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Abstract: Equilibrium statistical mechanics studies mathematical models 

for physical systems with many particles interacting with an external force 

and with one another. In this paper we describe an interaction model that 

generalizes several of these models in one model. An infinite model is 

constructed as the limiting case of finite interaction models, that is as a 

thermodynamic limit. The key point in constructing a thermodynamic 

limit is a proof of existence of the limiting probability measure (Gibbs 

measure). Traditional proofs use DLR formalism and are quite 

complicated. Here we explain a more transparent and more constructive 

proof for the case of high temperatures. The paper provides a detailed, 

step-by-step rigorous construction of a statistical model and 

corresponding proofs. The paper also includes a version of the central 

limit theorem for a random field transformed by a renormalization group, 

in a special case of the interaction model. 

 

Keywords: Infinite Particle System, Gibbs Modification, Radius of 
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Introduction 

Mathematical models of statistical mechanics are 

described in many publications; see, for example, 

Dobrushin (1968), Kashapov (1977), Malyshev (1980), 

Malyshev and Minlos (1991), Baxter (2008), and 

Yang et al. (2017). Well-known models include Ising 

model, Potts model, Heisenberg model, XY model and 

n-vector model. In Kachapova and Kachapov (2016) 

we introduced a so called interaction model; we 

further developed this concept in Kachapova and 

Kachapov (2017). The interaction model describes a 

physical system at high temperature with many particles 

interacting with an external force and with one 

another. In this paper we improve the mathematical 

concept of the interaction model by giving a more 

general and detailed definition and we show that all 

the aforementioned models are particular cases of the 

interaction model. 
A general model of a physical system with many 

particles is based on a probability theory. When an 

infinite model is constructed as a limit of finite models (a 

thermodynamic limit), there occurs a problem of 

existence of its probability measure (Gibbs measure). 

The general mathematical proof of existence of Gibbs 

measure was constructed using Dobrushin-Lanford-

Ruelle (DLR) approach. It was described in several 

books: Ruelle (1999), Preston (1976), Malyshev and 

Minlos (1991), Friedli and Velenik (2017) and in most 

general form in Georgii (2011). The general existence 

proof is quite complicated and involves topology, cluster 

expansion and conditional probabilities. 

In this paper we explain a straightforward existence 

proof for the case of high temperatures, which involves only 

basic probability, calculus and combinatorics and is more 

transparent and more constructive than the general proof. 

Section 1 introduces a probability space and 

characteristics for a finite interaction model, and gives a 

definition of this model. In Section 2 we introduce some 

notations and state Existence Theorem (about existence 

of Gibbs measure). Next in this section we define an 

infinite interaction model using the Gibbs measure; then 

we briefly justify that the Ising model, Potts model and 

n-vector model are particular cases of the interaction 

model (and so are Heisenberg model and XY-model, 

since they are particular cases of the n-vector model). 

In Section 3 we state a convergence theorem for a 

random field transformed by a renormalization group. This 

theorem is stated for a special case of the interaction model 

constructed in this paper but the proof from our earlier 

paper Kachapova and Kachapov (2016) still holds. 

The remaining Sections 4, 5 and 6 give a detailed 

proof of the Existence Theorem. In particular, Section 4 

considers some estimations in graphs. In Section 5 

graph-related estimations are applied to semi-invariants 

and their series. In Section 6 the probability PN(A) of an 
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event A in a finite model is written as a series of semi-

invariants. In Section 6 the proof of the Existence 

Theorem is finalised by proving absolute and uniform 

convergence of the aforementioned series for PN(A) and 

taking a limit as N → ∞. 

1. Finite Interaction Model 

1.1. Gibbs Modification 

Gibbs modification is used to modify a given 

probability in order to describe interaction between 

particles. 

For any probability measure P on (Ω, Σ) denote 〈⋅〉P 

the expectation with respect to P. 

Definition 1.1 

Suppose P is a probability measure on (Ω, Σ) and U 

is a bounded random variable on (Ω, Σ). 

Gibbs modification of the probability measure P by the 

random variable U is denoted PU and is defined as follows. 

For any event A∈Σ: 

 

( ) ,

U

A
P

U U

P

I e

P A
e

=  

 

where IA denotes the indicator of the event A. 

Lemma 1.2 

In conditions of the previous definition: 
 

1) PU is a probability measure on (Ω, Σ); 

2) for any random variable Y on (Ω, Σ),  

 

.

U

U

P

P U

P

Y e

Y

e

=  

 
Proof is well-known and can be found, for example, 

in Kachapova and Kachapov (2017). 

1.2. Construction of Probability Space 

Definition 1.3 

We introduce some objects that will be used to 

construct an interaction model. 
 

1) Fix natural numbers ν ≥ 1 and η ≥ 1. Consider a ν-

dimensional integer lattice: 
 

( ){ }1
,. . ., , 1,...,

v

v i
t t t i v= = ∈ =ℤ ℤt  

 

with the distance between any two points s, t∈ v

ℤ  
defined by: 

1

.

v

i i

i

s t

=

− = −∑s t  

 

2) For any t∈ v

ℤ we denote Ω t =
η

ℝ and Σ t the Borel σ-

algebra on η
ℝ ; we fix a probability measure Pt on 

(Ω t, Σ t). 

We call{ }vP ∈ℤ
t
t the initial probabilities. 

Definition 1.4 

1) By the Hahn-Kolmogorov theorem, for any integer  

k > 1 and distinct t1,..., tk ∈
v

ℤ  there exists a 

probability space ( )
1 1 1

... ...

... , ,

k k k

PΩ × ×Ω Σ
t t t t t t

 such that 

1
... k

Σ
t t

 is the σ-algebra generated by elements of the 

Cartesian product 
1

...

k

Σ × ×Σ
t t

and
1
...

k

P
t t

is a unique 

probability measure with the property: 

 

( ) ( ) ( )
1 1

1 1...
...

k k
k k

P F F P F P F× × = ⋅ ⋅…
t t t t

 

 

for any ( )1,..., .
i

i
F i k∈Σ =

t
 

2) By the Kolmogorov extension theorem, there exists 

a probability space ( )0
, , PΩ Σ , where the elements 

are described as follows. 

a) ( )
v

η
Ω=

ℤ

ℝ , that is { }: .
v η

ω ωΩ= →ℤ ℝ  An 

element ω of Ω is called a configuration and is 

interpreted as a state of a physical system. 

b) Σ is the σ-algebra generated by sets of the 

form { }( ) Fω ω∈Ω ∈t for all t ∈ v

ℤ and F∈Σ t. 

c) P0 is a unique probability measure on (Ω, Σ) 

such that for any integer k > 1, distinct 

1
,...,

v

k
∈ℤt t  and 

1
1

,...,

k
k

F F∈Σ ∈Σ
t t

: 

 

( ) ( )
1

0 1 1 1...
( ) ,..., ( ) ... .

k
k k k

P F F P F Fω ω∈ ∈ = × ×
t t

t t  

 

Thus, P0 is uniquely defined by the initial 

probabilities { }.v

P ∈ℤ
t
t  

3) For any t ∈ v

ℤ a function Xt : Ω → η
ℝ is defined by 

the following: 

 

( )( ) = .X ω ω
t

t  

 

X  denotes { }.v

X ∈ℤ
t
t   

For the rest of the paper we fix the objects v

ℤ , η
ℝ , 

(Ω, Σ, P0) and X from these definitions. For brevity we 

denote 
0
P

⋅  as 〈⋅〉0. 



Farida Kachapova and Ilias Kachapov / Journal of Mathematics and Statistics 2019, Volume 15: 308.322 

DOI: 10.3844/jmssp.2019.308.322 

 

310 

Lemma 1.5 

{ }vX ∈ℤ
t
t is an independent random vector field on 

the probability space (Ω, Σ, P0). 

Proof 

Proof follows from the definitions. 

Definition 1.6 

1) Consider a graph (V, E), where the set of vertices V 

is a finite subset of v

ℤ and E is the set of edges; each 

edge can be regarded as a pair of distinct vertices 

(there are no loops). The length of each edge is the 

distance between its end vertices.  

The graph (V, E) is called 1-connected if it is 

connected and the length of each of its edges equals 1. 

2) For a finite set v

B ⊂ ℤ  define its size S(B) as the 

minimum number of edges of 1-connected graphs 

(V, E) such that B ⊆ V. 
 

Remark 

For any finite set B there is a cube in v

ℤ containing 

B; this cube with all its edges of length 1 is a 1-

connected graph. So S(B) is always defined. 

Notation 1.7 

For any non-empty finite subset B of v

ℤ denote ΣB 

the σ-algebra generated by sets of the form  

{ω ∈ Ω | ω (t)∈F} for all t ∈ B and F ∈ Σt. 

Definition 1.8 

Here we introduce three characteristics β, r, Φ of an 

interaction model and a set B . 
 

1) ηβ ∈ℝ , β ≥ 0. This is thermodynamic β inversely 

proportional to the temperature of the physical 

system. 

2) r∈ℝ , r ≥ 1. r is called the radius of interaction. 

3) Denote { }1 ( )v

B S B r= ⊂ ≤ ≤ℤB . 

4) For each B∈B , ΦB is a random variable on (Ω, ΣB) 

that satisfies the condition: 
 

.

B
βΦ ≤  

 

Φ denotes { }B
BΦ ∈| B . Φ is called the potential 

of the system. 

Remarks 

1) Clearly, if B ∈B , then B is finite. 

2) Two particles (represented by points of v

ℤ ) interact 

only if they both belong to some set B (B ∈ B ), and 

ΦB is the interaction energy of all elements of B. 

3) In our definition of Bwe have only sets with S(B) ≥ 1, 

i.e. sets with at least two elements. The general case 

(that includes one-element sets B) can be reduced to 

this case by a single Gibbs modification as shown in 

Kachapova and Kachapov (2017), pg. 343-344. 
 

1.3. Finite Interaction Model 

Definition 1.9 

A finite interaction model with characteristics β, r, 

Φ and { }| v

P ∈ℤ
t

t (as in Definition 1.3.2) is a sequence 

(Λ, UΛ, PΛ) of three objects defined as follows. 
 
1) Λ is an arbitrary finite subset of the lattice v

ℤ . 

2) A function UΛ: Ω → ℝ is called the interaction 

energy of Λ and is defined by the following: 
 

,

for any , ( ) ( ),
B

B B

Uω ω ω
Λ

∈ ⊆Λ

∈Ω = Φ∑
B

 

 
where the set B is defined in Definition 1.8. 

UΛ(ω) characterizes the energy of configuration ω 

in Λ. 

3) Denote ( )0
,U

P P
Λ

Λ
= the Gibbs modification of the 

probability P0 (from Definition 1.4) by the 

interaction energy UΛ. 
 

In Kachapova and Kachapov (2017) it was shown 

that (Ω, Σ, PΛ) is a probability space. 

2. Infinite Interaction Model 

2.1. Existence Theorem 

Definition 2.1 

1) For any B ∈B denote l(B) the number of sets C∈B  

that intersect with B. 

2) Denote L = max{l(B) |B∈B }. 
 

So L = max{l(B) | B ⊂ v

ℤ and 1 ≤ S(B) ≤ r}. 

Clearly, L depends only on ν and r. 

Theorem 2.2 

In the finite interaction model the number L is 

defined and 

 

( ) ( )
2 1

4 1 .
r

L v r
−

≤ +  

 
This theorem will be proven in Section 4. 

Remarks 

1) L is a characteristic of interaction in the physical 

system. 
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2) We do not aim to obtain the most accurate 

estimate of L. However, it is not hard to get more 

accurate estimates in particular cases. For 

example, when r = 1 like in the Ising, Potts and n-

vector models, L = 4ν−1 because in these models 

only neighboring points in v

ℤ interact, i.e. each set 

in B  is a set of two neighboring points. 

Definition 2.3 

Define 

( )
0 2

1
,

50 8
r

L v
β =  where L was introduced in 

Definition 2.1.2.  

Clearly, β0 depends only on ν and r. 

Notation 2.4. 

For any N ∈ℕ define a cube ΛN in v

ℤ : 
 

( ){ }1
,..., | | for each 1,..., .

v

N v i
t t t N i vΛ = = ∈ ≤ =ℤt  

Notation 2.5 

Suppose Q is a non-empty finite subset of v

ℤ . 
 
1) Denote ℕ Q = {N ∈ ℕ  | Q ⊆ ΛN}. For any 

QN ∈ℕ : 

• ( ), ,

N N
N
U P

Λ Λ
Λ is the finite interaction model 

with characteristics β, r, Φ and {Pt | t ∈ v

ℤ } 

from Definition 1.9; 

• for brevity denote UN = 
N

U
Λ

and PN = 
N

P
Λ

. 

2) For any A∈ΣQ define: 
 

                       ( ) ( )
,

lim .Q N
N

P A P Aβ
→∞

=
 (1) 

 

Theorem 2.6 (Existence Theorem) 

Suppose 0 ≤ β  ≤ β0 and Q is a non-empty finite 

subset of v

ℤ . Then the following hold. 
 
1) For any A∈ΣQ  the limit in (1) exists. 

2) Pβ,Q  is a probability measure on (Ω, ΣQ). 
 

This theorem will be proven in Sections 5 and 6. 

Corollary 2.7 

Suppose 0 ≤ β ≤ β0.There exists a unique probability 

measure Pβ on (Ω,Σ) such that for any non-empty finite 

set vQ ⊂ ℤ and any A ∈ ΣQ: 
 

,

( ) ( ).
Q

P A P A
β β

=  

Proof 

For any integer k > 1, distinct 
1
,...,

v

k
∈ℤt t and 

1
...

k

D∈Σ
t t

 define: 

( ) { } ( ) ( )( ){ }( )
1 1

1, ... , ,...
,..., .

k k
k

P D P D
β β

ω ω ω= ∈Ω ∈
t t t t

t t  (2) 

 

By Theorem 2.6.2), each
1

,{ ,..., }k
P
β t t

is a probability 

measure on 
{ }1

,...,

,

k

 Ω Σ 
 t t

. Therefore the formula (2) 

defines a probability measure on ( )
1 1

...

... ,

k k

Ω × ×Ω Σ
t t t t

as 

a projection probability, for any distinct t1,..., tk ∈
v

ℤ . 

In particular, for any ( )1,...,
i

i
F i k∈Σ =

t
: 

 

( ) ( ){ }
1

1, ...
1

... .

k

K

k i i

i

P F F P F
β

ω ω

=

 
× × = ∈Ω ∈ 

 
∩t t

t  

 
These probabilities satisfy the following two 

consistency conditions. 
 

1) For any distinct t1,..., tk ∈ v

ℤ , permutation  π of 

{1,2,..., k} and 
i

i
F ∈Σ

t
 (i = 1,..., k): 

 

( ) ( ) ( ) ( )( ) ( )
11

11, ... , ...
... ... .

kk
kk

P F F P F F
π π

π πβ β
× × = × ×

t t t t
 

 
2) For any distinct 

1 1
,..., ,

v

k k+
∈ℤt t t  and ( )1,...,

i
i

F i k∈Σ =
t

 

 

( ) ( )
1 1 1

1 1, ... , ...
... ... .

k k k
k k

P F F P F F
η

β β
+

× × = × × ×ℝ
t t t t t

 

 

Hence the corollary follows from the Kolmogorov 

extension theorem.  □ 

The probability measure Pβ is called the Gibbs 

measure. 

2.2. Infinite Interaction Model 

Definition 2.8 

Suppose 0 ≤ β ≤ β0. An infinite interaction model 

with characteristics β, r, Φ and {Pt | t∈ v

ℤ } is the 

probability space (Ω, Σ, Pβ), where Pβ is the probability 

measure from Corollary 2.7. 

The probability space (Ω, Σ, Pβ) is also called the 

thermodynamic limit or macroscopic limit of the finite 

interaction models (ΛN, UN, PN) as N → ∞. 

Next we show that several well-known models can be 

considered as particular cases of the interaction model. 

2.3. Potts Model as a Particular Case of 

Interaction Model 

The standard Potts model is based on the interaction 

energy (also called Hamiltonian): 
 

( )
1

,

, ,U J X Xδ

− =

Λ

∈Λ

= ∑
s t

st s t

s t
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where Jst are coupling constants and the random 

variables Xt (interpreted as site colors) take values 1, 

2,..., q with equal probabilities; 

 

( )
1 if ,

,
0 if .

x y
x y

x y
δ

=
=

≠
 

 

Applying Definition 1.8, we take  η = 1, an arbitrary 

ν ≥ 1,  an arbitrary  β ≥ 0,  r = 1 and the probabilities  

{Pt | t∈
v

ℤ } such that for any Borel set A: 

 

( )
{ }1,2,...

,
A q

P A
q

∩

=
t

 

 

where the numerator is the cardinality of the set  

A∩{1, 2,..., q}. 

Since r = 1, then B= { }{ , } 1
v

⊂ − =ℤs t s t  and for 

any B∈B  with B = {s, t} we define: 

 

( ) ( )( ), ( ) ,
B

Kω β δ ω ωΦ =
st

s t  

 

where 1K ≤
st

. 

When 0 ≤ β ≤ β0 and N → ∞ (i.e. Λ → v

ℤ ), the Potts 

model becomes a particular case of the infinite 

interaction model. 

2.4. Ising Model as a Particular Case of 

Interaction Model 

The Ising model is equivalent to the Potts model for q = 

2. The Ising model is based on the interaction energy: 

 

1

,

,U J X X h X

− =

Λ

∈Λ ∈Λ

= −∑ ∑
s t

st s t t t

s t t

 

 

where Jst, ht are constants and random variables Xt take 

values  ±1 with equal probabilities. 

To eliminate the second sum in UΛ (representing an 

external magnetic field) we apply a single Gibbs 

modification described in Kachapova and Kachapov 

(2017), pg.343-344 and get the probabilities {Pt | t ∈
v

ℤ } 

such that for any Borel set A: 
 

( )
1

1
.

x A

xh

h h

x

P A e

e e ∈

−

−

=±

=

+

∑ t

t t

t                     (3) 

 
Applying Definition 1.8 we take  η = 1, an arbitrary  

ν ≥ 1, an arbitrary β ≥ 0, the probabilities {Pt | t∈ v

ℤ } 

given by (3), and r = 1. 

Then B={ }{ , } 1v

⊂ − =ℤs t s t and for any B∈B  with 

B = {s, t} we define: 

( ) ( ) ( ),B
Kω β ω ωΦ =

st
s t  

 

where 1K ≤
st

. 

When 0 ≤ β ≤ β0 and N → ∞ (i.e.  Λ → v

ℤ ), the Ising 

model becomes a particular case of the infinite 

interaction model. 

2.5. N-Vector Model 

In the n-vector model classical spins si (i∈
v

ℤ ) are n-

dimensional vectors with unit length; the interaction 

energy of the n-vector model is given by: 

 

,

1

,U J
∈Λ

Λ

− =

=− ⋅∑
i j

i j

i j

s s  

 

where J  is a constant and · denotes scalar product. 

Applying Definition 1.8 we take  η = n, an arbitrary  

ν ≥ 1, an arbitrary β ≥ 0, and r = 1. 

For each t∈ v

ℤ , the probability measure Pt is 

uniformly distributed on the unit sphere: 

 

( ){ }1 2 2

1 1
,..., ... 1 ,S x x x x

η η

η η

−

= = ∈ + + =ℝx  

 

that is for any set A∈Σt: 

 

( )
( )
( )

1

1
.

Area A S
P A

Area S

η

η

−

−

∩

=
t

 

 

Since r = 1, then { }{ , } 1
v

= ⊂ − =ℤs t s tB  and for 

any B∈B with B = {s, t} we define: 

 

( ) ( ) ( ).
B

Jω ω ωΦ =− ⋅s t  

 

When 0 ≤ β ≤ β0 and N → ∞ (i.e. Λ→ v

ℤ ), the n-

vector model becomes a particular case of the infinite 

interaction model. 

Particular cases of the n-vector model are the Ising 

model (n = 1), XY model (n = 2), and Heisenberg 

model (n = 3). 

3. Convergence Theorem for a Field 

Transformed by Renorm-Group 

The concept of renormalization group was introduced 

by Kadanoff (1966). 

Definition 3.1 

Fix a natural number k > 1 and a real number α ≥ ν. 

For each s = (s1, s2,..., sν)∈
v

ℤ consider a cube k
C

s
of 

width k with vertex ks: 
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( ){ }1 , 1,2,... .
k v

i i i
C ks t k s i v= ∈ ≤ < + =ℤ

s
t  

 

A renormalization group, or renorm-group (RG) 

with parameters k and α is a transformation that assigns 

to each random field { }vZ ∈ℤ
t

t a new random field 

{ }( )k v
Y ∈ℤ
s

s given by: 

 

( ) ( )2
.

k

k

C

Y k Z Z

α

β

−

∈

= −∑
s

s t t

t

 

 

The renormalization group is a scaling transformation 

(e.g., from atomic to molecular level). 

We are interested in the limiting distribution of the 

result 
( )k

Y
s

of the RG transformation of the random field 

{ }vX ∈ℤ
t
 t as k → ∞ (as the distance scale infinitely 

increases). We find the limiting distribution for a special 

case of the interaction model. 

Definition 3.2 

Denote W the set of all vectors from the standard 

basis in v

ℝ . 

A special interaction model is the infinite 

interaction model with the following five constraints. 

 

1) η = 1 

2) r = 1. Then each set B∈B  consists of two points at 

distance 1, that is B has the form B = {s, s+u}, 

u∈W. 

3) The initial probabilities Pt are the same for all 

.

v

∈ℤt  

4) Transition invariance: 

there is a set of Borel functions ϕu (u∈W) such that 

for each B∈B,  

 

( ) ( )

{ }

( ), ( ) ,

where , and .

B

B W

ω ϕ ω ωΦ = +

= + ∈

u
s s u

s s u u

 

 

5) Each Xt  satisfies Carleman condition: 

 

( )
1

2 2

0
1

.

k k

k

X

∞
−

=

=∞∑ t
 

 

This condition means: the probabilities of large values 

for the random variable are close to 0. Any bounded 

random variable satisfies the Carleman condition; so do 

variables with normal and exponential distributions. 

Both Ising and Potts models are particular cases of 

the special interaction model. 

Theorem 3.3 (Convergence Theorem) 

There is a constant C > 0 depending only on ν and 

initial probabilities {Pt | t∈
v

ℤ } such that the following 

holds for any special interaction model with β ≤ C. 

Suppose a renorm-group with parameters k and α 

transforms the random field {Xt | t∈
v

ℤ } into a random 

field { }( )k v
Y ∈ℤ
s

s . 

 

1) If  α > ν, then the field  ( )k
Y
s

→ 0  in mean square as 

k → ∞. 

2) If α = ν, then as k → ∞, the random field 

{ }( )k v
Y ∈ℤ
s

s  converges in distribution to an 

independent random field with Gaussian 

distribution.  

Each of the variables of the limiting field has 0 

expectation and the positive variance given by: 
 

0

,

n

n

n

V Vβ
∞

=

=∑  

 
where each coefficient Vn is a finite sum of semi-

invariants of Xt and ΦB with respect to 

0
; ,

v

P B∈ ∈ℤt B. . 

 

Proof of the Convergence Theorem is given on our 

paper Kachapova and Kachapov (2016). 

Clearly, the limiting distribution is not always Gaussian. 

We believe that in Theorem 3.3 the Carleman condition 

(stated in the definition of a special interaction model) is 

essential for the limiting distribution to be Gaussian. 

The Convergence Theorem is a generalization of the 

Central Limit Theorem (CLT); while the limit in CLT is 

a single variable, the limit in our theorem is a random 

field and we found its joint distribution. 

4. Graph-Associated Estimations 

This section is devoted to proof of Theorem 2.2. 

4.1. Tracks in Graphs 

Definition 4.1 

A track is a sequence tr = (t0, t1,..., tn) of points in v

ℤ  

such that t0 = tn and  ||ti −ti−1|| = 1, i = 1,..., n. 

Lemma 4.2 

Fix t0∈
v

ℤ and n > 1. The number of tracks of the 

form (t0, t1,..., tn)  is not greater than (2ν)
n−1

. 

Proof 

The first element t0 is fixed. There are 2ν choices for 

element t1, at most 2ν choices for element t2, at most 2ν 
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choices for element t3, ..., and only one choice for 

element tn, since tn = t0. So the total number of tracks is 

at most (2ν)
n−1

. 

Definition 4.3 

Suppose B is a finite subset of v

ℤ and m = S(B). There 

is a 1-connected graph (V, E) such that B⊆V, and the 

number of edges in this graph is minimal and equals m. 

We denote GB the first (in lexicographic order) of such 

graphs and call it the associated graph of B. 

Lemma 4.4 

Suppose B is a finite subset of v

ℤ and m = S(B). Then 

the graph GB is a tree with m edges and m + 1 vertices. 

Proof 

A tree is a connected graph with no cycles. The 

definition of size implies that GB is connected. 

If GB has a cycle, then we can remove one edge of the 

cycle thus reducing the number of edges while the graph 

remains connected with the same set of vertices. That 

contradicts the choice of GB as the graph with minimal 

number of edges. 

By the definition GB has m edges. Since it is a tree, 

the number of its vertices is m +1.  □ 

Definition 4.5 

Suppose B is a finite subset of v

ℤ and m = S(B). 

We create the associated track trB of B in the 

following two steps: 
 
1. We obtain a graph

B
G′ from the associated graph GB 

by adding for every its edge another edge with the 

same ends. 

2. The new graph
B

G′ has 2m edges and each of its 

vertices has an even degree. Therefore there is an 

Eulerian path in
B

G′ , i.e. a closed path that includes 

every edge of the graph exactly once. We denote 

(e1, e2,..., e2m) the first (in lexicographic order) of 

such paths.  
We define trB as the corresponding sequence (t0, t1, 
t2,..., t2m) of vertices, that is {ti−1, ti} are the ends of ei 
(i = 1, 2,..., 2m). 

Definition 4.6 

Suppose B ∈B . Its associated track has the form 

trB = (t0, t1, t2,..., t2m), where m = S(B) and m ≤ r. 

We define the extended track  

B
tr′ = (t0, t1, t2,..., t2m, t2m+1,..., t2r) of B by the following: 
 
• for i = 1,..., r−m each point t2m+i is obtained from 

t2m+i−1 by increasing its first coordinate by 1; 

• for i = r−m +1,..., 2r−2m each point t2m+i is obtained 

from t2m+i−1 by decreasing its first coordinate by 1. 

Lemma 4.7 
 

1) For any finite subset B of v

ℤ , trB is a track. 

2) For any B∈B , 
B

tr′ is a track. 

Proof 

Follows from the definitions.  □ 

4.2. Estimations in Graphs 

Lemma 4.8 

Suppose tr = (t0, t1, t2,..., t2r) is a track. Then there are 

at most 2
2r−1

 sets C∈B  such that t0∈C and 
C

tr′ = tr. 

Proof 

Since the track tr is a closed path, we have t0 = t2r. 

Denote V1 = {t1, t2,..., t2r−1}. If a set C∈Bhas 
C

tr′ = tr, then: 

 

                                        { }0 1
\ .C V⊆t  (4) 

 

Since V1 has at most 2
2r−1

 different subsets, then there 

are at most 2
2r−1

 sets C with property (4). 

Lemma 4.9 

Suppose t0∈
v

ℤ . Then there are at most (4ν)
2r−1

 sets 

C∈B  with t0∈C. 

Proof 

For each set C∈Bwith t0 ∈C we have an extended 

track
C

tr′ ; since a track is a closed path, we can assume 

C
tr′  starts at t0. So there is a correspondence between 

sets C∈B  with t0∈C and tracks of the form (t0, t1,..., t2r). 

By Lemma 4.8 at most 2
2r−1

 sets correspond to each track 

and by Lemma 4.2 the total number of such tracks 

starting at t0 is not greater than (2ν)
2r−1

. Therefore the 

number of sets C∈B  with t0∈C is not greater than    

2
2r−1

 (2ν)
2r−1

 = (4ν)
2r−1

.  □ 

4.3. Proof of Theorem 2.2 

Proof 

Fix an arbitrary B∈B . It is sufficient to show: 

 

( ) ( ) ( )
2 1

4 1 .
r

l B v r
−

≤ +  

 

Since S(B) ≤ r, we have |B| ≤ r +1. Any set C∈B  

that intersects with B contains one of the (r +1) elements 

of B. By Lemma 4.9, for each element t0 ∈B there are at 

most (4ν)
2r−1

 sets C∈B  with t0∈C. So the total number 

of sets C∈B  that intersect with B is not greater than 

(4ν)
2r−1

 (r +1).  □ 
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5. Technical Definitions and Estimations 

The rest of the paper is devoted to proof of the 

Existence Theorem (Theorem 2.6). For the rest of the 

paper we fix Ω, Σ, characteristics β, r, Φ, {Pt | t∈
v

ℤ }, a 

finite set Q ⊂ v

ℤ with size q = S(Q) and an event A∈ΣQ. 

We will consider only integers 
QN ∈ℕ . 

Section 5 contains some technical concepts and 

lemmas, which lead to the proof of the Existence 

Theorem in Section 6. 

5.1. Semi-Invariants 

Denote
0

,...,⋅ ⋅ a semi-invariant with respect to the 

probability measure P0. The definition and properties of 

semi-invariants are described in literature, see for 

example Malyshev (1980) and references in it. 

Notation 5.1 

For a random variable  Y  on  (Ω, Σ) and a sequence 

 γ = (B1,..., Bn) of elements ofB denote: 

 

1 20 0

, , , ,..., .

n
B B B

Y Y
γ

Φ = Φ Φ Φ  

 

If n = 0, then 

00

,Y Y
γ

Φ = . 

Definition 5.2 

A sequence γ = (B0, B1,..., Bn) of subsets of v

ℤ is 

called connected if the following graph is connected: 

 

a) its set of vertices is {0, 1,..., n}; 

b) it has no loops; a pair of distinct vertices i, j is 

connected with an edge if and only if Bi ∩Bj  ≠ ∅. 

Lemma 5.3 

Suppose B1,..., Bn∈B  and the sequence (Q, B1,..., Bn) 

is not connected. Then 

 

1 0

, ,..., 0.
n

A B B
I Φ Φ =  

Proof 

Proof can be found in Malyshev and Minlos (1991), 

page 29 (property C). 

5.2. Families 

Definition 5.4 

1) A family (of elements ofB ) is a set of pairs  Γ = 

{(C1,n1),..., (Ck, nk)}, where C1,..., Ck are distinct 

elements of B  and ni ≥ 1 for each i = 1,..., k. 

2) The number ni is called the multiplicity of element 

Ci  in the family Γ (i = 1,..., k). 

3) We denote the length of the family Γ as  
 

        |Γ| = n1 + n2 +...+ nk   and   
1 2

! ! ! ... !
k

n n nΓ = ⋅ ⋅ ⋅  

 

4) ( )
:

.

i j

i j

j C C

u n

∩ ≠∅

Γ = ∑  Clearly, ( ) .

i i
u nΓ ≥  

 
5) For a random variable Y on (Ω, Σ) denote 

 

1 1

1

0

0

, , ,..., ,..., ,...., .

k k

k

C C C C

n times n times

Y Y
Γ

Φ = Φ Φ Φ Φ

����� �����

 

 
6) The family Γ = {(C1, n1), ..., (Ck, nk)} is called Q-

connected if the sequence (Q, C1,..., Ck) is 

connected. 

Definition 5.5 

We say that a sequence γ = (B1,..., Bn) reduces to a 
family {(C1, n1),..., (Ck, nk)}, if C1,..., Ck are the elements 
B1,..., Bn written without repetitions and each ni is the 
number of times that Ci is repeated in γ. 

Clearly, 
1

... .

k
n n n+ + =  

 

Lemma 5.6 

For each family Γ of length n there are 
!

!

n

Γ
 sequences 

that reduce to Γ. 

Proof 

The lemma follows from the definitions and 
combinatorics.  □ 

Lemma 5.7 

If a sequence γ reduces to a family Γ, then 
 

0 0

, , .Y Y
γ Γ

Φ = Φ  

Proof 

The lemma follows from the fact that the value of a 
semi-invariant does not depend on the order of random 
variables.  □ 

The following two subsections contain some 
estimates, which will be used to prove convergence in 
Section 6. We are not looking for most accurate 
estimates, since we are not interested in the speed of 
the convergence. 

5.3. Estimating the Number of Families 

Lemma 5.8 

Fix a natural number n >1. The number of all Q-

connected families Γ of length n is less than 

( )( )22
2 2 8 .

n
rq

v  
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Proof 

Denote * the operation of concatenation of two 

arbitrary sequences. Thus, for sequences α = (α0,..., αm) 

and τ = (τ0,..., τl): 

 

( )0 0
,..., , ,..., .

m l
α τ α α τ τ∗ =  

 

We also denote: 

 

( )0 0 1
,..., , ,..., , ,..., ; 1,..., ,j j l j m j mα τ α α τ τ α α

+
∗ = =  

 

which means inserting the sequence τ between two 

consecutive elements of α. Clearly: 

 

.

m
α τ α τ∗ = ∗  

 

Denote h = 2q and p = 2r. Fix the associated track trQ 

of the set Q: 
 

( )00 0
,..., .Q htr = t t  

 

For each Q-connected family Γ we will construct a 

sequence TrΓ as follows. Consider a Q-connected family 

Γ = {(C1, n1),..., (Ck, nk)} of length n. By induction on  j  

(j = 0, 1,..., k) we will construct a track Trj and a 

sequence of pairs �
jTr . 

 
Case j = 0. 

 
Define: 

 

� ( )0
0 00 00 0 0

( , ),...,( , ) ,Q h hTr tr and Tr a a= = t t  

 

where 0

0

0

0 ,

1 .

i

i

i

if Q
a

if Q

 ∉
=

∈

t

t

  

Inductive Step 

Assume we have constructed a track Trj−1 and a 

sequence �
1jTr − . Due to connectedness, 

 

( )1 1
... .

k

j i

i j

Q C C C
−

=

 
∪ ∪ ∪ ∩ ≠ ∅  

 
∪  

 

Select 
jβ

t as the first element of the track Trj−1 that 

belongs to this intersection (but not the start element of 

Trj−1). Without loss of generality we can assume: 

 

( )1 1
... .

j
j j

Q C C C
β −

∈ ∪ ∪ ∪ ∩t  

Choose an extended track trj of the set Cj:  

trj = (tj0, tj1,..., tjp). Since the track is a closed path, we 

can assume it starts at the point 0
: .

j j
jβ β
=t t t

 Define 

 

( )1 1
,..., .

j j j j jp
Tr Tr β−

= ∗ t t  

 

Denote
1j

Tr
−

′ the sequence �
1jTr − , where the element 

with index βj is changed from (a, t) to (nj +1, t). 

Define 

 

� ( ) ( )( )1 1 1
, ,..., , ,j j j j j jp jp

Tr Tr a aβ−

′= ∗ t t  

 

where 

0 if ,

1 if .

ji j

ji

ji j

C

a

C

 ∉
=

∈

t

t

 

At the end of this process we take �
kTr Tr

Γ
= .  

Next we estimate the number of sequences of the 

form TrΓ. A sequence �
kTr Tr

Γ
= has (1 + h + kp) elements; 

each of these elements is a pair of a number and a point 

in v

ℤ . The (1+h) points of trQ are fixed. For each of the 

remaining  kp points there are at most 2ν choices, so 

there are at most (2ν)
kp 
≤ (2ν)

np
 ways to choose second 

elements of the pairs in TrΓ. 

Next we estimate the number of choices for first 

elements of the pairs in TrΓ. There are 
1

1

n k

k

+ − 
 

− 
  ways 

to split n into a sum n = n1 +...+ nk. If n1,..., nk are 

chosen, there are 
h kp

k

+ 
 
 

 ways to assign the numbers 

(n1 +1),..., (nk +1) to first elements of some of the pairs 

in TrΓ. There are 2
kp−k

 ways to assign 0 and 1 to first 

elements of the remaining pairs (since the points of trQ 

are fixed). So the total number of choices for first 

elements of the pairs in TrΓ is at most: 

 

( )

1

1 1 2

1 1

2

2 11 1 2 1

1

1
. .2

1

2 2 2 2 2

2 2 2 2 2 2 .

n
kp k

k

n n
n k h kp kp k n h kp

k k

np
n pn h j n h np h

j

n k h kp

k k

−

=

+ − + − + −

= =

++ − + − +

=

+ − +   
   

−   

≤ ⋅ ⋅ =

≤ < ⋅ = ⋅

∑

∑ ∑

∑

 

 

So the total number of sequences of the form  TrΓ  is 

less than 

( ) ( ) ( )

( )( ) ( )( )

2 1 3 1

22

2 2 2 2 2

2 2 8 2 2 8 .

nnp n ph h p p

n n
p rh q

v v

v v

+ +

⋅ ⋅ =

= =
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In order to prove the same estimation for the number 
of Q-connected families Γ with |Γ| = n it is sufficient to 
show that a family Γ can be restored from a sequence TrΓ 
and it is unique (then each TrΓ  corresponds to only one Γ). 

Consider one of the previously constructed sequences 

and denote it Tr. We will restore the family Γ such that 

Tr = TrΓ. Tr is a sequence of pairs that contains a 

sequence ( ) ( )( )00 00 0 0
, ,..., ,

h h
b bt t corresponding to the 

sequence trQ = (t00, ..., t0h). We can assume that the 

sequence Tr starts with the pair (1, t00). 

Denote k the number of the pairs in Tr, whose first 

elements are greater than 1, and denote these first 

elements m1,..., mk. Then ni = mi −1 (i = 1, ..., k), according 

to our construction. So Γ = {(C1, n1), ..., (Ck, nk)}. It 

remains to find the sets Cj (j = 1,..., k). We will restore 

each set Cj and each sequence �
1jTr − by induction on k – j. 

 
Case k - j = 0. 

 

Then j = k; �
kTr = Tr. Find the last pair in �

kTr , whose 

first element is greater than 1 and next p pairs in �
kTr . 

Then �
1kTr −  is obtained from the sequence �

kTr by 

removing all these pairs and Ck is the set of all second 

elements of these pairs that have 1 on the first place. 

Inductive Step 

Assume we have restored sets Ck, ..., Cj+1 and a 

sequence �
jTr . Find the last pair in �

jTr , whose first 

element is greater than 1 and next p pairs in �
jTr . Then 

�
1jTr − is obtained from the sequence �

jTr by removing all 

these pairs and Cj is the set of all second elements of 

these pairs that have 1 on the first place.  

Clearly, this induction process produces the unique 

family  ( ) ( ){ }1 1
, ,..., , with .

k k
C n C n Tr Tr

Γ
Γ= =   □ 

5.4. Estimation of Semi-Invariants 

Lemma 5.9 

For any Q-connected family Γ = {(C1,n1),...,(Ck, nk)} 

of length n: 

 

( ) ( ) ( )0
0

1

9
, 1 3 1 ,

2

j

k
n

n n

A j

j

I P A n uβ
Γ

=

Φ ≤ + +∏  

 

where each uj = uj(Γ). 

Proof 

Let us fix a sequence γ = (B1,..., Bn) that reduces to Γ 

(such a sequence always exists, according to Lemma 

5.6). Denote ( )1
, ,..., .

n
Q B Bγ ′=  

For i = 1, 2,..., n denote vi the number of elements of 

γ ′ that intersect with Bi. Denote v0 the number of 

elements of γ ′ that intersect with Q. 

IA and all
i

B
Φ are random variables on (Ω, Σ). According 

to Lemma 5.7 and Theorem 1 in Malyshev and Minlos 

(1991), pg. 69, 
 

( )
0

0 0

3
, , 3 .

2

n

A A f i

i

I I C v
γΓ

=

Φ = Φ ≤ ⋅ ∏  

 

Here 
1 20 0 0

max ... ,
i i i

l

f A B B B

i M i M i M

C I

∈ ∈ ∈

= ⋅ Φ Φ Φ∏ ∏ ∏  

where the maximum is taken over all partitions 

{ }1 2
{0} , ,...,

l
M M M∪ of the set {0, 1, 2, ..., n}. 

Each 
0

, so ( )
i

n

fB
C P Aβ βΦ ≤ ≤ . Hence 

 

( ) 1

0 0
0

0 0

0

0

3 3
, ( ) 3 ( ) 3

2 2

9
( ) 3 .

2

n n

n n n

A i i

i i

n

n n

i

i

I P A v P A v

P A v

β β

β

+

Γ

= =

=

Φ ≤ ⋅ =

=

∏ ∏

∏
 

 
For j = 1, 2,..., k denote wj the number of elements 

of γ ′ that intersect with Cj. Each Cj is repeated nj 

times in γ, so: 

 

( )0 0

0 1 1

.

j

n n k
n

i i j

i i j

v v v v w

= = =

= =∏ ∏ ∏  

 

Since v0 ≤ n+1 and each wj ≤ uj +1, we have: 

 

( ) ( )
0 1

1 1
j

n k
n

i j

i j

v n u

= =

≤ + +∏ ∏   and  

( ) ( )0
0

1

9
, ( ) 3 1 1 .

2

j

k
n

n n

A j

j

I P A n uβ
Γ

=

Φ ≤ + +∏   □ 

 

Lemma 5.10 

For any Q-connected family Γ = {(C1, n1),..., (Ck, nk)} 

of length n: 
 

( ) ( )
1 1

1 ( ) ,
j j

k k
n n

n

j j

j j

u eL n

= =

+ <∏ ∏  

 

where each uj = uj(Γ). 

Proof 

1
1= 1

j j

j

u u

u

 
+ +  

 
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and 
 

                        ( )
1 1 1

1
1 = 1 .

j

j
j

n
k k k

n n

j j

j j jj

u u

u
= = =

 
+ +  

 
∏ ∏ ∏  (5) 

 

From Definition 5.4 we get nj ≤ uj, so 
 

1 1 1

1 1
1 1 = .

j jn n
k k k

k n

j j jj j

e e e

u n
= = =

   
+ ≤ + < ≤      

   
∏ ∏ ∏  

 
Thus, 
 

                               
1

1
1 .

jn
k

n

j j

e

u
=

 
+ <  

 
∏  (6) 

 
By Theorem 4.1 in Kachapova and Kachapov (2016) 

we have: 
 

                            ln ln .

k
j

j

j i j

u
n n L

n
=

 
≤ ⋅  

 
∑  (7) 

 
Since 

 

1

ln

1

= ,

k
jj

j

jj

un
nk

nj

j j

u

e

n

=

 
 
 
 

=

∑ 
  
 

∏  

 

we imply from (7): 
 

ln

1

= .

jn
k

j n L n

j j

u
e L

n
=

 
≤  

 
∏  

So 
 

                                
=1 =1

.

j j

k k
n nn

j j

j j

u L n≤∏ ∏  (8) 

 
From (5), (6) and (8) we get: 

 

 ( )
=1 =1 =1

1 = ( ) .
j

j j

k k k
n n nn n n

j j j

j j j

u e L n eL n+ <∏ ∏ ∏   □ 

 

Lemma 5.11 

Suppose Γ is a Q-connected family of length  n  and  

n > 3. Then 
 

( ) ( )2

0
0

, ( ) 3 1 !
n

n

A
I P A e L nβ

Γ
Φ < + Γ  

Proof 

By Lemmas 5.9 and 5.10, 

( ) ( )

( ) ( ) ( )

0
0

=1

0

=1

9
, ( ) 1 3 1

2

9
1 3 .

2

j

j

k
n

n n

A j

j

k
n nn n

j

j

I P A n u

P A n eL n

β

β

Γ
Φ ≤ + +

< +

∏

∏

 

 

By Stirling formula, 
1

!
2

q q
q q e

qπ

<  for any natural 

number q > 0. So 
 

( )( )

( ) ( )
( )

( ) ( )
( )

0
0

=1

0

=12
1 2

2

0

2
1 2

9 1
, ( ) 1 3 !

2 2

9 1
( ) 3 1 !

2
2 ...

9
= ( ) 3 1 !

2 2 ...

j

k
n nn

A j

j
j

k
nn n

jk
j

k

n
n

k

k

I P A n eL n e

n

P A eL n e n

n n n

P A e L n

n n n

β
π

β

π

β

π

Γ

 
 Φ < +
 
 

≤ +

+ Γ

∏

∏  

 

since 
1

! = !

k

j

j

n

=

Γ ∏ . It remains to prove: 

 

( ) 2 1 2

9
1.

2 2 ...

k

k
n n nπ

<  

 

Consider two cases. 

Case 1. k = 1. 

Then ( )
/2

1
4, 2 2 2.5

k

n n π π= ≥ = > and 

 

( )2 1
1 2

9 9 9
1.

2 2.5 22 22 2 ...

k

k

n
n n n

π
π

= < <

× ×

 

 

Case 2. k ≥ 2. 

Then   ( )
/ 2

2 2 6
k

π π≥ >    and   
( )

/ 2

1 2

9

2 2 ...
k

k
n n nπ

    

< 
9

1.
2 6 1

<

⋅ ⋅

  □ 

6. Proof of the Existence Theorem 

Here we use results from the previous section to 

prove Theorem 2.6. 

Notation 6.1 

Denote 

 

0

1
( , ) = , ,

!
A A

J N n I
Γ

Γ

Φ
Γ

∑  

 

where the sum is taken over all Q-connected families Γ = 

{(C1, n1),..., (Ck, nk)} of length n such that each Ci  ⊆ ΛN. 
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Lemma 6.2 

Suppose 0 ≤ β ≤ β0. Then 

 

( )
=0

( ) = , .
N A

n

P A J N n

∞

∑  

Proof 

Fix β such that 0 ≤ β ≤ β0. We use the method from 

Malyshev and Minlos (1991), page 34. For real x, z 

define 

 

( )
0

( , ) = ln exp .
A N

f x z xI zU+  

 

By the definition of semi-invariants: 

 

( )

1

1 1

1

1

0

=0

=0
times

0
0

=0 , ,
0

0
=0 ,..., ,

each ,

= , = , ,...,
!

= , ,...,
!

, ,..., .
!

N

N

n

N n n N

n

n

i i N

zU
n

A

x A N N
zU

n
n

n

A B B

n B B B B

n

A B B

n B B

B B

I e z
f x z I U U

x ne

z
I

n

z
I

n

∞

∞

∈ ⊆Λ ∈ ⊆Λ

∞

∈ ⊆Λ

∂

∂

Φ Φ

= Φ Φ

∑

∑ ∑ ∑

∑ ∑

�����

B B

B

 

 

Thus, 

 

0

0
=0

0

= , ,
!

N

N

zU
n

A

A
zU

n

I e
z

I
n

e

γ

γ

∞

Φ∑ ∑  

 

where the inner sum is taken over all sequences  

γ = {B1, ..., Bn} such that each Bi ∈B  and Bi ⊆ ΛN. 

Substituting z = 1 and using the definition of PN, we get: 

 

0

0
=0

0

1
( ) = = , .

!

N

N

U

A

N A
U

n

I e

P A I
n

e

γ

γ

∞

Φ∑ ∑  

 

By Lemma 5.3, the inner sum can be taken only over 

sequences γ = (B1, ..., Bn) of elements of B such that  

(Q, B1, ..., Bn) is connected and each Bi ⊆ ΛN. 

By Lemmas 5.6 and 5.7: 

 

0 0
=0 =0

0
=0

1 1 !
( ) = , = ,

! ! !

1
= , .

!

N A A

n n

A

n

n
P A I I

n n

I

γ

γ

∞ ∞

Γ

Γ

∞

Γ

Γ

Φ Φ
Γ

Φ
Γ

∑ ∑ ∑ ∑

∑∑

 

The first inner sum has only sequences γ = (B1, ..., Bn) 

such that (Q, B1, ..., Bn) are connected. Therefore the last 

inner sum has only Q-connected families Γ and 
 

( )
0

( ) , .
N A

n

P A J N n

∞

=

=∑   □ 

Lemma 6.3 

Suppose 0 ≤ β ≤ β0  and n > 3. Then 
 

( ) ( )2

0
, 2 ( )0.9 1 .q n

AJ N n P A n≤ +  

 

Proof 

Suppose 0 ≤ β ≤ β0 and n > 3. 
 

( )
0

1
, , ,

!
A A

J N n I
Γ

Γ

≤ Φ
Γ

∑  

 
where the sum is taken over all Q-connected families  

Γ = {(C1, n1), ..., (Ck, nk)} of length n (we omit the 

restriction Ci ⊆ ΛN). By Lemma 5.8 the number of 

addends in this sum is less than ( )2 2
2 2(8 ) .

n
q r

v  

By Lemma 5.11, 
 

( ) ( )2

0
0

, ( ) 1 3 !
n

n

A
I P A n e Lβ

Γ
Φ ≤ + Γ  

 
and 

 

( ) ( )

( ) ( )

( )( ) ( ) ( )

( )

2

0

2

0

22 2

0

2 2 2

0

1
( , ) ( ) 1 3 !

!

= ( ) 1 3

2 2 8 ( ) 1 3

= 2 ( ) 1 6 (8 ) .

n
n

A

n
n

n nrq n

n
q r

J N n P A n e L

P A n e L

v P A n e L

P A n e L v

β

β

β

β

Γ

Γ

≤ + Γ
Γ

+

≤ +

 + ⋅ 

∑

∑
 

 

Since 0 ≤ β ≤ β0, then by the Definition 2.3 of β0 we 

have: 

 
2

2 2 2 2

0

6
6 (8 ) 6 (8 ) = 0.9

50

r r
e

e L v e L vβ β⋅ ≤ ⋅ <  and 

 

 ( ) ( )( )2

0
, 2 1 0.9 .

q n

AJ N n P A n≤ +   □ 

 

Lemma 6.4 

Suppose 0 ≤ β ≤ β0. Then the series 
 

0

( , )
A

n

J N n

∞

=

∑  
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converges absolutely and uniformly for all N∈
Qℕ . 

Proof 

This follows from Lemma 6.3, since the series 

( )
0

0.9 1
n

n

n

∞

=

+∑  converges.  □ 

Lemma 6.5 

Suppose 0 ≤ β ≤ β0. Then for any n the following 

limit exists: 

 

1 ( , ).
A

N

im J N n
→∞

 

 

Proof 

Denote 0 = (0, ..., 0), the origin in  v

ℤ  and 

{ }min ;d Q d= − ∈0t t is the distance of the set Q 

from the origin. 

For any n denote Mn = r(n+1)+q+d. We will prove 

that for any N ≥ Mn: 

 

( , ) = ( , ).
A A n

J N n J M n                     (9) 

 

Then for any fixed n, ( )lim ,
A

N

J N n
→∞

 exists and 

( ) ( )lim , ,
A A n

N

J N n J M n
→∞

= . 

 

Proof of (9) 

 

Consider any N ≥ Mn. Then 
n

M
Λ  ⊆ ΛN, which 

implies the following.  

If Γ = {(C1, n1), ..., (Ck, nk)} is a Q-connected family of 

length n such that each Ci ⊆ 
n

M
Λ , then each Ci ⊆ ΛN. 

                                                                                     (10) 

 

It remains to prove: 

 

If Γ = {(C1, n1), ..., (Ck, nk)} is a Q-connected family of 

length n such that each Ci ⊆ ΛN, then each Ci .

n
M

⊆ Λ  

                                                                                     (11) 

 

Then from (10) and (11) we imply that JA(N, n) and 

JA(Mn, n) are sums over the same set of families Γ. 

Hence JA(N, n) = JA(Mn, n). 

 

Proof of (11) 

 

Consider a Q-connected family Γ = {(C1, n1),..., (Ck, nk)} 

of length n such that each Ci ⊆ ΛN. Fix i = 1,..., k. To 

prove that Ci ⊆ 
n

M
Λ , we fix an arbitrary t ∈ Ci and 

prove that  t ∈ 
n

M
Λ . 

For some 
0 0

,Q d∈ = − 0t t . Since ( )1
, ,...,

n
Q C C  is 

connected, there are a subsequence ( )
1

,...,

m
j j

C C  of the 

sequence (C1,..., Ck) and points t1, t2,..., tm, tm+1 such that: 

 

1 2 1
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Then m ≤ k ≤ n and 
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1 1 2 1 1 0

0

...

1 ( 1) = .
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n
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+ +
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0

0
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So 
n

M− ≤0t  and .

n
M

∈Λt   □ 

 

Proof of Theorem 2.6 

Proof 

1) Suppose 0 ≤ β ≤ β0. By Lemma 6.2, 

 

                     ( )
0

( ) , .
N A

n

P A J N n

∞

=

=∑  (12) 

 

Due to Lemmas 6.4, 6.5 and a property of uniform 

convergence, ( )lim
N

N

P A
→∞

 exists and 

 

       ,

=0

( ) = lim ( ) = lim ( , ).
Q N A

N N
n

P A P A J N nβ

∞

→∞ →∞
∑  (13) 

 

2) To prove that Pβ is a probability measure on (Ω, ΣQ) 

we check three probability axioms. 

 

,

,

( ) = lim ( ) = lim 0 = 0.

( ) = lim ( ) = lim1=1.

Q N
N N

Q N
N N

P P

P P

β

β

→∞ →∞

→∞ →∞

∅ ∅

Ω Ω

 

 

To complete the proof, it remains to check the axiom 

of σ-additivity. Consider a sequence of disjoint events 

( )1,2,...i QA i∈Σ =  and denote 
1

i

i

D A

∞

=

=∪ . By (12): 

 

             ( ) ( )
=1 =1 =0

( ) = = , .
i

N N i A

i i n
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∞ ∞ ∞

∑ ∑∑  (14) 
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By Lemma 6.3, for n > 3 and i = 1, 2, ..., 

 

( ) ( )2

0
, 2 0.9 ( 1).
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q n
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J N n P A n≤ +  

 

Since for ( )
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So the series on the right-hand side of (14) converges 

absolutely and uniformly for all N∈
Qℕ . Taking a limit 

in (14) and using (13), we get: 

 

( ), ,

=1 =0 =1

( ) = lim ( ) = lim ( , ) = .
i

Q N Q iAN N
i n i

P D P D J N n P Aβ β

∞ ∞ ∞
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This proves that: 
 

( ), ,

=1=1

= .
Q i Q i

ii

P A P Aβ β

∞ ∞ 
 
 

∑∪   □ 

 

7. Conclusion 

In this paper we show that in the case of high 

temperatures it is possible to provide a straightforward 

and rigorous proof of existence of Gibbs measure. This 

is important for foundations of statistical mechanics 

because many of its models are based on the infinite 

Gibbs measure. We generalised these models to a 

single   interaction model. For a special case of the 

interaction model we included a version of the central 

limit theorem; it describes the distribution of a renorm-

group transformed field when the volume infinitely 

increases; this distribution is proved to be an 

independent Gaussian distribution. 

Thus, our paper contributes to foundations of 

statistical mechanics. Rigorous construction of 

mathematical foundations of statistical mechanics is 

necessary to ensure consistency of this theory and 

validity of its applications. For example, recent applications 

of statistical mechanics in nanotechnology require 

especially rigorous and accurate mathematical approach. 

Further discussion of the role of fundamental mathematics 

can be found, for example, in (Kachapova, 2014). 

Future directions of research on the topic of this 

paper include possible applications of the results in the 

theory of soft matter, more general cases of the 

interaction model and their properties, and more general 

versions of the Existence theorem (Theorem 2.6) and 

Convergence theorem (Theorem 3.3). 
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