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Abstract: In the absence of a well-defined input selection technique 
associated with the pure ANN models, Option pricing using pure ANN 
models while relaxing the assumption of constant volatility remains a 
challenge. The conservative drill espoused has been to make allowances 
for a large number of input lags with the confidence that the ability of 
ANN to integrate suppleness and redundancy generates a more robust 
model. This is to say that the nonexistence of input selection criteria 
notwithstanding, the models have been developed without due 
consideration to the effect that the choice of input selection technique 
would have on model complexity, learning difficulty and performance 
measures. In this study, we deviate from the conventional techniques 
applied by the pure ANN option price models and adopt the hybrid model 
in which the volatility component is handled using some celebrated time 
series models, with specificity to the ANN-GJR-GARCH model - a 
hybrid of the ANN and a time series hybrid. The hybrid ANN option 
pricing model is then framed and tested with the forecasts of the ANN-
GJR-GARCH model as a volatility input alongside two other inputs - 
time to maturity and moneyness. Finally, we compare the performance of 
the hybrid model developed with that of a pure ANN model. Results 
indicate that the hybrid model outperforms the pure ANN model not only 
in forecasting but also in the training time and model complexity. 
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Introduction 

Since the establishment of the Chicago Board of 
Option exchange in 1973 (Hull et al., 2013), focus 
was shifted to option valuation methods with the 
solemn aim of modelling option prices. It was around 
this time that the Black-Scholes Model (BSM) was 
developed – a ground-breaking model that symbolized 
a major breakthrough in the financial sector. Since 
then and for the past two decades, the model has 
continuously received considerable attention 
especially in underlying probability attributes of an 
European call option on a non-dividend stock          
(Al Saedi and Tularam, 2018) and has been identified 
as the basic building block of the financial derivatives 
theory (Wilmott et al., 1995). Nonetheless, numerous 
studies have exposed a series of inconsistencies that 
exist between the market prices and the BSM output - 
a problem that has directly been linked to the widely 
disputed assumptions governing the development and 
use of the BSM, including but not limited to: Constant 

volatility, existence of efficient markets, non-dividend 
paying structures, known and constant interest rates, 
log-normally distributed returns, commission free 
transactions and a perfectly liquid market. 

In an effort to manage these inconsistencies, 
advances have been made in both the model itself and 
its respective solution methods – both analytical 
(Harper, 1994; Forsyth et al., 1999; Jódar et al., 2005; 
Rodrigo and Mamon, 2006; Bohner and Zheng, 2009; 
Edeki et al., 2015; Shin and Kim, 2016) and 
numerical (Cortés et al., 2005; Company et al., 2008; 
Ankudinova and Ehrhardt, 2008; Černá et al., 2016). 
However, in spite of such concerted efforts having 
been employed to improve the performance of the 
BSM, multiple studies still show that these techniques 
have not been able to very well capture more realistic 
aspects that characterize day-to-day transactions such 
as the presence of transaction costs, high volatility, 
illiquid markets and large investor preference. In 
addition, market participants change their option 
pricing attitudes from time to time and thus, many 
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researchers hold the view that existing complexity 
issues require non-linear solutions. 

It is against this background that a good number of 
researchers have shifted focus to non-parametric models 
flexible enough and capable of capturing the non-linear 
patterns that characterize the observed market data. One 
such model is the Artificial Neural Network (ANN) 
model. ANNs have increasingly become promising 
alternatives to the BSM and other parametric option 
pricing models due to the fact that unlike the BSM, they 
do not require or rely on any underlying assumptions 
(Malliaris and Salchenberg, 1993) and are trained 
inductively using historical or implied input variables 
and option transaction data (Andreou et al., 2006). 

The very first attempt to estimate option prices using 
ANNs was made by Hutchnison et al. (1994). They used 
three different network architectures namely: Radial 
Basis Function (RBF), Multilayer Perception (MLP) and 
Projection Pursuit Regression (PPR) to fit both Monte-
Carlo simulated Brownian underlier and Black-Scholes 
option data and S&P 500 futures thereof. The authors 
however used a minimalist approach in the selection of 
their inputs and restricted the network inputs to time to 
maturity (T-t) and Moneyness. Interest rate and volatility 
were also assumed to be constant. It is also worth noting 
that the study used financial knowledge in construction, 
namely the “homogeneity property” of the option price 
formula which was borrowed from Merton (1990), 
consequently justifying the use of moneyness instead of 
the underlying price and strike price separately. 

Mostafa and Dillon (2008) compared the option 
pricing performance of the ANN model to the Black-
Scholes and the Generalized Autoregressive Conditional 
Heteroscedastic (GARCH) pricing models. The study 
used a MLP with a single layer of hidden nodes. The 
ANN was trained on the implied volatility rather than the 
option price and this led to an improved performance 
compared to the competing models. The hedging 
performance of the neural network, the GARCH option-
pricing model and the Black-Scholes were also analyzed. 
According to Hajizadeha and Seifia (2011), one of the 
limitations of the BSM that prompted the application of 
the ANN is the controversial assumption that the 
underlying probability distribution is lognormal. Their 
study thus proposed a couple of hybrid models to reduce 
these limitations and enhance the ability of option 
pricing. The key input to their option pricing model was 
volatility, in which three popular GARCH type models 
were used in estimating volatility. Two nonparametric 
models based on neural networks and neuro-fuzzy 
networks were then developed to price call options for 
S&P 500 index. Results were then compared with those 
of Black-Scholes model and they showed that both the 
neural network and the neuro-fuzzy network models 
outperformed the Black-Scholes model. Furthermore, 

comparing the neural network and neuro-fuzzy 
approaches, Hajizadeha and Seifia (2011) observed that 
for At-The-Money (ATM) options, the neural network 
model performed better and for both In-The-Money 
(ITM) and Out-of-The Money (OTM) options, the 
neuro-fuzzy model provided better results. Mitra (2012) 
using Nifty call option prices, made an attempt to improve 
accuracy of option price estimation using ANNs by 
adjusting all input parameters using a suitable multiplier. 
The values of these multipliers were determined using 
known data that minimizes errors in valuation. 

Another application involving ANNs on option 
pricing was one done by Andreou et al. (2005). The 
study compared the option pricing ability of Robust 
ANNs optimized with the Huber function against those 
optimized with Least Squares. The comparison was in 
respect to pricing European call options on the S&P 500 
using daily data for the period April 1998 to August 
2001. In the study, the analysis was augmented with the 
use of several historical and implied volatility measures. 
The study also went a step further to include hybrid 
networks that directly incorporated information from the 
parametric model in the analysis. It was found that the 
ANNs modelled with the use of the Huber function 
outperformed the ones optimized with least squares. 
Enke and Dagli (2017) applied a hybrid neural network 
which preprocessed financial input data for improving 
the estimation of option market prices. The model in this 
study comprised of two parts. In the first part, a neural 
network model was developed to estimate volatility, 
while in the second part an additional neural network 
was developed to value the difference between the BSM 
results and the actual market option prices. The resulting 
option price was then a summation between the BSM 
and the network’s response. The study obtained that the 
hybrid system with a neural network for estimating 
volatility provided better performance in terms of pricing 
accuracy than either the BSM with historical volatility, 
or the BSM with volatility valued by the neural network. 

Malliaris and Salchenberg (1993), developed an 
ANN model that processes financial input data to 
estimate market option prices at closing. The ANNs 
ability was compared to the BSM, a comparison that 
revealed that the Mean Squared Error (MSE) for the 
ANN was less than that of the BSM in more than half the 
cases examined. The ANN model used exactly the same 
financial data as the BSM. Amilon (2003) examined 
whether an MLP ANN, could be used to find a call 
option pricing formula better corresponding to market 
prices and the properties of the underlying asset than the 
Black-Scholes formula. The neural network method was 
applied to the out-of-sample pricing and delta-hedging of 
daily Swedish stock index call options from 1997-1999, 
with the BSM with historical and implied volatility as a 
benchmark. The findings revealed that the ANN 
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outperformed the benchmarks in both pricing and 
hedging (Amilon, 2003). Gradojevic et al. (2007) 
applied a non-parametric modular neural network 
(MNN) model to price the S&P-500 European call 
options. The modules were based on time to maturity 
and moneyness of the options. The option price 
function of interest was homogenous of degree one 
with respect to the underlying index price and the strike 
price. The study found that modularity improved the 
generalization properties of standard feedforward ANN 
option pricing models (with or without the 
homogeneity), relative to the Black-Scholes model. 

It is however worth noting that a good number of 
these studies have curatively dealt with the linearity 
aspect that existed in the parametric models while still 
clinging to the same assumptions on the BSM. 
Hutchnison et al. (1994) for instance, by using a 
minimalist approach in the selection of their inputs and 
restricting the network inputs to time maturity (T-t) and 
Moneyness, ends up holding interest rate and volatility 
constant – the same assumption that draws criticism in 
the BSM. Secondly, due to lack of a well-defined input 
variable selection techniques associated with the ANN 
models, pricing of options using ANN while relaxing 
some assumptions such as the assumption on constant 
volatility still remains a challenge. The conventional 
practice adopted in modelling option prices using pure 
ANNs has been the trial and error method in which 
allowances are made for a large number of lags (in the 
case of volatility) which are then gradually reduced, with 
the belief that the ability of ANN to incorporate 
flexibility and redundancy creates a more robust model. 
This is to say that lack of input variable selection criteria 
notwithstanding, many models have been developed 
without due consideration to the effect that the choice of 
input variable selection techniques would have on model 
complexity, learning difficulty and performance 
measures. Furthermore, majority of the studies using 
pure ANN models have handled the time variant 
volatility component by pre-modelling it using ANN, 
before using it as an input to the ANN option pricing 
model. However and while recognizing the fact that 
financial time series data harbors a set of characteristics 
that tend to drive estimation procedures away from linear 
models, such as volatility clustering, leptokurtosis and 
leverage effects, it should not pass unnoticed that ANNs 
in their pure forms have proved inadequate in capturing 
these characteristics. Consequently, this study sought to 
deviate from the conventional pure ANN modelling by 
developing a hybrid model in which an input to the 
network is externally determined. Here, the volatility 
component is handled using some celebrated time series 
models, with specificity to the ANN-GJR-GARCH 
model - a hybrid of the ANN, the Glosten, Jagannathan 
and Runkle (GJR) model and the time series GARCH 

model. The hybrid ANN option pricing model is then 
built and tested with the forecasts of the ANN-GJR-
GARCH model as a volatility input alongside two other 
inputs - time to maturity and moneyness. Finally, we 
compare the performance of the hybrid model developed 
with that of a pure ANN model. 

The contribution of this paper is thus threefold. First, 
the study provides a remedy on ANN’s inadequacy in 
capturing some features that characterize financial time 
series data such as volatility clustering, leptokurtosis and 
the existence of leverage effects. Secondly, the study 
provides a navigation on the problem of a lack of a well-
defined Input Variable Selection (IVS) technique that 
characterizes ANNs. Finally, the study provides an 
alternative non-parametric option pricing model 
consistent with the observed market data and capable of 
capturing changes in the option pricing attitudes of 
market participants from time to time. 

Materials and Methods 

Data 

The study used intraday data for the AAPL stock 
option for the period between December 2016 and 
March 2017 with 56,238 data points. The distribution of 
these data points was as follows: Training (50%), testing 
(25%) and validation (25%). This is further explained in 
detail in the respective model subsections.  

Assumptions and Restrictions 

In developing the hybrid ANN model, the assumption 
on constant volatility was relaxed. However, the 
following assumptions were upheld: First, that there 
were no transaction costs, secondly, that there were no 
dividends during the life of the derivative and finally, 
that the risk-free rate of interest, r, was constant and the 
same for all maturities.  

There are also basic conditions that any option 
pricing model is required to fulfil, among them the 
requirement that the price outputs be greater than or 
equal to zero as well as the homogeneity property. 
These, as clearly articulated in the later sections of the 
methodology, not only informed the choice of the 
activation function but also the definition of the inputs, 
particularly the moneyness input variable. 

Volatility Input 

Engle (1982) proposed to model time varying 
conditional variance by applying the Autoregressive 
Conditional Heteroscedasticity Process (ARCH) with the 
expectation of capturing the dynamic behaviors of 
conditional variance by application of lagged disturbance. 
Similarly, Engle and Bollerslev (1986) proposed one step 
ahead forecasting to overcome the vice related to the 
ARCH models with regards to the number of parameters. 
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By so doing, the infinite number of parameters in the 
ARCH model can be reduced to only two parameters in 
the GARCH model (Najjar et al., 1997). 

Both the ARCH and the GARCH models 
simultaneously capture volatility clustering and 
leptokurtosis hence their wider use in the financial market 
analysis. However, they both fail to capture the leverage 
effects. Nelson (1991) proposed an extended ARCH 
model, the Exponential Generalized Auto Regressive 
Conditional Heteroscedasticity (EGARCH) model capable 
of capturing the asymmetric shock associated with the 
conditional variance as well as the leverage effects. 
Glosten et al. (1993) modified the models by proposing a 
GARCH model that performed better than the preceding. 
Brownlees et al. (2011) introduced the GJR model and 
found it to be the best forecaster among asymmetric model 
and GARCH for one step and multi-step ahead 
forecasting. Later on, Lu et al. (2016) combined the GJR 
model and the GARCH model to obtain a GJR-GARCH 
model. Different studies have found the GJR-GARCH 
model to outperform the individual models, each 
separately applied. Thus, in this section, we deviate from 
the conventional techniques applied in option price 
modelling using pure ANNs and adopt the hybrid model 
in which the volatility component is handled using some 
celebrated time series models, with specificity to the 
ANN-GJR-GARCH models, also a hybrid of ANN and a 
time series hybrid of Glosten et al. (1993) and that of 
Engle and Bollerslev (1986). The hybrid ANN option 
pricing model is then framed and tested with the forecasts 
of the ANN-GJR-GARCH model as a volatility input 
alongside time to maturity and moneyness. 

Now let rt denote the log returns of the price of our 
underlying asset (the AAPL stock) at the time index t. To 
put the GARCH model in a proper perspective, it is 
substantive to consider the conditional mean and 
conditional variance of rt, given It-1, where It-1 denotes the 
information available at time t-1. Typically, It-1 consists of 
all linear functions of the past returns. Then we have: 
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Now let ∈t = rt-E(rt|Ir-1) be the mean-corrected log 

return. Then ∈t follows a GARCH (m,n) model if: 
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It is also understood herein that φi = 0 for i>m  and θj 
= 0 for j>n, with the latter constraint on θi, φj implying 
that the conditional variance of ∈t is finite while the 
variance 2

t
σ  evolves over time. If n = 0, then the 

Equation 2 reduces to a pure ARCH (m) model. 
On the other hand, the GJR model is a transformation 

for the Asymmetric Power ARCH model. The latter is 
defined as follows: for the mean corrected returns ∈t = rt-
E(rt|Ir-1) such that ∈t = σtZt where ∈t ∼ N(0,1), we have: 
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For the GJR model δ = 2 and we have: When δ = 2 

and 0≤ii<1, then: 
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From here, the GJR-GARCH model is defined by: 
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In developing the ANN-GJR-GARCH volatility 

model, the latter is built by considering the volatility 
output layer of the ANN as a variable of the GJR-
GARCH model, defined in 8 above. The output layer of 
the ANN consists of the AAPL stock returns modelled 
with the lags of the underlying asset price as the inputs 
to the ANN model. i.e., if we let St be the AAPL stock 
price at time t, then, rt = f(St-1,St-2,⋅⋅⋅,St-q) Letting ℵ(rt) 
denote the output layer of ANN stock returns model, 
then, the ANN-GJR-GARCH model is of the form: 
 

( ) ( )2 * 2 2

( )

1 1 1

m n S

t AGG i i t i t i j t j k t

i j k

D rσ ω ϕ ψ θ σ β
− − −

= = =

= + + ∈ + + ℵ∑ ∑ ∑  (9) 

 
The Hybrid ANN Model for Option Pricing 

In building the ANN option pricing model, the neural 
network option pricing model is trained and tested based 
on the volatility forecasts of the ANN-GJR-GARCH 
model. Other inputs included are moneyness and time to 
maturity, which we begin by scaling to values between 0 
and 1 to have: 
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and: 
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The resultant model thus consists of three input neurons, 

each of which is multiplied by weights and aggregated as 
inputs to the jth hidden node. The inputs are obtained as 
follows: For Moneyness, we have the transformation: 
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Where: 
I
αjM = The scaled moneyness input to the jth hidden 

node 

ωjM = Weights connecting the scaled moneyness to 
the jth hidden node 

M = Index notation for moneyness 
j = Hidden neuron position 
 

For time to maturity, we have: 
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Where: 
I
αjτ = Time to maturity input to the jth hidden neuron 
ωjτ = Weights connecting the scaled time to maturity 

neuron to the jth hidden neuron 
 
and as for the third input, we have: 
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Where: 
I
αjσ(AGG) = The normalized ANN-GJR-GARCH volatility 

forecast inputs to the jth hidden neuron 
ωjσ(AGG) = Weights connecting the normalized ANN-

GJR-GARCH volatility forecasts to the jth 
hidden neuron 

 
An aggregation of these yields the net input to the jth 

hidden node which we obtain as: 
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The sigmoid function is used in rescaling the 

inputs to the jth neuron back to (0,1). This is necessary 
first, to satisfy the option pricing conditions such as 
the positivity of option prices and secondly in 
rescaling the inputs from other neurons back to (0,1). 
This lead to a transformation of the input IjH to the jth 
hidden neuron as follows: 
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where, ( ) ( )( )2*

0
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Q X S
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ω ω ω ω τ σ  = the 

output of the jth hidden neuron, for j = 1,2,⋅⋅⋅,H. 

Determining H, the Number of Hidden Nodes 

In determining H, an approach in which all the three 
suggestions by Salchenberger et al. (1992), Hajela and 
Berke (1991) and Hecht-Nielsen (1989) and Caudill 
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(1988) on how to obtain H were incorporated. This lead 
to the formula: 
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Where: 
H = Denote the number of hidden neuron 
I = The number of input nodes 
O = The number of output nodes 
 

The net input to the output neuron is then obtained as: 
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Where: 
ω0 = The bias to the output neuron 
ω0j = For j = 1,2,⋅⋅⋅,H the weights connecting the jth 

hidden node to the output node 
 

The net input Ij0 to the output neuron defined in 
Equation 23 above is again transformed using the 
sigmoid function so as to ensure positivity and that 
values remain in the range of 0 to 1. The resultant output 
from the output neuron is thus of the form: 
 

( )( )
0

2*

3

1
, , , ,

1 j
t t AGG I

f X S
e

α
ω τ σ

−

=

+

 (21) 

 
where, ω3 = (ω0, ω0j, ωj0, ωjM, ωjτ,ωjσ(AGG)).  

Finally, a reverse of expression 13, 14 and 15 i.e.: 
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descales the scaled neuron output and produces the target 

output ( )( )2*

3 3
, , , ,

t t AGG
X S

α
γ ω τ σ  for each α, for α = 

1,2,⋅⋅⋅,n. Equation 22 gives the target output of the model 
whose difference with the real valued option prices ˆ

c
P  

we would like to minimize in training. 

Training of the Network 

The SSE is used to train face forward networks and 
weights are adjusted in such a way that the SSE between the 
targets 

c
Pɶ  and the model outputs, now 

( )( )2*

3
, , , ,

t t AGG
f X Sω τ σ  is minimized. The SSE is defined as: 
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where, ( )2*

3 3 ( ), , , ,

t t AGG
X S

α
γ ω τ σ = Model output defined in 

Equation 23. 

Results and Discussion 

In validating the developed model, the study used 
intraday data for the AAPL stock option for the period 
between December 2016 and March 2017 with 56,238 
data points. Of these options values, 59.15% were in the 
money (ITM) while 40.85% were out of the money 
(OTM). The data was divided into three sets with 50% 
(28,119) used for training the model, 25% (14,160) used 
in testing and the remaining 25% (14,059) used in the 
validation of the model. The study highlighted that the 
hybrid option pricing model would be developed and its 
performance compared with the performance of a pure 
ANN option pricing model whose volatility was purely 
modelled using an ANN model.  

Pure ANN Model with Time-Varying Volatility 

As for the pure ANN option pricing model, in addition 
to moneyness and time to maturity, the study used 
historical volatility as one of the option pricing variables. 
Due to the nature and size of the data, 10-day historical 
volatility for the AAPL stock option for the period 
between December 2016 and March 2017 was used. The 
conventional practice adopted in the pure ANN option 
price model is to make allowances for a large number of 
lags (in the case of volatility) with the belief that the 
ability of ANN to incorporate flexibility and redundancy 
creates a more robust model. This is exactly what was 
done in this section with volatility lags being varied 
beginning with lag one and increasing the number of lags 
until the optimal model was obtained. While dealing with 
volatility, attention was drawn to the effect of the lag 
variation on the model complexity in terms of the 
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structure (no of hidden layers and nodes therein, learning 
rate, training time, etc.) and the model performance. The 
study observed these variables while varying the lags 
beginning with lag 1. 3-D plots were used to monitor the 
patterns of change for every lag with respect to the 
number of hidden nodes, the learning rate and the SSE. 

Lag 9 was the lag that produced the minimum value 
of the SSE (0.01895), with the number of hidden nodes 
H = 10 and the training time T = 11.08s – an all high 
training time in all the lags. 

The SSE, MSE and the RMSE were used to measure 
the performance of the pure ANN option pricing model 
with time-varying volatility during training, testing and 
validation. Table 1 summarizes the error statistics 
obtained in the three phases. 

An analysis of the performance of the model with 
regards to In-The-Money (ITM) options and Out of-
The-Money (OTM) (Table 2) options revealed that the 

model predicted the OTM option prices better than the 
ITM option prices. 

The Hybrid ANN Model 

For the hybrid model, the mean function of the GJR-
GARCH was first obtained using the ANN model by 
modelling the APPL stock returns the ANN model. 
These stock return forecasts then formed the inputs into 
the GJR-GARCH model resulting to the ANN-GJR-
GARCH volatility model. Figure 1 shows the ANN 
forecasts of the AAPL returns representing the mean 
function of the GJR-GARCH model. 

Different orders of the ANN-GJR-GARCH were 
fitted and the AIC, BIC, the shibata and Hannan-Quinn 
statistics used to select the best model. According to 
these statistics, the ANN-GJR-GARCH (1,1,1) was 
found to be optimal in fitting the AAPL stock volatility. 
Its statistics are provided in Tables 3 and 4. 

 

 
 

Fig. 1: ANN forecasts of the AAPL stock returns 

 
Table 1: Performance of the pure ANN model 

Performance of the pure ANN model model 

 Training (n=24,409) Testing (n=12,204) Validation (n=12,204) 

SSE 377.51192 151.99583 324.64459 

MSE 0.01546 0.01245 0.02660 

RMSE 0.12436 0.11160 0.16309 

 
Table 2: ITM-OTM Errors of the pure ANN model with non-constant volatility 

 ITM (Pure ANN, =14388)  OTM (Pure ANN, n=10026) 

 --------------------------------------------------------------- ---------------------------------------------------------- 

 Testing Validation Testing Validation 

SSE 189.569 414.480 101.495 117.511 

MSE 0.013 0.028 0.010 0.011 

RMSE 0.114 0.169 0.100 0.108 
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Table 3: ANN-GJR-GARCH (1,1,1) Parameter estimates 

 Estimate S. Error P-value Nyblom S. test 

Omega (ω) 0.000000 0.000002 0.92546 0.14316 

Phi (Φ) 0.000127 0.000107 0.23792 0.06205 

Theta (θ) 0.920379 0.003133 0.00000 0.06244 

Psi (Ψ*) -0.923005 0.015058 0.00000 0.06249 

Beta(β) 0.002707 0.000044 0.00000 0.06204 

 
Table 4: ANN-GJR-GARCH (1,1,1) joint statistics 

    Hannan-  Log- Weighted Nyblom 

Test AIC BIC Shibata Quinn ARCH LM likelihood L-Jung Box S. Test 

Statistic -6.346 -6.056 -6.536 -6.331 0.177 56.771 0.727 4.559 

 

Table 5: Performance of the hybrid ANN model developed 

Performance of the hybrid ANN model developed 

 Training (n=12,204) Validation(n=12,204) 

SSE 134.95529 134.34005 

MSE 0.011058 0.011007 

RMSE 0.105158 0.104918 

 
Table 6: ITM-OTM errors of the hybrid ANN option pricing model developed 

Hybrid ITM versus OTM validation errors 

 In-The-Money (n = 7401) Out-of-The-Money (n = 4803) 

SSE 132.85659 31.8669 

MSE 0.01795 0.00663 

RMSE 0.13398 0.08145 

 
Of the 50% of the data set remaining (24, 408), 50% 

of this (12,204) was used in training the hybrid model 
while the other 50% was used for validation. The model 
developed consisted of 3 inputs namely: Moneyness, 
time to maturity and the ANN-GJR-GARCH volatility 
forecasts. This implies that the model developed had 3 
input nodes. H was varied between 2 and 7 following the 
formula discussed in the methodology. 

Apparently, contrary to the results obtain under the 
pure ANN model, where the SSE and training time 
varied with the number of hidden nodes, as well as the 
learning rate, in this case, both the SSE and the training 
time remained constant at 134.95529 and 0.01 
respectively, the number of hidden nodes and the 
learning rate notwithstanding. This perhaps being an 
indication that the network consistently captured the 
same pattern between variables irrespective of the 
network structure. Table 5 summarizes the error statistics 
of the hybrid model developed. 

Interest was also drawn to the performance of the 
model with regards to the ITM and OTM option prices. 
The 25% (12,204) values were categorized as either ITM 
or OTM in which case we had 7401 ITM cases and 4803 
OTM cases. Results (as in Table 6) indicates that the 
hybrid ANN models performs way better in modelling 
OTM option prices (MSE = 0.00663) as compared to 
ITM option prices (MSE = 0.01795). 

Comparative Analysis of the Models Developed 

One of the arguments fronted in the background of this 
work is that in spite of lack of a well-defined input variable 
selection criterion, ANN models have been developed 
without due consideration to the effect that the choice of an 
input selection technique would have on model complexity, 
learning difficulty and performance measures. As a result, 
this study sought to conduct a comparative analysis of the 
two neural networks models developed in line with these 
three attributes. As indicated in Table 7, in so far as model 
complexity is concerned, we start by an admission that this 
largely depended on the number of Input Variables (IVs). 
Having more IVs would definitely complicate the model 
structure. In our two cases, we had 9 IVs while dealing with 
pure ANN models and 3 in the case of the hybrid model. 
We note that applying an existing statistical/mathematical 
model in modelling an input variable using its known 
variables or otherwise, greatly helps in reducing the number 
of inputs that would otherwise have to be inputted into the 
neural network. Be it as obvious as it may seem, these aids 
a great deal in simplifying the model structure. As it can be 
seen, of the 2 ANN models highlighted in this paragraph, 
the networks eventually had 10 and 3 number of hidden 
nodes (H), respectively. We however note that in spite of 
this case, the study found that 1 layer of hidden nodes was 
sufficient in developing the three models, the number of 
inputs and the value of H notwithstanding. 



Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 185.195 

DOI: 10.3844/jmssp.2019.185.195 

 

193 

Table 7: Comparative analysis of the models developed 

Comparative analysis of the models developed 

--------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Variables  Nature of the model 

--------------------------------------------------------------------------- -------------------------------------------------------------------- 

Model attributes Indicator Pure ANN  Hybrid model 

Complexity No. of IVs 9.000000 3.000000 

 Hidden nodes 10.000000 3.000000 

 Hidden layers 1.000000 1.000000 

Learning difficulty Training time(s) 11.080000 0.010000 

Performance (Validation) MSE 0.026601 0.011007 

 RMSE 0.163099 0.104918 

 

In terms of learning difficulty, as depicted by the 
training time, the hybrid model performed better 
(0.01s) compared to the pure ANN model (11.08s). 
This can be attributed to, first, the lesser number of 
inputs compared to the heteroscedastic model with lags. 
Secondly, compared to the Pure ANN model, an 
existing relationship between the option prices and the 
other inputs, including the ANN-GJR-GARCH 
volatility forecasts is easily laid and captured compared 
to when one of the influential variables is missing. 
Finally, in terms of the performance of the model, it is 
interesting to note that the hybrid model performed 
better with an MSE of 0.011007, followed closely by 
the pure ANN model (0.026601). 

Conclusion 

This study sought to deviate from modelling option 
prices using a pure ANN model by developing a hybrid 
model in which the inputs to the network are externally 
determined. Here, the volatility component was handled 
using a celebrated ANN-time series model, specifically 
the ANN-GJR-GARCH model - a hybrid of the ANN and 
a time series hybrid. The hybrid ANN option pricing 
model was then framed and tested with the forecasts of the 
ANN-GJR-GARCH model as a volatility input alongside 
two other inputs - time to maturity and moneyness. 
Finally, the study compared the performance of the hybrid 
model developed with that of a pure ANN model. Results 
indicate that all the two ANN models modelled the AAPL 
OTM option prices better than ITM. Secondly, the hybrid 
ANN model makes better predictions than the pure ANN 
model with time-variant volatility, with the difference 
between the performance of the two models being 
significant at 0.05 level of significance. In terms of 
model complexity, findings reveal that a single layer of 
hidden nodes remains sufficient in developing both the 
hybrid and the pure ANN models, the number of inputs 
and the value of H notwithstanding. Finally, in terms of 
learning difficulty, as depicted by the training time, the 
hybrid ANN model performed better (0.01s) compared 
to the pure ANN model (11.08s). This can be attributed 
to: First, the existence of a lesser number of inputs 
compared to the pure ANN model. Secondly, the ANN-

GJR-GARCH model used in modelling the volatility 
component best captures features that characterize 
financial data such as volatility clustering, leptokurtosis 
and leverage effects - something that ANNs in their 
pure forms have proved inadequate in doing. 
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