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Abstract: We consider a Stochastic Differential Equation (SDE) driven by a 
Wiener process and a Poisson measure. This latter measure is associated with 
a sequence of identically distributed jump amplitudes. Properties of the SDE 
solution are presented with respect to the associated Wiener and Poisson 
processes. An algorithm is provided allowing exact numerical simulations of 
such SDE and implementable within R environment. Statistical inference 
tools are presented and applied to hydrology data.  
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Introduction 

In different fields, scientists are confronted with the 
study of random phenomena. For that purpose, some 
mathematicians use Stochastic Differential Equations 
(SDE) to model the random trajectories of these 
phenomena. They are used in domains such as physics 
(Calif, 2012), population dynamics (Lungu and Oksendal, 
1997), financial mathematics (Black and Scholes, 1973) 
and biology (Wilkinson, 2011). For instance, in financial 
mathematics, the Black-Scholes model (1973) is used to 
describe the volatility of certain options. It is considered as 
a fundamental step forward for modern finance (Khaled and 
Samia, 2010). We can also cite stochastic delay Lotka-
Volterra model (Bao and Yuan, 2012; Bahar and Mao, 
2004) for population dynamics in environmental noise, and 
processes with jump (Bao et al., 2011) as alternative models 
for phenomena including shocks occurring at random dates 
associated with random amplitudes. In this paper, we 
consider a SDE with jumps driven by a Wiener process and 
a Poisson measure. The solution of this SDE is a 
stochastic process following a Black-Scholes model with 
random jump amplitudes. We study the behaviour of this 
process under mild conditions on the amplitude 
distribution. Then, we develop the statistical inference 
about the model parameters (Lacus, 2008) using 
likelihood techniques (Lo, 1988). Hydrological data are 
used as an example of application. 

Materials and Methods  

Black-Scholes Model with Jumps 

We consider the Black-Scholes model with jumps. 

This stochastic process assumes that the solution is 

determined by the stochastic differential equation: 

t t t t t t t
dX X dt X dB A X dNτ σ= − + +  (1) 

 
where  τ and σ are given constants. The parameter τ may 
be regarded as intrinsic rate of decrease, σ is the standard 
deviation associated with the Brownian term, (Bt) is a 
standard one-dimensional Brownian motion (Osborne, 
1959) and (Nt) a Poisson process. At is the jump 
amplitude at time t and is a positive random variable 
whose distribution is parameterized by vector θ. 

The drift, diffusion, and shock terms on the right side 

of equation (1) are bounded continuous functions 

defined on ℝ . Under the conditions of existence and 

uniqueness of the solution, equation (1) admits a unique 

positive solution Xt given by: 
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It is worth noticing that equation (1) can be 

associated with a deterministic model governed by the 

following equation: 

 

t t t
dm m dt am dtτ λ= − +  (2) 

 
where λ>0 is the intensity of the Poisson process (Nt) 

and a = E(At) is the expected jump amplitude. Equation 

(2) is derived from (1) by taking the expectation with 

respect to (Nt), (Bt) and (At). The solution of (2) is 
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We can notice that the solution explodes when t tends 

to infinity if the expected jump amplitude ,aλ τ>  but 
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converges to zero if .aλ τ<  Otherwise, the solution is 

constant and equal to the initial value m0. Furthermore, 

under the condition of independence of the At, the 

expectation and variance are as follows: E(Xt) = mt and 
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 where b = V(At) is the 

amplitude variance. Therefore, Xt converges to zero in 

probability when 
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Distributions Associated with the Solution 

Xt conditionally to ( )
1,...,
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j j N
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and Nt has a log-gaussian 

distribution with parameters log (Kt) and 2
tσ , where: 
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Let us write Yt = log(Xt). Since (0, ),
t

B N t∼  this implies 

that 2(log , )
t t
Y N K tσ∼  conditionally to Kt. 

Let ( )
1 2

, , ,

n

t t t
X X X…  be the observations of process 

(Xt), at times t1<t2<…<tn in [0, t]. The distribution of 

process (Xt) depends on parameters τ, σ
2
, θ and λ 

which are to be estimated. 

Maximum Likelihood Method 

The likelihood of ( )
1

,, ,

n

t t
X X… , where n is the 

number of observation dates, is associated with the 

likelihood of ( )
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noticing that process (Yt) has independent increments. In 

fact, for any couple (ti-1, ti), the increment between these 

two dates, denoted by 
1
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where f
θ

 is the distribution density of Aj. 

Applying the maximum likelihood method, we get 

the following estimators: 
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In the case where Aj follows the log-normal 

distribution with parameter θ = (µ, v), then 
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Numerical simulation of the SDE solution 

We carried out numerical simulations of the SDE 
solution by means of an exact method which consists of 
a three-step algorithm (Appendix): 
 
1. Simulation of the number of Poisson jumps 

2. Simulation of dates and jump amplitudes 

3. Simulation of classical Black-Scholes model 

between two consecutive jumps 
 

We were able to build artificial datasets using the 
following R native functions: rpois, runif, rlnorm, 
rnorm (Fig. 3). 

Results 

Application to Hydrological Data 

We consider a catalogue of hydrological data from 

Guadeloupe French West Indies for the period between 5 

March 2018 and 25 March 2018. A total of 296 

observations were recorded in the HYDRO bank 

catalogue. This study was carried out according to 5 

variables: Station, date, time, water quantity per m
3
/s. The 

water flow is represented in Fig. 1, whereas the water flow 

difference between two consecutive dates is in Fig. 2. 
The estimate of τ, σ

2
, λ, µ, ν and their Standard Error 

of Estimate (SEE) are given in Table 1. The p-value of the 
log-likelihood ratio test of nullity for each parameter is also 
given. The p-values are very significant, except for 
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parameter τ which is still significantly non null but at a 
lower level. The 95% confidence interval for τ, rate of 
decrease in water flow between Poisson events is [0.024, 
0.276]. According to such values for the estimated rate 
of decrease b τ, the convergence in probability of (Xt) to 
zero is not verified which means that drying out does not 
occur at the station under study. 

Application to Artificial Data 

Based on the results obtained from the hydrology 

data, we carried out numerical simulations with a set 

of parameters similar to the estimate values of Table 1. 

Figure 3 shows an example of such trajectories for the 

solution of Equation 1. For each simulated trajectory, 

the maximum likelihood method provided parameter 

estimates. Therefore, from the whole set of trajectory 

simulations, we could get sample distribution of the 

maximum likelihood estimator for each parameter. 

The classical properties of unbiasedness and normality 

were then checked. 
 
Table 1: Parameter estimation and nullity test results for the water 

flow data 

Estimator Estimate SEE p-value 

τ̂  0.1499 0.0643 0.0197 

�2
σ  0.0700 0.0092 0.0000 

µ̂  -1.9524 0.1093 0.0000 

v̂  0.4765 0.0773 0.0000 

λ̂  1.1176 0.2564 0.0000 

 

 
 

 

Fig. 1: Water flow distribution between the 5th and 25th of March, 2018, from a station of Guadeloupe, F.W.I 

 

 
 

Fig. 2: Water flow difference between two consecutive dates, for the same data as in Figure 1 
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Fig. 3: Simulated solution of equation (1) for (τ, σ2, λ, µ, ν) = (0.15, 0.07, 1.00, −2.00,0.5) 

 

Discussion 

We considered a continuous time stochastic process X 
= (Xt) which is solution of a SDE associated with the 
Black-Scholes model with jumps. Under the assumption 
of independence and equality of expectations and 
variances for the jump amplitudes, we gave conditions on 
the model parameters for convergence in probability of 
(Xt) to zero. It would be interesting to see how to weaken 
the assumptions on the jump amplitude process (At) to get 
convergence results. The statistical inference about this 
model was developed for observations of X at n dates and 
observations of time and amplitude of jumps over a time 
windows [0, t]. It would be interesting to treat the case for 
which jump times and jump amplitudes are not available. 

Conclusion 

In this study, we have presented a SDE driven by a 

Wiener process and a Poisson measure whose solution 

follows a Black-Scholes model with jumps. Under 

independence and stationarity assumptions on the jump 

amplitude process, we get convergence in probability for 

the stochastic process solution of this SDE. The solution 

can be numerically simulated in R programming 

environment. From observations of the process at 

different dates, as well as those of jump times and 

amplitudes, likelihood techniques can be implemented 

and provide statistical inference tools. As an illustration, 

we used data collected by the HYDRO bank on water 

level measurements in Guadeloupe, French West Indies. 
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Appendix: 

R script for numerical simulations of the SDE. 

sim2=function(X0,tau,sigma,lambda,mu,nu,t,MaxY){ 

#Simulation of the SDE : dXt=Xt(-tau*dt+sigma*dBt+At*dNt) 

#X0 is the initial value ; X0>0 

#tau is the rate of decrease 

#sigma is the standard deviation of the Wiener process 

#lambda is the Poisson process intensity ; lambda>0 

#t is the experiment duration ; t>0 

n=rpois(1,lambda*t) 

dates=c(sort(runif(n,max=t))) 

sauts=rlnorm(n,meanlog=mu,sdlog=sqrt(nu)) 

r=tau+(sigma^2)/2 

# simulation of Wiener process between 0 and first jump time 

Brown=cumsum(c(0,rnorm(100,mean=0,sd=sqrt(dates[1]/100)))) 

#Simulation of processus between 0 and first jump time 

valeurs=curve(X0*exp(-r*x+sigma*Brown),from=0,to=dates[1],add=TRUE,type=”n”)$y 

datejours=seq(0,dates[1],length.out=101) 

debit=valeurs 

xdates=c(dates,t) 

for(i in 1:n){ 

lines(rep(dates[i],2),c(valeurs[101],valeurs[101]*(1+sauts[i]))) 

X1=valeurs[101]*(1+sauts[i]) #Initial condition modification 

#Simulation of Wiener process between two consecutive jumps 

Brown=cumsum(c(0,rnorm(100,mean=0,sd=sqrt((xdates[i+1]-xdates[i])/100)))) 

#Simulation of process between two consecutive jumps 

valeurs=curve(X1*exp(-r*(dates[i])+sigma*Brown),from=xdates[i],to=xdates[i+1],add=TRUE,type=”n”)$y 

datejours=c(datejours,seq(xdates[i],xdates[i+1],length.out=102)[-1]) 

debit=c(debit,valeurs) 

} 

B=rep(0,length(datejours)) 

B[seq(101,101*n,101)]=log(1+sauts) # value of log(1+A(ti)) 

jeudon=cbind(datejours,debit) 

resufinal=list(jeudon,dates,sauts,B) 

resufinal 

} 


