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Abstract: Subset models can always be highly influential in series 

analysis, particularly when the data demonstrate a sort of form in periodic 

behavior with miscellaneous natural period's ranges, specifically; days, 

weeks, months and years. Subset models can also be effective as they let 

the number of parameters lower allowing only the really needed ones to be 

present in the model. Though subset autoregressive moving-average 

(ARMA) models always receive much attention, their identification is 

computationally cumbersome. This paper aims at the identification of 

Subset ARMA model through utilizing two methods of identification; 

innovation regression method and genetic algorithm method. The 

innovation regression method is a traditional one whilst the genetic 

algorithm methodologies represent a relatively modern approach for 

identifying Subset ARMA models in recent decades. After encoding every 

ARMA model as a binary string in the latter method, the iterative 

algorithm tries tracing the natural evolution of the population in those 

strings through letting strings to reproduce, producing newer models for 

competing for survival within upcoming populations. The aim of this 

research is to show the procedures for identifying the most appropriate 

order of subset ARMA models for the monthly electricity consumption 

data in Damietta governorate. 

 

Keywords: ARMA Model, BIC, Genetic Algorithm, Identification, 

Innovation, Subset Models 

 

Introduction 

The family of Autoregressive model (AR) of order P 

for a zero-mean stationary stochastic process{Xt} may be 

written in operator notation asφ(B)Xt = Wt, where φ(B) = 

1-φ1B-⋅⋅⋅-φpB
p
, ( )2

0,
t W

W NID σ∼ .  

It is assumed that the parameters are in the admissible 

region, i.e., all roots of the equation φ(B) = 0 lie outside 

the unit circle. 

As Haggan and Oyetunji (1984), a process {Xt} is 

said to be a subset autoregressive (SAR) model of order 

= (k1,…,kp), where k1<…<kp, if it satisfies the stochastic 

difference equation: 

 

1 1

.

p p
t tk t k k t k

X X X Wφ φ
− −

− − − =⋯  (1) 

 

where, {Wt} is the white noise parallel to zero mean 

and variance 2
0

W
σ > . That model represents a special 

case of the autoregressive model of orderP with zero 

coefficients in specific intermediate lags. This means 

that the usual family of SAR(P) models is obtained by 

taking a subset of the parameters φ1,…,φp,where 

( )
1

1 m

m

k

k k
B B Bφ φ φ= − − −⋯ . The family of SAR models 

may be denoted byARp(k1…..km). where0 ≤k1 ≤k2 ≤ … 

≤km≤p. 

For a linear time series model, the selection of the 

subset model can be approximated by the function: 
 

( )2ˆlog .
m

C T
m

T
σ +  (2) 

 

As m is the number of nonzero parameters in the 

linear stochastic difference Equation (1), 2
ˆ
m
σ  is the 

conditional maximum possibility for the estimation of 

the residual variance. AlsoC(T) is a function of the 

numberT of observations. Akaike Information Criterion 
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(AIC) as well as the Bayesian information criterion 

(BIC) correspond to C(T) = 2 andC(T) = logT can be 

used in model selection.  

Initially, with no consideration of the computational 

hardships effort, a better SAR model of sizem can be 

reached through the comparison of 2
ˆ
m
σ  in all SAR 

models with available lag combinations and choosing the 

one that has the lowest 2
ˆ
m
σ . The function (2) can 

subsequently be employed to decide the optimal SAR 

through allowing m to vary. This identification gets 

harder in situations like those of subset ARMA models. 

Many recent searches such as Goldberg (1990), 

Chatterjee et al. (1996), Gaetan, (1998) and Baragona et al. 

(2004) employed the genetic algorithm as a new algorithm 

for selecting the optimal subset ARMA models to 

overcome its computationally cumbersome. 

In the present work, two selection procedures for 

subset ARMA models are introduced based on 

innovation regression techniques together with stochastic 

binary search algorithms methodology. Many causes are 

present for selecting genetic algorithms. Firstly, the 

space of the solutions; any probable models, is finite, 

discrete however, it is still large. Secondly, any model is 

easily coded through binary strings. Additionally, the 

final population of models produced through that 

algorithm permits considering several other models. 

The present paper has been planned according to the 

following. Part 2 contains a description of innovation 

regression technique for selection procedure. Part 3 

contains an introduction of genetic algorithms and its 

application for identifying problem while in part 4 we 

use the monthly electricity consumption in Damietta 

governorate as a real data and apply the proposed model.  

Innovation Regression Method for Selection 

Procedure 

Keep in mind Durbin-Levinson recursion for the 

AR(P); see Durbin (1960): 

 

, 1 , 1, 1 1 , , 1, , .j k j k k k k j k j kφ φ φ φ
+ + + + −

= − = …  (3) 

 

where, k = 1,…,p−1 and ζk+1= φk+1,k+1 denotes the partial 

autocorrelation at Lag k +1. Such recursion is used for 

defining one-to-one transformation: 

 

( ) ( )1 1
,..., ,..., .

p p
φ φ ζ ζ↔  (4) 

 

A new family of models denoted by ARz(k1,…,km), 

is obtained by selecting 
1

,...,

m
k k

ζ ζ  as parameters and 

constraining the other partial autocorrelations as zero. 

This model forms a subset of the AR(P) model that 

may be written as φ(B)Xt = Wt, where the parameters 

φ1,…,φp are parameterized by Equation (4). In the 

ARz(1,3) model, for example, φ1 = ζ1,φ2 = -ζ1ζ3 and φ3 

= ζ3, since ζ2 = 0. Although ARp(k1,…,km) and 

ARz(k1,…,km) are similar, however, those models are 

distinct. In the ARp(1,3), ( )21 1 1 3 3
/ 1ζ φ φφ φ= − − , 

( )3

2

2 1 3
/ 1ζ φφ φ= −  and ζ3 = φ3. 

The plot of the usual partial autocorrelations together 

with the confidence limits is far more effective to 

identify ARz subset models (see, for example, Yu and 

Lin, 1991). For the maximum sequence of p of the 

model, estimated partial autocorrelations 
1

ˆ ˆ,...,
p

ζ ζ  are 

computed with their estimated standard errors. 

According to McLeod and Zhang (2006), the estimated 

standard errors can be calculated from the sample 

covariance matrix of 
1

ˆ ˆ,...,
p

ζ ζ . The nonzero subset of 

partial autocorrelations ζk, k = 1,…, pfor the ARz 

model is chosen. 

As Zhang and Terrell (1997) inform a new statistic 

and a new algorithm for selecting the optimal SAR, there 

may always be preference for using automatic model 

choice techniques (see Brockwell and Davis, 1996). The 

model space in the subset model selection of high-order 

AR may be quiet big hence, the usual AIC/BIC criteria 

might choose over parameterized models. The UBIC 

criterion was prepared by Chen and Chen (2008) to 

address that large model space problem. The 

approximate concentrated log-likelihood function for an 

ARz(k1,…,km)evaluated at 1

ˆ ˆ,...,
m

ζ ζ  is as follows: 

 

( ){ }1
,

2

,

ˆlog 1 .
m

kk k k
n ζ

∈

 = − −  ∏
…

L  (5) 

 
where, n is the series length. The UBIC criterion may be 

written as: 
 

2 log 2log .
p

UBIC m n
m

 
= − + +  

 
L  (6) 

 
where, p is the maximum possible lag. 

Denotek = (k1,…,kp),i = (i1,…,iq), also, mind a zero-

mean stationary stochastic process {Xt}produced through 

ARMA(k,i) model: 
 

1 1 1 1

.

p p q q
t tk t k k t k i t i i t i

X X X W W Wφ φ θ θ
− − − −

− − − = − − −⋯ ⋯  (7) 

 
which is assumed to be invertible. 

As Hannan and Rissanen (1982), innovation 

regression method for ARMA modeling is composed of a 

couple of steps for determining ranks together with 

evaluation parameters. Step one aims at fitting AR(n) 

model with high order employing Yule-Walker equations: 
 

1
.

n

t l t l tl
X X Wα

−
=

= +∑  (8) 
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After that, estimated innovations are computed: 

 

1

ˆ ˆ . 1.....
n

t t l t ll
Z X X t n Tα

−
=

= − = +∑  (9) 

 

The second step is applying lowest squares technique 

on observations in addition to the estimated innovations 

obtained in Equation (9) of theAR(n) model for 

estimating the ARMA parameters. 

Let Pand Q be sufficiently large, i.e., these may be 

higher than the real maximum order forkand i, then 

calculate the least squares estimates, φ̂ and θ̂ , of 

( )
1

,...,

p
k k

φ φ φ=
′
, ( )

1

,...,

q
i i

θ θ θ=
′
, minimizing: 

 

( ) ( )
0

2
2

1 1

1 ˆ, .
j j l l

T P q

t k t k i t it t J l
X X Z

T
φφ θ θσ

− −
= = =

= − +∑ ∑ ∑  (10) 

 

As t0 = max(n + kp, n + iq).k
*
 is generally selected and 

i
*
 minimizing: 

 

( ) ( ) ( )2 lnˆ ˆ, ln , .
T

BIC k i p q
T

σ φ θ= + +  (11) 

 

Genetic Algorithms and its Application to 

Identification Problem  

Genetic algorithms can be defined as haphazard 

search techniques pivoted on principles of natural 

selection for obtaining either maximum or higher values 

for objective functionsg. Genetic Algorithms (GAs) 

employ a form of chromosomal representation for 

problem space, in addition to evaluating data of different 

points in the search space simultaneously, additionally, 

they employ recombination operators for preserving 

obtained data. GAs begin at a population of size N of 

binary encoded strings, chromosomes, of lengthL. Every 

one of the L positions illustrates a gene; and every gene's 

value is selected haphazardly to become a zero or 1. 

Every string demonstrates a solution for search space. A 

fitness function fcan be computed as a monotone 

increasing function of g for every chromosome in the 

generation. Later,N parents for the next generation can 

be chosen with replacement utilizing probability pj of 

selecting the j chromosome in the present population that 

is proportional to its fitnessfj: 

 

1

j

j N

ii

f
p

f
=

=

∑
 (12) 

 

The parents may be counted in pairs; for each pair a 

crossover operator chooses a point that extends between 

1 and L with probabilitypc haphazardly. A couple of kids 

can be got through exchanging the parent's genetic 

structure after the crossover point. Upon applying a 

mutation operator to every kid's genes, the operator flips 

the bits with probabilitypm. Kids, then, replace the 

parents in the population and the breeding cycle can be 

iterated for fixed numbers of generations or until a 

convergence criterion can be performed. The string in 

the last population with the best value ofg may be 

restored as the solution of the optimization problem. 

Implementation of the GAs, as described above, first 

needs a string representation. Every chromosome z = 

(z1,…,zP+Q) illustrates an ARMA model and its length is 

equal toP + Q gene. The firstP genes correspond to the 

Autoregressive parameters, the last Q to the Moving-

Average ones and a gene is 1 provided the corresponding 

parameters are unequal to zero. For instance, when P = 

Q = 5, the chromosomez = (0,1,0,0,0,1,0,0,1,0)is in 

correspondence with the ARMA model: 

 

2 2 1 1 4 4
.

t t t t t
X X W W Wφ θ θ

− − −

− = − −  (13) 

 

There is another decision to take in utilizing a GAs, 

after deciding on encoding, this represents the way of 

performing choice. The function fis to offer enough 

options for ensuring that algorithm's preference of 

superior solutions finally reaching either optimal or near-

optimal answer. Because the BIC could have some 

positive values, a simple selectionf = -BICcannot be 

suitable due to providing negative fitness. Goldberg 

(1989) offers employing adaptive shapes of the fitness 

function, in situations including negative values off,as: 

 

1 .
j j
f M BIC= + −  (14) 

 

BICjis theBIC value for the jth chromosome for the 

present population, M is the maximum value of BICfor 

the present population and the constant 1 can be added 

for ensuring a non-zero probability for the choice. 

Experiments demonstrated that the fitness function (14) 

may sustain the diversity in the population for above one 

hundred generations however, it is unable to avail higher 

levels for selection during final phases for moving in the 

direction of best solutions. 

Another selection scheme, where a progressively 

varying temperatureδ>0 controls choice rate, in this 

scheme the fitness function is given by: 

 

exp .
j

j

BIC
f δ

δ

 
= −  

 
 (15) 

 

High beginning temperatures involve that all 

chromosomes have accepted probabilities of 

reproduction. As GAs runs, the temperature is reduced in 

a gradual manner to let the GAs located nearer to the 
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most suitable part of the search space while defending 

more fit degrees for diversity. 

The Application to Real Data 

We consider the monthly electricity consumption 

in Damietta governorate from January 2002 through 

December 2016. A plot of the original data, Fig. 1, 

shows an obvious trend and nonstationary. We 

transformed the data by getting natural logarithms 

together with differencing at lag 12 as shown in Fig. 2. 

Figure 3 shows both sample autocorrelations and 

partial autocorrelations for transformed data. 

Innovation regression method was used first for 

Subset ARMA model selection procedure. According 

to the UBIC criterion, the best model was the 

ARz(1,2,3,12,13). This identification agrees well with 

the model suggested by the partial autocorrelations 

plot (Pacf Plot) since the partial autocorrelation 

coefficients are out of the 95% confidence limits at 

lags 1, 2, 3, 12 and 13. The parameter estimates of the 

suggested model and their standard errors are reported 

in Table 1. Inspecting the standard errors of the 

parameter estimates ensures that all parameters are 

significant. The sample autocorrelations and partial 

autocorrelations of the residuals from 

ARz(1,2,3,12,13) model (Fig. 4) indicate that the 

residuals are random and an adequate, parsimonious 

model was obtained. 

 

 
 

Fig. 1: Monthly electricity consumption plot 

 

 
 

Fig. 2: Time series plot for transformed data 
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Fig. 3: Sample autocorrelation and partial autocorrelation functions of transformed data 

 
Table 1: The estimated parameters for AR

z
(1,2,3,12, 13) model 

 MLE SD Z-ratio 

Zeta(1) 0.22158780 0.093641499 2.366342 
Zeta(2) 0.23138493 0.058528569 3.953367 
Zeta(3) 0.20323856 0.053485514 3.799880 
Zeta(12) -0.49939073 0.070195714 -7.114262 
Zeta(13) 0.30879179 0.073381246 4.208048 

log likelihood = 516.314, AIC = -1020.6, BIC = -1001.9, UBIC = -987 
 

An illustration of applying GAs to identify the 

appropriate Subset ARMA model, is presented hereby. A 

steady temperature decrement of the form δk=δ0α
k
, with 

δ0>0 is employed and 0.85<α<0.99. Upon experimenting 

with specific values, the researcher set α = 0.95and δ0 

= 1. Selecting the crossover probability, pc, is around 

0.5- 0.9. Little values of pc led to a decrease in the 

capability of searching the whole space of solutions 

and early convergence. Lower values for the 

probability of mutation pm have always been favored 

for avoiding better schemata distraction. pm = 0.05 

was selected. 

Inspecting the results in Table 2 obtained when we ran 

the Genetic Algorithm (GA) for the transformed data, we 

find the proposed subset model is AR(1,4,7,12,15). This 

model has the smallest conditional maximum likelihood 

estimate of the residual variance 2
ˆ 1663.9σ − compared to 

other alternative models suggested by GAs. We can also 

refer to the proposed model as GA:AR(15) with zero 

coefficients for some intermediate lags. The standard 

errors of the parameter estimates show that not all 

parameters are significant. Some of the sample 

autocorrelations and partial autocorrelations of 

residuals (Fig. 5) outside the significance limits 

indicate that the residuals are not completely random.  
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Fig. 4: Autocorrelation and partial autocorrelation functions of residuals for AR
z
(1,2,3,12,13) model 
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Fig. 5: autocorrelation and partial autocorrelation functions of residuals for GA:AR(15) model 

 
Table 2: The estimated parameters for GA: AR(15) model (standard deviation in parentheses) 

ˆ , 1,...,15
i
iφ =  

0.2666 (0.1961) 0.0000 (0.0000) 0.0000 (0.0000) 0.4883 (0.0767) 0.0000 (0.0000) 

0.0000 (0.0000) 0.8491(0.0576) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 

0.0000 (0.0000) 0.0123 (0.0691)  0.0000 (0.0000) 0.0000 (0.0000) 0.0864 (0.1912) 

 

The results of performance evaluation show that 

ARz(1,2,3,12,13)model obtained by the innovation 

regression method yields better forecast at in-sample 

data set than GA:AR(15) model. 

Conclusion 

Subset models are usually helpful in the analysis of 

stationary time series. Lately, a class of subset ARMA 

models has been suggested by many researchers as 

parsimonious and special cases of ARMA models. This 

paper is interested in the selection of the optimal subset 

model so we represent two methods of subset ARMA 

models selection. The first which is usual is the Innovation 

regression method, the second is the genetic algorithms 

(GAs). We use the monthly electricity consumption in 

Damietta governorate as a real data in our application. 

According to the Innovation regression method, the best 

model was the ARz(1,2,3,12,13) while the best one was the 

AR(1,4,7,12,15). According to the genetic algorithms 

method. The results of performance evaluation show that 

ARz(1,2,3,12,13) model was the superior. 

We hope to report a successful application of these 

two methods to the subset selection of ARMA models. 

Finally, we expect that the extensions in the use of 

genetic algorithms to the subset multivariate ARMA 

models would be very useful. 
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