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Introduction and Justification

A random variable (r.v.) Z has the exponentiated
Lomax (EL,) distribution with three parameters «
(power parameter), A and g, if its Cumulative
Distribution Function (CDF) is given by:

M@= 1-(+287) ] M

where, > 0, 4> 0 and > 0 are the shape parameters.
Then the corresponding Probability Density Function
(PDF) of (1) is:

Tanp (Z) |(z>0)= aiﬁA (1 + zﬂ’l)_(lw) |:1 _ (1 " zﬂ")_i:r_l )

when o = 1 we get the Lomax (L,) or the Pareto type I1
(Pall) model with:

—(1+2)

G“?(Z)=1_(1+Zﬂ71)_landg&ﬂ(z)=/1/371(1+Z/371)

The L, model (Lomax, 1954) was originally
pioneered for modeling business failure data. The L,
distribution has been found a wide application in many
fields such as engineering, biological sciences, actuarial
science, size of cities, income studies, wealth inequality,
medical and reliability modeling. It has been applied for
modeling data obtained from income and wealth (Harris,
1968; Atkinson and Harrison, 1978), reliability and life
testing (Hassan and Al-Ghamdi, 2009), Hirsch related
statistics (Glanzel, 2008), for modeling gauge lengths data

% Science

% Publications

Abstract: In this work, we introduce and study a new alternative Lomax
model. The maximum likelihood method is used to estimate the unknown
model parameters. We show empirically the importance and wide
flexibility of the new model in modeling two types of failure times data
sets. The new model is much better than the gamma Lomax, exponentiated
Lomax, beta Lomax and Lomax models so the new model is a good
alternative to these models.
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(Afify et al., 2015), for modeling bladder cancer patient’s
data and remission times data (Yousof ef al., 2017).

The main goal of this article is to introduce a new L,
model using the Odd Lindley-G (OLi-G) family of
distributions (Silva et al., 2017) with scale parameter a =
1, the PDF and CDF of the OLi-G family of distribution
are respectively given by:

f'// (X;a |(a=1)) = %ﬂ'v, (x)l:IV, (x)_3 CXp|:— gv/ Ei;], (3)
and:
F,(xala=1)

1 [_nw(x)} @

= l—[2+ I, (x)][ZHW (x)]i eXp| ~5 )

where, IT,(x) is the baseline CDF, y = (&, A, p) is the
parameter vector of the baseline distribution and T1(x.y) =

1-T1(x, w) is the Survival Function (SF) of the baseline
distribution. To this end, we use Equations (1), (2) and (3)
to obtain the new three-parameter OLIiEL, PDF (for x > 0):

frn(3)= %aw*' (1+x) " 1= (14 x/rl)"T*l

g T )] | @
X{ [1 (1+x4") }} o 1_[1—(1+xﬂ’1)%]a ’

the corresponding CDF to (5) is given by:
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(2 + {1 - [1 ~(1+ xﬂ')qa}]

h,x,;“ﬁ (X) — %a/iﬂ_l (1 + xﬂ—l)‘(hl)

2+{1—[1—(1+xﬁ1)_ﬂ]a} i

X

Fa.»:.//(x) =1-

x(z{l - [1 ~(1+ xﬂl)%}a}]ﬂ
[1_(1+xﬁ—1)-»:]a
1—[1—(1+xﬂ,1)_4},,

X eXpq —

)

©

X

2{1—[1—(1+xﬂ'1)%]a}

_1—(1+xﬁ1)"]a_1{1—[1—(1+xﬁ1)"]a}3.

when o = 1 we get the two-parameter OLiL, model
(Silva et al., 2017). The Hazard Rate Function (HRF) of
the OLIEL, distribution can be obtained by as:
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We draw the PDF and HRF plots of the OLIEL,
distribution in Fig. 1 and 2 for selected parameters
values. We see that its PDF can be unimodal and
decreasing. Also, its HRF can be only increasing.
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Fig. 1: Plots of the OLiELx PDF
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Fig. 2: Plots of the OLiEL, HRF

The major justification for the practicality of the
new model is based on the enormous use of the EL,
and L, models in modeling failure times data sets. The
OLIEL, is a good alternative to the EL,, the gamma
Lomax, the beta Lomax, L, models as illustrated using
two real data sets. The OLiEL, can also be considered
as an appropriate model for fitting the right skewed
and the unimodal data sets (see applications 1 and 2).

The rest of the paper is outlined as follows. In section
2, we derive some statistical properties for the new model.
Maximum likelihood estimation of the model parameters
is addressed in section 3. Section 4 gives the simulation
studies. We provide two applications to real data sets to
illustrate the importance of the new model in Section 4.
Finally, we offer some concluding remarks in Section 5.

Statistical Properties

Shapes

The critical points of the OLIiEL, density function are
the roots of the equation:

-1

R

o1

+aw'(1+xﬁ')+n+z>[1-(1”/71)*] {1_{1_(”%1)2]&}.2

1+ vt

) (14x8") [1—(1+x,b*1) }

o1

ZC{W (exp) N1 (4a) ] } |

-+

The critical points of the of the HRF of the OLiEL,
are obtained from the following equation:

0=azp (1+35") " [1—(1+xﬁl)”Tl{2—[1—(1”,5*')’1”}

sty i) T it Tf

144 e

() B(1+38”) [l—(l+xﬁ"l) J
%{aﬂﬁ'(nxﬁl)"”) [1—(1+x,5f')"‘r} ’

We can examine the last two Equations to determine
the local maximums and minimums and inflexion points
via most computer algebra systems.

Quantile Function

Let X be ar.v. with CDF F, (x). For any u € (0.1), the
" Quantile Function (QF) O(u) of the r.v. X is the solution
of u = F (Q(u)) for all Q(u) > 0, from Equation (6), we get:

) 2—G(Q(u)) Z—G(Q(u))
(u-1)2exp(2)=- 1—G(Q(M)) exp{— 1_G(Q(u))}’

where:

is the Lambert W#(-) function of the real argument 2 (z—1)
exp (2): From Silva et al. (2017), we can write the
following equation for QF of the new model as:

O(u)=p [1—{1—a[1+W(2(u—l)exp(Z))J_l}aJ .
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where, W(-) is Lambert function.
Useful Expansions

Starting with the PDF in (5) and using the power
series for the exponential function:

[1 ~(1+ xﬂ")’xT

exp] - :
1—[1-(1+xﬂ-1)"“]a
we have:
%)
forp(x)= %a,/i, g (1xp ) [1 ~(1+ xﬂf')"r
(Mo @]

H

Using the generalized binomial expansion, we can
write:

{[ -(1+xp"y ]a}A
(1+xp7) ]}_(M),

[l—l‘['“ﬁ (x)TM)

. [l - (1 +xp47" )fz ]a }-(m)
_y 3;(? :kk)) {[l (1 )H |

m=0

—

then the OLIEL, density function can be expressed as an
infinite mixture of exponentiated-L, (EL,) density
functions:

rx A l/(x) Z Vink [1+m+k a+1]. 4 //(x) (7)

m.k=0

where:

1) F(3+m+k)
Vi = |k|(1+1)[(1+m+k a+1:|F(3+k)

and:

Tl emkyas1].2 /f |:(1 +m+ k 0( + 1]

_ (1+m+k)a
x[l —(1+ xﬂ’l) }

Dimirya,2,n (x)

xaip (1+xp7) " [1 ~(1+xp” )J
T p (¥)

-1

is the EL, density with power parameter [(1+ m + k)«
+1]. Similarly:

Fa-/'~.l/ ('x) = ;()vm-kn[(l+m+k)a+l].i./l (JC), (8)

Moments
The " ordinary moment of X is given by:

E(X’): Z Vink J:,txr”[(1+m+k)a+1].;,.//(x)dx’

m.k=0

Hy =

then we obtain:

m.k=0w=0

Z Z ]([(l+m+k)a+11)B(|:(l +m+k)a+ 1],

1+(w-r)/2

] s (9)

where:
1
B(ed)= fu (1-u) " du=T ()0 (d)/ T(c+d)| 112
0

is the complete beta function and:

Lm0 oy ([ m s k) +1]) 87 (-1)" ( J

Setting r = 1, 2, 3 and 4 in (9) we get:

E(X)=4 = Z Z (i) g B([(1+ m+ k)a+1]).1+ (w=1)/ 2.

which is the mean of X:

E(X2)=y; _ z z mzk[(;rmw)an]B
m.k=0w=0
E(X3)=/l3' _ z z ':I[i+m+k)a+l])B
mk=0w=0

0

E(X4) _ ‘H; _ Z zr:v(4.[(l‘+-m+k)a+l])B

m.k.w
m.k=0w=0

([(1+m+k)a+1]),1 w=2)/ Al sy
([ m+ ke +1]) 0+ (w=3)/ A ..,-
([(1+m+k)a+1]),1 w— 4)/1|4</
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The last four equations can be used for obtaining the
first four moments about the mean. In general the ™

central moment of X, say M,, is:
r c r v\
~p0r-s) =50 ([ ) s
h=0

where, 1 = E(X). The skewness (\/E ) and kurtosis (53,)

measures also can be calculated from the ordinary
moments using well-known relationships. For the
skewness and kurtosis coefficients, we have:

VB = and pi=ts

2

respectively.

We prove numerically that the new distribution
provides better fits to two real data sets than other four
extended L, models with two, three and four parameters
(see Section 4). These two examples show that the new
OLiEL, distribution is a good alternative for modeling
failure times data. Further, the OLIiEL, density can be
right-skewed or symmetric (Fig. 1). Whereas the OLiEL,

HRF can be monotonically increasing (Fig. 2). The \/E
of the OLIEL, distribution can range in the interval (-

2.106, 4.424), whereas the S, of the OLIiEL, distribution
varies only in the interval (-14, 38) (Table 1).

Generating Function

The moment generating function (mgf) My () =
E(e") can be derived from Equation (7) as follows:

M ()= Z’—'v( LD ([(14 m+ k) +1]),

mkr=0w=071"

1+(w=r)/ 2]

(r<i)?

Incomplete Moments and Mean Deviations

The s incomplete moment, say /; (¢), of X can be
expressed from (7) as:

[) Z z W k i+m+l)a+l:|

m.k=0w=0

B (m+k+11+(w=s)/ 1)

|(\</

where:
t ~ w (l_q
B (p:q)= |u""(1-u " t””
()= -y = 3
is the incomplete beta function and:
(n)A n(n+1). (n+k—l)

is known as Pochhammer’s symbol after the German
mathematician Pochhammer [1841-1920].
The mean deviations about the mean:

MD,

(E(x)

= E(| X - E(X)])
=21, E(X)+2E(X)F(E(X))

and about the median:

MD,

(Median(X))

E(| X - Median(X) |)
=21, (Median(X))+ E(X)
of X, F(E(X)) is easily calculated from (5) and /,(¢) is the

first incomplete moment given by the last Equation with s =
1. A general equation for /,(f) can be derived from /(7) as:

5, (1)
= 3 S g (1 m+ k)er+1]0+ (w=1)/ 7).
m.k=0w=0

Moment of Residual and Reversed Residual Life
The n” moment of the residual life, say:
m, (t) = E[(X - t)n |(X>t,n:1,2,,,)i|’

(1h)

uniquely determines F(x). The »"’ moment of the

residual life of X is given by:

m,(0)=[1-F,., ()] [ (x=1)"dE, , ,().

therefore:

=i ‘ ml_Fig ([ mtk)ar+ 1114 (w=n)/ 2) |

n| (1+m+k)a+1 (1+m-+k) a+l
afml!':,w ]) m A[ w ] z(l Z

d=0

The n moment of the reversed residual life, say:
M, (t) = E|:(Z - X)n |(Xst,t>07n:172v ,)i|’
uniquely determines F(x). We obtain:

M, ()=F,, ,(t) f

x) dF Uuﬁ(x).
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Table 1: Mean, variance, skewness and kurtosis of the OLIiEL, distribution with #= 1.5 and different values of o and 4

A o Mean Variance \/E yia

0.5 0.5 2.872888 17.1728 3.784633 29.29589
1 10.5 222.7499 4.02216 33.08947
2 38.44636 3137.958 4.223212 36.22753
5 222.8358 112857.4 4.370628 38.57605
10 864.9294 1755134 4.423885 -14.07279
20 3404.382 27681971 -2.105726 2.763589

2.5 0.5 0.2794296 0.0629023 1.179014 4.319735
1 0.6025587 0.1720848 0.7994452 3.377934
2 1.104976 0.3774538 0.597283 3.064221
5 2.109887 0.9002299 0.4757101 2.940227
10 3.198071 1.638229 0.4364157 2.910089
20 4.656197 2.915106 0.4172134 2.896965

5 0.5 0.1299453 0.01242288 1.007976 3.682173
1.5 0.3752224 0.04227459 0.4161971 2.681674
25 0.5382854 0.06152505 0.2757932 2.607453
5 0.8070189 0.09249494 0.1645138 2.596024
10 1.129978 0.1303217 0.1072898 2.606683
20 1.509419 0.177695 0.07841155 2.616292

Then, the n™ moment of the reversed residual life of
X becomes:

w s (n,[(l+m+k)a+l]) (1 tm+ k)a +1
Conkew ’
M, ()= > B, [[ :I J'(nsﬂ)’

mk=0w=0 Fa_';“ﬁ (t) l+(w—n)//1

where:

cfﬂrﬁ,}g‘(ifm-ﬁ-k)rxﬂ]) W A(‘l1+m+1»)a+11 z( l)d [l’lj - d

Order Statistics
Let Xj,...,X, be a random sample from the OLIiEL,
model of distributions and let Xj.,...,X,, be the
corresponding order statistics. The PDF of the / order
statistic, say X;.,, can be expressed as:
(' ") X B(i,n—i+1
(3)=[Bn-i+1]' )

.flt/i./f ('x)FaV/i.[f (X)H [1 - Favﬂ.ﬁ (x)]"*’

where, B(:,-) is the beta function. Substituting (5) and (6)
in Equation (10), we obtain:

o k+n—i
0"7”)/3 Z Z YW’ PJ [(/+m+p)a+1] pA ﬂ(x)
m,p=0 ;=0
where:
i=1 _ k+tm 4 jem+2 —(J+1)
S N | i 520

kzom!B(i,n—i+1)[(j+m+p)a+1:|

CRaeN G

Then, the ¢™ moment of X;., is given by (V.1>q):
k+n—i

B(s)= 353 St

m,p=0 j=0 w=0

B([(j+m+p—l)a+l:|,1+(w—q)/i),

where:
ety LG+ me p)a+1]p (-l)w(fv}

Estimation

The Maximum Likelihood Estimators (MLEs) enjoy
desirable properties and can be used for constructing
confidence intervals and regions and also in test statistics.
Let x,...,x,, be a random sample from OLIEL, distribution
with parameters @, 1and S. Let ¥ = (o, A, )" be the 3x1
parameter vector. For determining the MLE of ‘¥, we
have the log-likelihood function:

£=((¥)=-nlog2+nloga +nlog

-nlogﬂ-(nz)glog(nx, 5

a—l)glog[l—(1+x, p’-l)"} (11)
—3]Zn;log{l—[l—(1+x, ﬂ‘l);T}
_i[[l (1 p’-l)”']a /{1 - [1 (1 ﬁ-')‘ﬂ}

The components of the score vector:
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U(¥)=

(W) _ ((%(‘P) or(W) (M(‘P)JT

oV da 01~ OB
can be easily derived.

Simulation Studies

We consider a random sample of size n = 20, 50, 100,
150, 500 and 1000 from the ONEL, density
corresponding to particular choices of the parameters:

The results are presented in Table 2. We provide
the MLEs, biases (Bias) and Mean Square of Errors
(MSEs) for the estimates of all the parameters under
both the methods of estimation. The results show that
the maximum likelihood estimation performs well. In
general, the biases and MSEs of the parameters are
reasonably small. The biases and MSEs decrease as
the sample size increases. The results suggest that the
ML method can be used to estimate the parameters of
the OLIiEL, model.

Real Data Modeling

In this section, we provide two applications to two
real data sets to prove the importance and flexibility of
the OLIiEL, distribution. We compare the fit of the
OLiEL, with competitve L, models namely: the EL,
model (Gupta et al., 1998), the gamma Lomax (GaL,)
model (Cordeiro et al., 2015), the beta Lomax (BL,)
model (Lemonte and Cordeiro, 2013) and L, model. The
CDFs of these distributions are, respectively, given by
(forx>0and &, B, A, a>0):

Table 2: The MLEs and Bias and MSE values for the OLiELx

Fo(x)= [1 ~(1+ xﬁ'l)’x]a,

F, . (x)=T" (a)F(o:;/llcg[l + xﬂ"])
and:

L

Ba.0) B(l —(1 + xﬂ’l)_l ;a,&),

Fa./l./-).i(x) =

where, T'(-) is the gamma function, I'(-;-) is the
incomplete gamma function, B(:,) is the complete
beta function and B(:;- -,-) is the incomplete beta
function.

Data Set I

The first real data set represents the data on failure
times of 84 aircraft wind-shield given in Murthy et al.
(2004). The data are: 0.0400, 1.8660, 2.3850, 3.4430,
0.3010, 1.8760, 2.4810, 3, 4.035, 1.281, 2.0850,
1.98100, 2.6610, 4.449, 1.6190, 2.224, 2.890, 4.121,
1.3030, 2.089, 3.7790, 3.4670, 0.3090, 1.8990, 2.610,
3.4780, 0.5570,1.248, 2.0100, 2.688, 3.9240, 1.2810,
2.038, 2.820, 2.902, 4.167, 1.4320, 2.097, 2.934, 4.2400,
0.94300, 19120, 2.632, 3.5950, 1.0700, 1.91400,
2.2230, 3.1140, 1.9110, 2.6250, 3.5780, 3.699, 1.12400,
2.6460, 1.480, 2.135, 1.5060, 2.190, 3.000, 4.3050,
1.568, 2.1940, 2.962, 4.2550, 1.5050, 2.1540, 2.9640,
42780, 3.103, 4.376, 1.615, 3.1170, 4.485, 1.652,
2.2290, 3.166, 4.570, 1.652, 2.3000, 3.344, 4.602,
1.7570, 2.324, 3.3760, 4.6630. The Total Time Test
(TTT) plot (Aarset, 1987) for data set I is presented in
Fig. 3. From Fig. 3 we note that the empirical HRF of
data sets is increasing.

a A p

n Bias MSE Bias MSE Bias MSE
20 0.186 0.04 -0.421 0.19 0.308 0.108
50 0.183 0.036 -0.426 0.186 0.304 0.097
100 0.182 0.035 -0.431 0.189 0.304 0.095
150 0.183 0.034 -0.429 0.185 0.304 0.094
500 0.183 0.034 -0.032 0.187 0.305 0.093
1000 0.081 0.034 -0.032 0.187 0.005 0.093
20 0.519 0.052 -0.975 0.992 1.91 0.907
50 0.208 0.049 -0.996 1.009 0.901 0.844
100 0.117 0.049 -0.995 0.997 0.906 0.36

150 0.102 0.048 -0.994 0.994 0911 0.84

500 0.008 0.048 -0.547 1.001 0.833 0.911
1000 0.008 0.048 -0.1 0.001 0.91 0.83




Mohamed K.A. Refaie / Journal of Mathematics and Statistics 2019, 15 (1): 1.11
DOI: 10.3844/jmssp.2019.1.11

Data Set IT

The second real data set represents the data on service
times of 63 aircraft windshield given in Murthy et al.
(2004). The data are: 0.046, 1.436, 2.4640, 4.8810,
1.262, 2.5430,2.592, 0.140, 1.492, 2.600, 0.150,
0.2800, 2.878, 0.487, 1.9630, 2.950, 0.6220, 1.978,
3.0030, 0.389, 1.9200, 3.622, 1.0850, 2.163, 0.9000,
2.053, 3.1020, 1.580, 2.670, 0.248, 1.7190, 2.717,
0.952, 2.065, 3.3040, 0.9960, 2.117, 3.483, 1.003,
2.1370, 3.500, 1.0100, 2.141, 1.794, 2.819, 0.3130,
1.915, 2.820, 3.665, 1.0920, 2.183, 3.695, 1.1520,
2.2400, 4.015, 1.183, 2.3410, 4.628, 1.2440, 2.435,
4.806, 1.2490, 5.140. The TTT plot for data set II is
presented in Fig. 4. From Fig. 4 we note that the
empirical HRF of data sets is also increasing.

0.1

0.8

0.6 -

T(i/n)

0.4 -

0.2

004

0.0 02 0.4 0.6 0.8 1.0
i/n

Fig. 3: TTT plots for data set I
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Fig. 4: TTT plots for data set II

These data sets were recently studied by Tahir et al.
(2015). The unit for measurement is 1000 h for both
data sets. In order to compare the distributions, the
estimated  log-likelihood  values 7,  Akaike
Information Criteria (AIC), Cramer von Mises (W)
and Anderson-Darling (4") goodness of fit statistics
were calculated for all models. The statistics #" and
A" are described in detail in Chen and Balakrishnan
(1995). The W" and A" statistics are given by:

* l n
w =(1+1/2n)[m+zlzlmj},

and:
A= (n +n'Y" e, )
where:
o, =[z -(2j-1)/(2n)] .
=149/ (4n*) [+[3/ (4n)].
and:

¢, = (2j—1)10g[zl (1‘ Zn-m):l’

where, z; = F(y;) and the y,’s values are the ordered
observations. The smaller these statistics are, the
better the fit is. In general, it can be chosen as the best
model which has the smaller values of the AIC, W'
and A statistics and the larger values of 7. The
required computations are obtained by using the
"maxLik" and "goftest" sub-routines in R-software.
The analysis results of both these applications are
listed in Table 3-6. These results show that the new
distribution has the lowest AIC, W and 4" values and,
has the biggest estimated - among all the fitted
models. Hence, it could be chosen as the best model
under these criteria.

From Table 5 and 6, the proposed OLiEL, lifetime
model is much better than GalL,, BL,, EL, and L,
models so the new model is a good alternative to these
models in modeling aircraft windshield data.

Figure 5 gives the fitted PDF plot for the two data
sets. Figure 6 gives the P-P plot for the two data sets.
Figure 7 gives the fitted HRF plot for the two data sets.
From Fig. 5-7 we note that the proposed model give
adequate fit to the used data sets.
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The values in all tables are calculated using the R than other competitive extended L, distributions. The
program. We prove empirically that the new distribution OLiEL, distribution can be a good alternative for
provides better fits in two applications to real data sets modeling failure times.
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Fig. 5: The fitted PDF plot for data set I (left panel), the fitted PDF and CDF plot for data set II (right panel)
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Fig. 6: The P-P plot for data set I (left panel), the P-P plot for data set II (right panel)
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Fig. 7: The fitted HRF plot for data set I (left panel), the fitted PDF and HRF plot for data set II (right panel)
Table 3: MLEs, standard erros (in parentheses) for data set [
Model a B 0 y)
OLIEL, 0.1593 0.7655 0.7322
(0.3712) (0.04057) (1.7779)
BL, 3.6036 118.8374 33.638 4.8307
(0.6187) (63.714) (9.238) (429.00)
EL, 3.6261 26257.6808 20074.51
(0.6236) (99.742) (2041.83)
GL, 3.5876 37029 52001
(0.5133) (81.1644) (7955)
L, 131789 51425
(296.1200) (5933.49)
Table 4: MLEs, standard erros (in parentheses) for data set 11
Model a B 6 i
OLIEL, 0.5987 0.6467 1.624
(0.39) (0.05) (0.96)
BL, 1.9218 169.5800 31.2595 4.9685
(0.3185) (339.21) (316.8) (50.53)
EL, 1.9145 32881.9 22971.2
(0.3483) (162.22) (3209.5)
GL, 1.9073 39197.6 35842.4
(0.3214) (151.653) (6945)
L, 207019 99269
(301.237) (11863.5)
Table 5: —7 and goodness-of-fits statistics for data set I
Model -1 AIC W A
OLiEL, 126.923 259.846 0.0907 0.0875
BL, 138.718 285.4354 1.4084 0.1680
EL, 141.3997 288.7994 1.7435 0.2194
GL, 138.404 282.809 1.3667 0.1619
L, 164.990 333.9767 1.3976 0.1665
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Table 6: —¢ and goodness-of-fits statistics for data set II.

* *

Model 1 AIC /4 A

OLIEL, 98.10294 202.2059 0.4989 0.0488
BL, 102.9611 213.9223 1.1336 0.1872
EL, 103.5468 213.9223 1.2331 0.2037
GL, 102.8333 211.6664 1.1121 0.2038
L, 109.2988 222.5976 1.1265 0.1861
Conclusion Gupta, R.C., P.L. Gupta and R.D. Gupta, 1998.

In this article, we introduce and study a new
alternative Lomax model. The maximum likelihood
estimation method is used to estimate the unknown
model parameters. We show empirically the importance
and wide flexibility of the new model in modeling two
types of failure times data sets. This model is much
better than gamma Lomax, exponentiated Lomax, beta
Lomax and Lomax models so the new model is a good
alternative to these models. We hope that the new model
will attract wider applications in engineering, reliability
and other areas of research.
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