summed mean square of the 

MLDE is: 

 

    1 1
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1
.

T

J KJ
n

             (18) 

 

For the multiparameter case, the above quantity is a 

matrix. So trace of the matrix is used to provide a global 

measure of the summed mean square error for 

minimization. Thus when there are two parameters to be 

estimated (say (, ) for N(, ) model) then the 

expression to be minimized is: 

 

      

   

1 1 1
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2 2

.

n tr J K J       

   

  

    

 (19) 

 

The optimal value of (, ) is the minimizer of 

Equation 19 under certain conditions. One important 

note is that in the first stage of minimization our pilot 

estimate for * is taken to be a good robust estimate 

based on the data as suggested in Warwick (2002). The 

empirical summed mean square error is then obtained by 

evaluating the expressions in Equation 18 or Equation 19 

after substituting 
,

ˆ
   for , and the empirical 

distribution Gn in place of the true unknown distribution 

G. Let us denote this empirical summed mean square 

error by AMSE in the following. 

Algorithm 

Given a dataset Xn1 we perform the following steps 

to obtain the estimate of : 

 

1. Apply the method suggested in Warwick (2002) to 

get an optimal  for MDPDE. Suppose this value is 

w. This step is the 1st stage of optimization by 

assuming an initial pilot estimate of *. 
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2. Consider the interval (0, w). Update the pilot 

estimate for * = ˆ
w

 , which is MDPDE of  with 

w as the tuning parameter 

3. Perform a two dimensional optimization which 

selects the value of (, ) for which the minimum: 
 

   
 ,

0,10,

ˆmin min
w

AMSE  
 




 
  

 (20) 

 

is attained under the constraint  ,
ˆAMSE    < 

 ˆ
w

AMSE

 . 

An alternative to this approach could be to perform 

an unrestricted minimization of  ,
ˆAMSE    with 

respect to (, ) over the set (0,1)(0,1) 

Real Data Examples 

Here we take some real data sets and use our 

algorithm to find the optimal tuning parameters to be 

used in estimating the parameters of the model. We 

worked with two data sets, Newcomb’s light speed 

data and Short’s parallax of the sun data, under 

normality assumptions. We have used the minimum 

L2 distance estimates as our pilot estimates of (, ). 

Newcomb’s Data (Speed of Light) 

This example involves Newcomb’s light speed 

data (Stigler, 1977, Table 5). The data size is n = 66. 

Under the normal model, the MLE of the mean and 

standard deviation for these data are found to be equal 

to 26.212 and 10.664, respectively. We employ our 

algorithm for tuning parameter selection and Table 4 

reports the optimal tuning parameters for DPD and 

LDPD, as well as the parameter estimates at these 

optimal values. The estimators are extremely close, but 

the estimated asympmtotic summed mean square, for 

whatever it is worth, is lower in case of the MLDE. 

Short’s Data (Parallax of the Sun) 

This example involves Short’s data for the 

determination of the parallax of the sun, the angle 

subtended by the earth’s radius as if viewed and 

measured from the surface of the sun. From this angle 

and available knowledge of the physical dimensions 

of the earth, the mean distance from earth to the sun 

can be easily determined. The raw observations are 

presented in Table 4 of Stigler (1977). The data size is 

n = 53. Under the normal model, the MLE of the mean 

and standard deviation for these data are found to be 

equal to 8.378 and 0.846 respectively. We perform all 

the steps of the aforesaid tuning parameter selection 

algorithm and the results of the analysis are now listed 

in Table 5. Again, the empirical asymptotic MSE for 

the MLDE is slightly better than that of the MDPDE. 

From Fig. 3 and 4, it is evident that the normal fits 

coming from the MDPDE and MLDE are in the same 

ballpark. However, if the empirical asymptotic summed 

mean square error is accepted as a reasonable criterion 

for discrimination, then the performance of the MLDE 

is better than that of the MDPDE, although the order of 

improvement is small. 

 

 
 

Fig. 3: Normal density fits for Newcomb’s data 

MLE 

 
MDPDE 

 
MLphiDE 

D
en

si
ty

 

Histogram of Newcomb 

0.10 

 
0.08 

 
0.06 

 
0.04 

 
0.02 

 
0.00 

-60             -40             -20                0               20               40              60 

Newcomb’s speed of light 



Saptarshi Roy et al. / Journal of Mathematics and Statistics 2019, Volume 15: 333.353 

DOI: 10.3844/jmssp.2019.333.353 

 

342 

 
 

Fig. 4: Normal density fits for Short’s data 

 
Table 4: Parameter estimates: Newcomb’s light speed data 

Category MDPDE MlDE 

Optimal tuning parameter α = 0.3 (, ) = (0.1,0.03) 

Estimate of µ 27.62 27.57 

Estimate of  5.01 4.93 

AMSE 0.7 0.64  

 

Table 5: Parameter estimates: Short’s data 

Category MDPDE MlDE 

Optimal tuning parameter α = 0.96 (, ) = (0.55,1) 

Estimate of µ 8.477 8.478 

Estimate of  0.365 0.365 

AMSE 0.0058 0.0057  

 

The MLDE for Independent 

Nonhomogeneous Observations 

Here we generalize the above concept to the case of 

independent but not identically distributed observations. 

Ghosh and Basu (2013) explains the methodology for 

this problem in the case of DPD, but here we will extend 

it to the case of LDPD. 

Let us assume that the observed data Y1,…,Yn are 

independent but for each i, Yi  gi where the densities 

g1,…,gn may not be same. We want to model gi by the 

family ,i F  = {fi(; )|} for all i = 1,2,…,n. We want 

to estimate  by minimizing the LDPD between the 

data and the model. However, the model density may not 

be same for each Yi’s and hence we need to calculate the 

divergence between data and model separately for each 

data point. For this purpose, we minimize the average 

divergence between the data points and the models. 

Therefore, we minimize: 
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with respect to , where   ˆ , ;i id g f   denotes the 

LDPD between the density estimate corresponding to 

the i-th data point and the associated model density. In 

the presence of only one data point Yi from density gi, 

the best possible density estimate of gi is the 

(degenerate) density which puts the entire mass on Yi so 

that we have: 
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where, K is a constant independent of , the parameter of 

interest. Thus, for the purpose of estimation it suffices to 

minimize the objective function: 
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Differentiating the above with respect to  we get the 

estimating equation of the minimum LDPD estimator 

for non-homogeneous observations as: 
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where, ui() is the score function for fi(). 

Asymptotic Properties 

We will now derive the asymptotic distribution of the 

minimum LDPD estimator ˆ
n  defined by the relation: 

 

   ˆ minn n nH H


 


  

 

provided such a minimum exists. Let us first present the 

necessary set up and conditions. Let the parametric 

model ,i F  be as defined above. We also assume that 

there exists a best fitting parameter of  which is 

independent of the index i of the different densities. Let 

us denote it by g. The assumptions hold if all the true 

densities gi belong to the model family so that gi = fi(;) 

for some common  and in that case the best fitting 

parameter is nothing but the true parameter . 

Next, recall that the MLDE ˆ
n  is obtained as a 

solution of the estimating Equation 23. This equation is 

satisfied by the minimizer of Hn() in Equation 21. 

Similarly, we also define, for i = 1, 2,: 

 

 

 
 

 

 

( )

;

0

;

0 0

;

0

1
; log 1

log 1 .

1
log 1 ( ) .

i

i

i

i

f y

i

f y t

f y

i

H

f y s ds
s

s ds dt dy
s

s ds g y dy
s























 
  

 

 
   

  

  
   

  

 

 



 (24) 

 

Note, at the best fitting parameter g, we must have: 

    0, 1,2,
i gH i    

 

We also define, for each i = 1,2, the p  p matrix J(i) 

whose (k, l)-th entry is given by: 
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where, kl represents the partial derivative with respect 

to the indicated components of . We further define the 

quantities: 
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A simple calculation shows that: 
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and: 
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where: 
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We will make the following assumptions to establish 

the asymptotic properties of the MLDE: 

 

 (G1) The support   | ; 0iy f y  =X  is 

independent of i and  for all i; the true distributions 

Gi are also supported on X  for all i. 
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 (G2) There is an open subset  of the parameter 

space , containing the best fitting parameter g 

such that for almost all yX  and all , all i = 

1,2,, the density fi(y;) is thrice differentiable with 

respect to  and the third partial derivatives are 

continuous with respect to  

 (G3) For each i = 1,2,, the three integrals 
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   can be 

differentiated thrice with respect to  and the 

derivatives can be taken under the integral sign (the 

first indefinite integral) 

 (G4) For each i = 1,2,, the matrices J(i) are positive 

definite and: 

 

0 inf min 0.n
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Here I() stands for indicator function. 

 (G7) For all  > 0, we have: 
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Theorem 4 

Under assumptions (G1)-(G7), the following results 

hold: 

 

(i) There exists a consistent sequence n of roots to the 

minimum LDPD estimating Equation 23 

(ii) The asymptotic distribution of 

 
1

2 g

n n nn  


   
 

is p-dimensional normal with 

(vector) mean 0 and covariance matrix Ip, the p-

dimensional identity matrix 

 

Note that, putting fi = f for all i, we get back the 

corresponding asymptotic properties of the minimum 

LDPD estimator for the i.i.d. case. If fi = f, i = 1,2,, 

we get J(i) = J for all i; thus n = J and n = K. Here J 

and K are as defined previously. In this case 

assumptions (G1)–(G5) are exactly the same as the 

assumptions (A1)-(A5), while assumptions (G6) and 

(G7) are automatically satisfied by the dominated 

convergence theorem. Thus the result, which 

establishes the consistency and asymptotic normality of 

the minimum LDPD estimator ̂  with  1/2 ˆ gn    

having the asymptotic covariance matrix 1 1

n n n

     = 

J1KJ1, emerges as a special case of Theorem 4. 

Normal Linear Regression 

A natural situation where the theory proposed above 

would be immediately applicable is the case of linear 

regression. We consider the linear regression model: 

 

, 1, , ,T

i i iy x i n      (34) 

 

where the error i’s are i.i.d. normal variables with mean 

zero and variance 2,  ,T

i ii ipx x x  is the vector of the 

independent variables corresponding to the i-th 

observation and  = (1, p)T represents the regression 

coefficients. We will assume that xi’s are fixed. Then 

 2,T

i iy N x    and hence the yi’s are independent but 

not identically distributed. Thus yi’s satisfy our 

independent but non-homogenous set-up and hence the 

MLDE of the parameter  = (T, 2)T can be obtained 

by minimizing the expression in Equation 21 with 

 2,T

i if N x   . 

Real Data Examples in Regression 

We now consider some real data examples to 

illustrate the above technique in linear regression. 

Hertzsprung-Russel Data 

This example involves a robust regression on the 

Hertzsprung-Russel data. These data, associated with the 

Hertzsprung-Russel diagram of the star cluster CYG 

OB1 containing 47 stars in the direction of Cygnus has 

been analyzed previously by several authors including 

Rousseeuw and Leroy (1987). 
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We fit the simple linear regression model y = 0 + 

1x +  under homoscedastic normal errors. Here the 

independent variable (x) is the logarithm of the 

temperature of the stars and the dependent variable (y) is 

the logarithm of the light intensity of the stars. The 

initial regression parameter values are the Least Median 

of Squares (LMS) estimates. The initial scale estimate is 

the scaled Median Absolute Deviation (MAD) of the 

LMS residuals. We perform the previously mentioned 

steps of optimal tuning parameter selection and obtain 

the estimates for the regression coefficients, which are 

given in Table 6. The regression lines for LS regression, 

LMS regression and minimum LDPD regression are 

given in the Fig. 5. The robust performance of the 

MLDE is self evident. 

Salinity Data 

This example involves the Salinity data (Table 5, 

Chapter 3, Rousseeuw and Leroy, 1987). These data 

were originally presented by Ruppert and Carroll 

(1980). The measurements of the salt concentration of 

the water and the river discharge taken in North 

Carolina’s Pamlico Sound were recorded as the data. 

These data represent a multiple linear model with 

salinity as the dependent variable (y) and salinity 

lagged by two weeks (x1), the number of biweekly 

periods elapsed since the beginning of the spring 

season (x2) and the volume of river discharge into the 

sound (x3) as the dependent variable. 

We fit the multiple linear regression model y = 0 + 

1x1 + 2x2 + 3x3 +  under homoscedastic normal 

errors. The initial regression parameter values are the 

Least Median of Squares (LMS) estimates. The initial 

scale estimate is the scaled Median Absolute Deviation 

(MAD) of the LMS residuals. 

The optimal parameters obtained through our 

algorithm for optimal parameter selection are 

presented in Table 7. The residual plots for LS 

regression, LMS regression and minimum LDPD 

regression are given in the Fig. 6. Like the LMS 

method (and unlike the LS method) the MLDE gives 

a nice outlier resistant fit. 

 
Table 6: Regression estimates for Hertzsprung-Russel data 

Category MLDE 

Tuning Parameter (,  = (1,0.9) 

Estimate of η0 −8.5557324 

Estimate of η1  3.0590795 

Estimate of  0.4266284  

 
Table 7: Regression estimates for Salinity data 

Category MLDE 

Tuning Parameter (, ) = (1,0.9) 

Estimate of η0 57.16780461 

Estimate of η1 0.06010002 

Estimate of η2 −0.01301208 

Estimate of η3 −2.08372562 

Estimate of  0.56157558  

 

 

 
Fig. 5: Regression fits for the Hertzsprung-Russel data 
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Fig. 6: Residual plots of the fitted regression models for Salinity data using LS, LMS and minimum LDPD estimation 

 

Hypothesis Testing using LDPD 

Now we develop the tests of parametric hypothesis 

based on LDPD divergence. The most common 

problem is that of testing a simple null hypothesis for a 

parametric family of densities  : pf    under 

the one sample case. Here we test: 

 

0 0 1 0: :H Versus H      (35) 

 

when a random sample X1,X2,…,Xn is available from the 

population of interest. We propose our test statistic as: 
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  (36) 

 

with 
,

ˆ ˆ
    being the MLDE estimate of  and B() is 

as defined in Equation 16. We shall find the asymptotic 

distribution of T under H0 and reject the null hypothesis 

for large values of T. 

We assume the following regularity conditions of the 

parametric family of distributions: 

 

 (B1) The support of the distribution function F, i.e., 

the set   | 0x f x X  is independent of  

 (B2) There is an open subset  of the parameter space 

, containing the true parameter value 0 such that for 

almost all xX  and all , the density f(x) is three 

times differentiable with respect to  and the third 

partial derivatives are continuous with respect to  

 (B3) The integrals     2B f x f x dx 
  can be 

differentiated with respect to  and the derivatives 

can be taken under the integral sign 

 (B4) The p  p matrix J() defined by: 
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E B f x f x B f x dx B f X    

 

    
 

 

 

is positive definite where E represents the 

expectation under the density f 

 (B5) There exists functions Mjkl(x) with finite 

expectation, j,k, l = 1,…, p, such that: 
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Then we have the following theorem. 

Theorem 5 

Under the assumptions (B1)-(B5) and under the null 

hypothesis H0:  = 0 the asymptotic distribution of 

 , 0
ˆ,T     coincides with the distribution of: 

 

2

1

,
r

i i

i

Z


  

 

where, Zis are independent standard normals and i’s are 

non-zero eigenvalues of A(0)(0) and: 

 

      

   
0 0

0 0 0

2

0 , , |

r rank A

A d f f      

  




  


 

 

where, (0) is the asymptotic covariance matrix of 

,
ˆn    under the null hypothesis and 2

  represents 

second derivative with respect to . 

We can extend this theorem and hence the testing 

result to the general two sample problem of testing H0: 

1 = 2 against H1: 1  2 where there is a random 

sample of size n from population 1 with parameter 1 

and that of size m from population 2 with parameter 2. 

Let 1̂  and 2̂  be MLDEs of the parameter in 

populations 1 and 2, respectively. Then under the (B1)-

(B5) regularity conditions on the model, we have the 

following results. 

Theorem 6 

Under the null H0: 1 = 2, the asymptotic distribution 

of: 

 

   
1 2
ˆ ˆ, 1 2 ,

2ˆ ˆ, ,
mn

S S d f f
m n

     
  


 

 

coincides with that of: 

 

2

1

r

i i

i

Z


  

 

where, Zis are independent standard normals and i’s are 

non-zero eigenvalues of A(0)(0) and r = 

rank((1)A(1) (1)) where A() and () are defined 

in the statement of Theorem 5. 

Equivalence with the Score Test 

A score test, developed in the same spirit under the 

same set up as in Theorem 5, also has the same 

asymptotic null distribution. 

Theorem 7 

The score test statistic using the LDPD for testing 

the simple null in Equation 35 can be given by: 

 

         1 1

0 0 0 0 0

T

B BnU J A J U       

 

where: 

 

             2 2( )U x u x B f x f x u x B f x f x dx      
     

 

and: 

 

   
1

1 n

i

i

U U X
n




   

 

with 

 

 

   
0 0

0 1

log 1

|B

x
B x

x

J E U X



  









 
   

 


 



 

 

and A(0) is as described in Theorem 5. Under the null 

hypothesis, the asymptotic distribution of this statistic is 

same as that of  , 0
ˆ,T    . 

Divergence Difference Test Statistic 

We assume that we have a parametric model F  of 

densities and X1,…,Xn be i.i.d. from the true distribution 

G with the same support as the distributions in F . 

Consider the null hypothesis: 

 

0 0 1 0: : \ ,H versus H      (37) 

 

where, 0 is a proper subset of . The Likelihood Ratio 

Test (LRT) is one of the most common tests that may be 

employed in this situation. Define: 

 

 
 

0
1

1

sup | ,...,
,

sup | ,...,

n

n

X X

X X















L

L
 

 

where,  1| ,..., nX XL  is the likelihood of q given the 

data. The test statistic in this case is -2log. Assume 

that the distribution function G is discrete. In 

particular let its support be  0,1,2,...X , which is 

also the common support of the family F . Then the 

test statistic can be expressed in terms of observed 

relative frequencies vn as: 
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0

0

ˆ ˆ

1 1

ˆˆ

2log

2 log log

2 , , ,

n n

i i

i i

n n

f X f X

n LD v f LD v f

 





 



    
     

    

  
  

   (38) 

 

where, LD(,) stands for the likelihood disparity. Here ̂  

and 0̂  stands for unrestricted maximum likelihood 

estimator and maximum likelihood estimator under null 

hypothesis respectively. Equation 38 gives a motivation 

to construct a new test statistic based on LDPD. 

As an analog of the likelihood ratio test, we 

consider the Divergence Difference Test (DDT) based 

on LDPD to test the hypothesis given in Equation 

37. Note that the test statistic in Equation 38 can be 

viewed as a difference of the minimized value of 

likelihood disparity under null and unrestricted 

minimum of likelihood disparity. In the same spirit 

one may define the following test statistic: 

 

     
0

ˆˆ, , ,2 , , ,n n nDDT v n d v f d v f      
  
  

 (39) 

 

0̂  and ̂  are MLDE under null hypothesis and 

unrestricted minimum MLDE respectively. Also note that: 

 

 

             

, ,

,

n

n n

x

d v f

B v x B f x v x f x B f x

  

  


    
 
X

 

 

where, B() is defined as Equation 16. We will show 

that under certain regularity conditions the asymptotic 

distribution of the test statistic DDT,(vn) coincides 

with the distribution of linear combination of 

independent chi-squared random variables. Suppose 

that 0 is defined by a set of r  p restrictions on  

defined by Ri() = 0, 1ir. We assume that the 

parameter space under H0 can be described through a 

parameter  = (1,…, p-r), with p-r independent 

components, i.e., H0 specifies that there exists a 

function b: p r p   where  = b(),  p r . 

The function b is assumed to have continuous 

derivative  b   of order p (p-r) with rank p-r. Then 

the constrained estimator is  0
ˆ ˆb  , where ̂  is the 

MLDE under the  formulation of the model. Let G = 

F be the true distribution which belongs to the family 

F  with parameter . Under H0, let  be the true value 

of the reduced parameter. So we have  = b(). When 

the null hypothesis is true under standard regularity 

conditions it can be easily shown that ̂  and 0̂  are 

consistent for  and  respectively in the sense that: 

          

 

1
1/ 2

1/2

ˆ

,

T T

B n

P

n b J b b b Z b

o n

      






  
 



 (40) 

 

where, Zn(b()) is AN(0, KB(b())). Here JB() and KB() is 

defined as in Theorem 1. Now we will lay out some 

appropriate regularity conditions under which we will 

derive the asymptotic distribution of DDT,(vn) under 

the null hypothesis: 

 

 (C1) The assumptions (A1)-(A5) hold under the 

model conditions 

 (C2) The unconstrained minimum LDPD estimator 

̂  satisfies: 

 

     1/2 1 1/2ˆ ,B n Pn J Z o n         (41) 

 

where, Zn() is AN(0, KB()). 

 (C3) The null hypothesis H0 is either simple and 0 

= {0}, where 0 is in the interior of , or H0 is 

composite and 0 = {b():   p r } 

 (C4) If H0 is composite then the constrained estimator 

 0
ˆ ˆb   and ̂  satisfies Equation 40. Define: 

 

       1 1

, , ,, , , ,B b B b B B bJ K J          

 

where 

 

             
1

1
1

, , ,
T T

B b B BJ J b b J b b       



   

   
 

 

Theorem 8 

Suppose that assumption (C1)-(C4) hold. Under 
0

f


, 

00, the limiting distribution of the distance 

difference test statistic in Equation 39 coincides with the 

distribution of: 

 

2

1

,
m

i i

i

Z


  

 

where, i’s are non-zero eigenvalues of A(q0)B,b(0, ) 

and m = rank(A(q0)B,b(0, )). Moreover if 0 = {0} 

then under the null hypothesis the asymptotic 

distribution of distance difference test statistic in 

Equation 39 is same as that of  , 0
ˆ,T     in Theorem 5. 

Remark 

In the above theorems the null distribution of the 

test statistic turns out to be same as that of a linear 
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combination of independent chi squared random 

variables. In general it is hard to get hold of critical 

values under this distribution for actually performing 

the test. Also calculations regarding this distribution 

become numerically hard. This gives the motivation to 

explore another test statistic which will lead to a 

simpler null distribution. 

Wald Type Test 

Assume a similar setup of hypothesis testing as in 

Equation 37. Suppose that the null space 
0

p   is 

defined by a set of rp restrictions on  defined by Ri() 

= 0, 1ir. Let G = F be the true distribution which 

belongs to the family F  with parameter . Assume ̂  

to be the MLDE of the true parameter . Define R() = 

(R1(),…,Rr())T and  
 i

j r p

R
D







 
  

  

. Under the 

spirit of the original Wald test statistic, we can construct 

the following test statistic: 
 

           
1

ˆ ˆ ˆ ˆ ˆ ˆ ,
T T

W R D D R     


   
 

 

 

where, () = JB()1KB()JB()1 under the B() function 

described in Equation 16. Under standard regularity 

conditions it is easy to prove that the asymptotic 

distribution of  ˆW   is 2

r  under the null hypothesis. 

The proof follows from simple application of delta 

method theorem on the quantity  ˆR   and the fact that 

under the null hypothesis  ˆn    is AN(0, ()). The 

main benefit of this test statistic is that its asymptotic 

null distribution is simpler. Hence it is easy to perform 

numerical computations based on these statistics. For 

example, the critical values of the test statistic can be 

computed with ease in this case. 

Real Data Example 

Researchers needed to evaluate the effectiveness of an 

insecticide (dieldrin) in killing Anopheles farauti 

mosquitoes. The theory was that resistance to dieldrin was 

due to a single dominant gene and that in an appropriately 

selected sample of the mosquitoes, there should be 50% 

susceptibility to insecticide. The hypothesis is: 
 

0 1

1 1
: : ,

2 2
H p versus H p   

 
where, p is the probability of susceptibility. The results 

of such experiment is given in Osborn (1979). The 

sample contains 465 mosquitoes where 264 of them died 

on being exposed to the insecticide. We can perform this 

test with test statistic DDT,(vn) in Equation 39. Here  

and  are chosen to be 0.3 and 0.05 respectively. The 

support of the distribution is  0,1X , where the digit 1 

stands for the death of a mosquito. From here it is 

evident that vn(1) = 264/465. The null hypothesis is 

rejected if the value of the test statistic is large. In this 

case the asymptotic null distribution of the test statistic 

turns out to be 0.774 2

1 . Under the observed data the 

value of the test statistic turns out to be approximately 

6.62. The 95% quantile of the aforementioned scaled 

chi-squared distribution is 2.97. So, under 5% level of 

significance the null hypothesis is rejected. 

Summary 

In this paper, we have developed a large class of 

density based divergences which includes the density 

power divergence family as a special limiting case. The 

key philosophy of stronger downweighting effect to 

construct the new family has been discussed. For 

application purposes, the family gives the data analyst a 

larger number of choices of possible divergences for 

inference purposes. We have shown several asymptotic and 

distributional properties of the proposed estimator. We have 

also shown that judicial choice of the tuning parameters 

leads to highly robust and efficient estimators which can 

often dominate the MDPDE. Though one of the parameters 

has a smaller effect on the robustness we have shown that 

both of them play an important role in the context of finite 

sample efficiency. We have also presented a possible data 

driven algorithm to obtain the “optimal” estimator in a 

given data set. We have also considered several 

hypothesis testing strategies for parameteric models which 

may serve as robust alternatives to the classical likelihood 

ratio and other likelihood based tests. 

Remark 

Like the MDPDE, the procedures described in this 

paper avoid the nonparametric density estimation and 

associated complications specific to classical minimum 

distance estimation. Another approach of this type can be 

found in Toma and Broniatowski (2011). 

Remark 

In creating the test statistics for parametric hypothesis 
tesing using the LDPD, we have restricted ourselves to 
the case where the same set of tuning parameters have 
been used for estimation as well as the construction of 
the subsequent divergences. In practice, one could allow 
them to vary; see, for example, Basu et al. (2013). In the 
present context, while this is possible, we do not explore 
this issue as we feel that there are enough tuning 
parameters involved already and there are no 
demonstrated results indicating that such differential 
choices will necessarily produce improved tests. 
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Remark 

In this paper, most of our illustrations have been with 

respect to the continuous model. Theoretically, however, 

there is nothing preventing its successful use in discrete 

models. All the necessary theories work out satisfactorily 

in this case. 

Proof of Theorems 

Proofs of Theorem 2, 5, 6 and 7 are skipped as they can 

be reproduced along the existing proofs in Basu et al. 

(2011), Ghosh and Basu (2013) and Ghosh et al. (2015). 

Proof of Theorem 2: 

Proof 

(a) From (P4) we know that f(x)(f(x), ) is 

continuous for (0,1] and limg f(x)(f(x), ) = 

1. By applying dominated convergence theorem 

(DCT) on Equation 11 at   0+ we get: 
 

       1

1

1
0

n

i i

i

u X f X u x f x dx
n

 

   





    

 
which is the unbiased estimating equation for DPD 

with tuning parameter . Hence the result follows. 

(b) As u(x) f(x)1+, u(x) u(x)T f(x)1+2, u(x)u(x)T 

f(x)1+ are integrable and f(x)(f(x),) is bounded, 

by DCT on Equation 12 at   0+ we get: 
 

1 1 2

1

, ,

,

T T TJ u u f K u u f

u f

 

         



  

 



 



  



 


 

 

i.e., 1 1 1 1

0
lim J K J J K J      

   


 . We already know 

from the assumptions that 1 1 1 1J K J J K J     

    , i.e., 

 1 1 1 1J K J J K J     

    is positive definite, where J 

and K are defined in the same fashion as J and K 

respectively. The inequality of the asymptotic 

variances is used here in the sense that AE of DPD 

with parameter  is greater than that of AE of DPD 

with parameter a. So there exists a  = (,) such that 
1 1 1 1J K J J K J     

    . Hence the result follows. 

Proof of Theorem 3 

Proof 

First let us assume that breakdown occurs at the 

model so that there exists sequence Kn of model densities 

such that |n| as n. Now, consider: 

 

     , , ,, , , ,
c

n n nn n
n n n

A A
D h f d h f d h f    

    (42) 

where, An = {x: g(x) > max{kn(x), 
n

f


(x)}}. Now since g 

belongs to the model family F , from (BP1) it follows 

that   0
n

n
A

k x   and from (BP2) we get 0
nnA

f

 , 

thus under kn and 
n

f


, the set An converges to a set of 

zero probability as n  . Thus, on An, d(h,n)  d((1-

)g,0) as n   and so by DCT 

    , , 1 ,0 0
nn n

n
A A

d h f d g 
    . Using (BP1), (BP2) 

and the above result, we have    
 1

, , 1
,

nn
n fA

d h f M  
 . 

Next, by (BP1) and (BP2), 0
c
nA
g   as n  , so under 

g, the set c

nA  converges to a set of zero probability. 

Hence, similarly, we get 

   , , , 0
c c

n nn n
n n

A A
d h f d k f  

   . Now by (BP3), we 

have      
 

 1 2

, , 1
, ,

n n n
n f f

d k f d f f M M   
 


    . Thus 

combining the equations we get 

   
 

 
 

 1 2 1

, , , 1 , 1
liminf ,

n
n n f f f

D h f M M M     
    = a1(), say. 

We will have a contradiction to our breakdown 

assumption if we can show that there exists a constant 

value * in the parameter space such that for the same 

sequence kn: 
 

  1limsup , , ( )
n n

n

D h f f a  




  

 

as then the sequence {n} above could not minimize 

,
,

n
n

f
D h f


 

 
 
 

 for every n. We will now show that above 

equation is true for all  < 1/2 under the model when we 

choose * = g. For any fixed , let Bn = {x: kn(x) > 

max{g(x), f(x)}}. Since g belongs to the model F , 

from (BP1) we get 0
nB
g  , 0

nB
f  and 0

c
n

n
B

k   as 

n  . Thus, under kn, the set c

nB converges to a set of 

zero probability, while under g and f, the set Bn 

converges to a set of zero probability. Thus, on Bn, d(h,n, 

f)d(kn, 0) = B(kn) as n  . So by DCT 

   , , 0
n

n n
B

d h f B k     . Similarly we have 

    , , 1 , 0
c
n

n
B

d h f d g f      . Therefore, we have: 

 

      ,limsup , 1 , limsup .n n
n n

D h f D g f B k   
 

     (43) 

 

Taking  = g in Equation 43 and then using (BP3) 

we get: 

 

       (1) (2) (1)

, , 3, 1 ,
limsup , ,gn ff f

n

D h f M M M a  
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say. Consequently, asymptotically there is no breakdown 

if for  level contamination when a3() < a1(). But, 

notice a1() and a3() are strictly decreasing and 

increasing functions respectively. To see this for a1(), 

notice  
 

 1 2

, , 1f f
M M  

 . As 1 the above expression 

decreases.  
    1

, 1
1

f
M B f





  . From Equation 16 we 

see that B() is an increasing function on positive half 

line. Using this it is evident that  
 1

, 1f
M


decreases as 1. 

So, a1() decreases as 1. Similarly 

it can be shown a3() is an increasing function of e. 

But a1(1/2) = a3(1/2); thus asymptotically there is no 

breakdown and limsupnn   |T,(H, n)| <  for  < 1/2. 

Hence the theorem follows. 

Proof of Theorem 7 

Proof 

We know the estimating equation for general M-

estimators as: 
 

      

      

1

2

1

0

n

i i i

i

u X B f X f X
n

u x B f x f x dx

  

  





 





 

 
or equivalently: 
 

      

       
1

2

1

0

n

i i i

i

u X B f X f X
n

u x B f x f x dx

  

  





 





 

 

Viewing this as usual score equation, we take U(Xi): 
 

        

      2 .

i i i iU X u X B f X f X

u x B f x f x dx

   

  




 

 
We have already seen that the statistic 

 , 0
ˆ,T    satisfies: 
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ˆ ˆ ˆ, , 1 .

T
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Note that  
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1
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n
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U X
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 is solved for  = ̂ . By 

Taylor series expansion: 
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for some  in between 0 and ̂ . So we have: 
 

   

   
0

ˆ 0
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0

1

1
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And hence: 
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01

1
|

n

ii
U X

n
   




   

0 0
1 |E U X   




=- 

JB(0) as n  . Hence: 
 

     0 0 0
ˆ (1)B pnU n J o       

 
So: 

 

    
         

0 0 0

1 1

0 0 0 0 0

ˆ ˆ
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T

B B p

n A

nU J A J U o

    

     

 

 

 

 
This completes the proof. 

Proof of Theorem 8 

Proof 

A Taylor expansion of Equation 39 around ̂  gives: 
 

 

   

   

    

0

,

ˆˆ, ,

ˆ0 ,

0 0 ,

.

2 , ,

ˆ ˆ2 , |

1 ˆ ˆ ˆ ˆ , |
2
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n n

j j j n

j

j j k k jk n

j k

DDT v

n d v f d v f

n d v f

d v f

 

    

    

    

 

   



 

  
  


  




    







 (44) 

 
where the subscripts denote the indicated components of 

the vector. Also * lies in the line segment joining 0̂  

and ̂ . By definition,   ˆ, , | 0j nd v f    
  . Hence, the 

Equation 44 reduces to: 
 

 

    

       

,

0 0 0

0 2 , 0 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ,

n

T

n

DDT v

n A

n d v f A

 

  

    

    

  

     
 

 (45) 

 
We will show that under the null 

   2 , 0,nd v f A  
  as n  . By another Taylor 
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expansion around the true value 0, we get for some ** 

between 0 and *: 

 

 

     
0

,

, 0 ,

,

, , .

jk n

jk n l l jkl n

l

d v f

d v f d v f

  

    
 









   
 (46) 

 

Under the assumptions (C1)-(C4) it can be easily 

shown that    
0

2 , 0,nd v f A  
   as n   and 

   , , 1jkl n Pd v f O  
  . By a simple application of 

delta theorem on Equation 40 it can be shown 

   0 0
ˆ 1Pn O    under the null hypothesis. 

Equation 41 yields that    0 0
ˆ 1Pn O   . Hence we 

have * = 0 + oP(1). As a result the Equation 46 

reduces to  *2 , ,nd v f  
 = A(0) + oP(1). So, the 

Equation 45 becomes: 

 

      , 0 0 0
ˆ ˆ ˆ ˆ (1)

T

n PDDT v n A o           (47) 

 

To obtain the asymptotic null distribution of DDT, 

(vn) it is enough to obtain the asymptotic null distribution 

of  0
ˆ ˆn   . Again from Equation 41 and by simple 

application delta theorem on Equation 40 it is easy to 

show that: 

 

    0 , 0 0
ˆ ˆ 0, , ,w

B bn N       

 

where, 0 is the true value of the parameter under  

formulation of the model. Hence the result follows. If 0 

= {0}, then Equation 47 reduces to: 

 

      , 0 0 0
ˆ ˆ (1).

T

n PDDT v n A o           

 

We also know: 

 

      , 0 0 0 0
ˆ ˆ ˆ, (1).

T

PT n A o             

 

under the null hypothesis. Hence the asymptotic null 

distribution of both the statistics are same. This 

completes the proof. 
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