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Abstract: Monte-Carlo simulations have been utilized greatly in the pricing 

of derivative securities. Over the years, several variance reduction techniques 

have been developed to curb the instability, as well as, increase the 

simulation efficiencies of the Monte-Carlo methods. Our approach in this 

research work will consider the use of antithetic variate techniques to 

estimate the fair prices of barrier options. Next, we use the quasi-Monte 

Carlo method, together with Sobol sequence to estimate the values of the 

same option. An extended version of the Black-Scholes model will serve as 

basis for the exact prices of these exotic options. The resulting simulated 

prices will be compared to the exact prices. The research concludes by 

showing some results which proves that when random numbers are generated 

via low discrepancy sequences in contrast to the normal pseudo-random 

numbers, a more efficient simulation method is ensued. This is further 

applicable in pricing complex derivatives without closed formsolutions.  
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Introduction 

The path-dependent nature of barrier options 

classified them as exotic options and this becomes 

difficult during delta-hedging. However, notwithstanding 

their complicated nature of pricing, investors and 

corporate firms had used barrier options in portfolio 

insurance framework and bond trading, thereby 

improving efficiency and eliminating possible 

transaction costs (Rich, 1994, p. 295). With regards to 

bond trading, Cox and Rubinstein (1985, p. 408-411) 

explained that bonds which are fixed with short Down-

and-Out (DO) barrier call options can be used to 

minimize the costs related to writing and imposing 

expensive bond agreements. Barrier options, as exotic 

options are traded both on the standardized exchange 

and in the over-the-counter market. As important 

financial instruments, Luenberger and Luenberger 

(1999) explained that barrier options trading account 

for “50% of the volume of all exotic options and 10% 

volume of all traded securities". Barrier options are 

options whose payoffs depend on the barrier levels that 

the underlying prices attain to during the life of the 

contract. These options can be classified into up(down) 

options if the barrier level is positioned above(below) 

the underlying price respectively. Research works have 

been done in the class of barrier options, but relatively 

no such work has been carried out on the comparative 

study focusing on the use of antithetic and quasi 

Monte-Carlo simulation method to price zero-rebate 

barrier call option with European knock-out features. 

Hence, this research seeks to address the gap. 

One of the earliest research on barrier option pricing 

can be found in Snyder (1969). He described the DO 

options as limited risk special options, in which the 

holder agrees (with a favorable price in return) to limit 

the risk experienced by the writer by making the option 

void supposing “the price of the stock declines during 

the life of the contract to a specific point below the 

striking price called the expiration price". Furthermore, 

Merton (1973) priced the DO barrier options using the 

Partial Differential Equations (PDE) approach. Pricing 

discrete barrier options are also found in works of 

literature (Kou, 2003; Broadie et al., 1997). Zvan et al. 

(2000) presented an implicit method for solving PDE 

models in relation to barrier options. An explicit formula 
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for obtaining the knock-out discount for barrier options 

can be obtained in Musiela and Rutkowski (2006). On 

the conditional Monte-Carlo simulations, Brandimarte 

(2013) analyzed the problem and applied it to DO put 

options. Different variance reduction techniques applied 

in the Monte-Carlo methods on option pricing were 

reviewed by Bolia and Juneja (2005). They employed 

different recent Monte-Carlo techniques like the 

regression-based, random tree and the stochastic mesh 

methods specifically on Bermudan and American 

options. Rich (1994) presented a mathematical 

foundation, mostly the key density function approach 

which is in connection to the solution of the Fokker-

Plank PDE, to value the barrier options. He derived 

closed form solutions of the European barrier options 

possessing a rebate and a fixed barrier level. A rebate is 

positive discount paid to the option holder incase of an a 

knock-out or knock-in and its presence increases the 

value of the barrier option, even though it has no effect 

on its payoff. Furthermore, Alzubaidi (2016) employed 

the concept of antithetic variate, together with the 

Brownian bridge to improve the efficiency of the Monte-

Carlo methods in the valuation of rebate barrier options. 

Practical Applicability of the Monte-Carlo Methods 

The MCS methods are techniques for obtaining 
numerical solutions to certain problems using some 

computational algorithm that focuses on series of iterative 
random sampling. Kroese et al. (2014) explained that 
Monte-Carlo methods are applied mainly in three well-
defined problem classes, which are sampling, estimation 
and optimization. Consider the evolution of stock prices in 
the financial market, for example, they follow a 

randomized system. Thus, the Monte-Carlo methods are 
introduced artificially to solve deterministic functions by 
which corresponding samples are drawn from a given 
probability distribution. Depending on the complexity of 
the dynamical system models, large number of samples 
are required in the simulation using the Monte-Carlo 

methods. These samples duly depend on large 
computation time. The concept of variance reduction 
method results in greater efficiency, with respect to the 
convergence process, as well as to an acceleration of the 
simulation techniques (Roboam, 2012). Variance 
reduction techniques include but not limited to antithetic 

variates, correlated sampling, importance sampling, 
control variates and stratified sampling. 

Application of Antithetic Monte-Carlo Simulation 
(AMCS) methods can be seen in the fields of science, 
finance and engineering. Carmona et al. (2012) 
explained that Monte-Carlo methods are applicable to 

credit risk analysis, dynamic parameter derivatives and 
option pricing in the field of finance. It is also used in 
the estimation of fixed income instruments and interest 
rate derivatives which are defined in diverse term 
structure models. These are mostly used in situations 

where the closed form solutions of these securities are 
non-existent. Risk and uncertainties of certain projects 
can be managed by the aid of the Monte-Carlo methods 
and this had greatly improved its use in risk 

management. Glasserman (2004) asserted that the 
AMCS had played a significant role in the measurement 
of risks that are associated with a given portfolio of 
assets, as well as in the measurement of profit and loss 
distribution of a portfolio. 

Certain complex problems in finance, statistics, 

technology, economics and probability theorems which 

cannot be resolved by the normal mathematical methods 

can be resolved using the quasi Monte Carlo simulation 

methods (QMCS). The QMCS combines methodologies 

and results from algebra, combinatorics and number 

theory to quantitatively generate number points which 

can be used for simulation purposes. Furthermore, the 

multidimensional numerical integration which are 

evident in financial problems are handled properly when 

the QMCS method is used. Fang (2002) discussed some 

of the applications of the QMCS methods to statistics 

and they were linked to the resolution of problems in 

statistical inference, geometric probability, experimental 

designs, as well as, Bayelsian statistics. Caisch (1998) 

analyzed the applications of QMCS to the field of 

scientific computing and it was observed that the rate of 

convergence for the QMCS is asymptotically faster than 

the normal MCS. Au Yeung (2010) focused on Asian 

option pricing using the quasi Monte-Carlo methods, in 

connection with MATLAB. 

The significance of this research is to conduct a 

comparative study on zero rebate knock-out barrier 

option pricing using the MCS, AMCS and QMCS 

methods. We further seek generalize which Monte-Carlo 

methods show higher efficiency in valuing the path-

dependent barrier options so as to avoid underpricing. 

This research, however, will focus on how financial risk 

can be hedged using exotic option pricing and these 

prices will be obtained using the techniques of the 

MCS, AMCS and QMCS methods. It will further explain 

how the method can be incorporated in evaluating 

financial derivatives, like the path-dependent barrier 

options. The organization of this research is as follows: 

Section 1 introduced the study, with brief literature 

studies on barrier option valuation using numerical 

approximations. It further discussed the practical 

applicability of the Monte-Carlo methods. Section 2 

considers the theoretical valuation for both the DO and 

the up-and-out (UO) non-dividend barrier call options. 

The closed form solutions of these existing formulas are 

properly referenced. Section 3 discusses the numerical 

approaches to the knock-out barrier option valuation, 

which in this context refers to the ordinary MCS, AMCS 

and QMCS methods. Section 4 provides the numerical 

results and the corresponding comparative statics, 

whereas Section 5 concludes the study. 
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Valuation of Zero-Rebate Knock-Out 

Barrier Options 

Generally, a barrier option with a knock-out feature 

refers to an option which ceases to exist once the barrier 

level is being hit by the price of an underlying asset. Thus, 

the option holder receives a rebate (positive discount) 

immediately or at maturity if the barrier is triggered within 

the contract's life, but receives the value of European 

option if the underlying never touches the barrier. 

Definition 2.1. (Zero-Rebate Knock-Out Barrier 

Options) (Zhang, 1998) 

A zero-rebate knock-out barrier option pays nothing 

if the barrier is reached but pays the value of the 

European option if otherwise. It is also referred to as an 

option whose payoff at time T is defined by: 

 

( )( )( )1 .
T

f S T
τ <

− I  

 

Here, τ which is a function of the underlying S and 

the barrier level B, denotes the stopping time for the 

barrier; f is the payoff function, depending on the type 

of option and finally, 
λ
I  is an indicator function which 

pays 1 when the event λ (breaching of the barrier) 

occurs or 0 otherwise. 

Terminal and Boundary Conditions for Zero-

Rebate Knock-Out Barrier Options 

Let f(T, S) be the payoff function of the DO barrier 

call option and V (t, S) be the value of the non-dividend 

DO barrier call option, then the option value V (t, S) 

satisfies the Black-Scholes PDE given below: 

 

( ) ( )

( )
( )

22 2

2

, ,

,
, 0,

2

V t S V t S
rS

t S

V t SS
rV t S

S

σ

∂ ∂
+

∂ ∂

∂
+ − =

∂

 (2.1) 

 

with the terminal and boundary conditions given as: 

 

( ) ( ) ( ){ }, , max ,0V T S f T S S T K= = −  (2.2) 

 

( ), 0V t B =  (2.3) 

 

( ) ( )
, .

r T t
V t S Ke

− −

∞ −∼  (2.4) 

 

Here T refers to the maturity time; t, the current time; 

r, the risk-free interest rate; σ, the volatility rate; S, the 

current price of the underlying asset; S(T), the price of 

the underlying asset at expiry; K, the strike price and B, 

the barrier level. Equation 2.2 gives the payoff or the 

terminal value of the option, the condition in Equation 

2.3 occurs when the minimum value of the underlying 

asset price coincides with the barrier level and Equation 

2.4 is when the underlying price attains its maximum. 

The UO call option knocks-out once the maximum 

value of the underlying asset price coincides with the 

barrier level within the contract's lifespan. Let V
*
(t, S) 

denote its value at time t. Then, the option can be priced 

using the same PDE above but the terminal and 

boundary conditions become: 
 

( ) ( ){ }*
, max ,0V T S S T K= −  (2.5) 

 

( )*
, 0V t B =  (2.6) 

 

( )*
,0 0.V t ∼  (2.7) 

 
The PDE in Equation 2.1 can be solved using the 

hedging analysis of Black and Scholes. The equation is 

converted to heat equation, whereby the valuations of 

vanilla options can be related to the flow of heat in an 

infinite bar and this is solved by the method of images 

with respect to the standard European options (Buchen, 

2012; Wilmott et al., 1995). 

Valuation of Zero-Rebate Down-and-Out Call Option 

The domain considered when valuating the DO call 

options is given by: 
 

( ) [ ]{ }, : , 0, .D t S B S t T= < < ∞ ∈  

 

Corollary 2.2. (Buchen, 2012) 

Let v(t, S) be the value of a European call option, 

then the image of the function v(t, S) with respect to 

assumed barrier level S = B and the Black-Scholes 

differential operator is given by: 
 

( )
2

*
, ,

B B
v t S v t

S S

α

  
=   
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where, 
2

2
1

r

α

σ

= − . 

Theorem 2.3. (Buchen, 2012) 

Let v(t, S) be the solution of the terminal value 

problem de-scribed as: 
 

( )

( ) ( ) { }

, 0

, , ,
S B

v t S

v T S f T S
>

=

= I

L�

 

 

in the domain {S > 0, t < T}, where ( ),v t SL�  is the Black-

Scholes differential operator found in Equation 2.1. f(T, S) 
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is the payoff function at Equation 2.2 and 
{ }S B>
I is an 

indicator function which outputs 1 when S>B and 0, 

otherwise. Then, the DO call value: 
 

( ) ( ) ( )*
, , ,V t S v t S v t S= −  

 
solves the terminal boundary value problem for the DO 
barrier option in the domain {S > B, t < T}. 

According to Hull (2006), the extended Black-

Scholes equation which gives the exact or the theoretical 

value for DO at time t = 0 when B>K is given by (For 

the put option values, see Hull (2006)): 
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where: 
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For B ≤ K, the price becomes: 
 

( ) ( ) ( ) ( )

( )
( )

( )

( )
( )

1 2

2

2 2

, 0

0
0

,
0

rT

rT

V t S S N d Ke N d

B
S N y

S

B
Ke N y T

S

λ

λ

σ

−

−

−

= −

 
−   

 

 
+ −  

 

 (2.9) 

 
Where: 
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Valuation of Zero-Rebate UO Call Option 

The domain under consideration for this class of 

knock-out options is: 

( ) [ ]{ }, : 0 , 0, .D t S S B t T= ≤ < ∈  

 

According to Hull (2006), the extended Black-

Scholes equation which gives the exact value for UO at 

time t = 0 when B>K is given by (For the put option 

values, see Hull (2006)): 
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 (2.10) 

 

Lastly, when B≤K, we have that: 

 

( )*
, 0.V t S =  (2.11) 

 

Equation 2.11 follows from the fact that the strike 

price is normally positioned below the barrier. But 

supposing that it is fixed above the barrier level, the 

option becomes worthless by the time it hits the barrier. 

Thus, the chances of the option expiring in the money 

become negligible. 

We note that in Equations 2.9 and 2.10, the first two 

terms denote the Black-Scholes formula for the 

European call options. Likewise the first two terms in 

Equation 2.8, but with B = K. Furthermore, the 

remaining terms denote that extra condition with regards 

to the barrier feature, that is, the risk of the option being 

knocked-out with the sudden loss of the premium. 

Numerical Approximations 

This section gives an overview of the simulation 

techniques employed by the standard MCS, AMCS and 

the QMCS methods to barrier option pricing. 

Antithetic Monte-Carlo Simulation 

Generally, the MCS is a statistical estimation method 

which is based on the generation of random numbers. 

Boyle et al. (1997) first used the MCS to price the 

European options under the Black-Scholes assumptions 

(Black and Scholes, 1973). The MCS of option pricing 

under the Black-Scholes framework involves the 

generation of N sample independent asset price 

movements and then the estimation of their payoffs. 

These payoffs are averaged and then discounted at a risk-

free interest rate. One of the major setbacks of using the 

MCS is seen in its slow rate of convergence at which the 
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estimated values tend to the true solution. This can be 

explained by the large variances obtained after the 

simulation. It is equally observed that the confidence 

interval obtained using the MCS is greatly influenced by 

the ratio of the standard deviation to the square root of 

the number of simulations. To further reduce the width 

of the interval, the deviation or the variance has to be 

reduced which in turn gives a better estimate. 

The AMCS was introduced in this study to improve 

the flaws of the MCS. According to Glasserman (2004), 

the AMCS focuses on the symmetric properties of 

normal distribution to reduce the variance of the results 

been simulated and this is achieved by introducing 

negatively correlated random variables. Using a set of 

random numbers which consists of a positive and a 

negative number, say x1 and x2 respectively, the option 

value can be estimated. Let X be a random variable 

whose estimate is unknown. Also, let x1 and x2 be two 

negatively correlated variables with the same mean µ 

and variance σ
2
. Define: 

 

( )1 2

1
,

2
X x x= +  

 

then the mean and the variance are given respectively as: 
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Thus, we have that: 

 

[ ]
( )

2
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2
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2
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X

if x x

σ

σ


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
  < < 

 

 

It is essential that if the cov[x1, x2] < 0 or cov[x1, x2] = 0, 

then the variance is reduced. For the outputs of the 

antithetic variates to be negatively correlated, it is essential 

that the inputs are negatively correlated. The mapping 

between them should be monotone. Non-monotonic 

functions result in a non-negative correlation and this could 

increase the variance, instead of reducing as expected. 

Definition 3.1. (Monotone Functions) 

Let A be a subset of R  and define a function g: A → 

R and x, y ∈ A. Then g is monotonic if x < y implies 

g(x) ≤ g(y) or if x < y implies g(x) ≥ g(y). The following 

corollaries help in the generation of negatively 

correlated random variables which are uniformly and 

normally distributed. 

Corollary 3.2. (Chan and Wong, 2015) 

If g(X1,X2, ⋅⋅⋅, Xn) is a monotone function of each of 

its argument. Then the following holds for a set η1,⋅⋅⋅, ηm 

of independent and identically distributed uniformly 

random numbers on (0, 1): 

 

( ) ( )1 1 2
cov , , , 1 ,1 , ,1 0.

m m
g gη η η η η ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ − ≤   

 

Let η1,⋅⋅⋅, ηm and β1 = 1-η1,⋅⋅⋅,βm = 1-ηm be uniformly 

random numbers with the properties that the pair (η1, β1) 

are negatively correlated. Define a function g to be 

monotone. If X1 = g(η1,⋅⋅⋅,ηm), then X2 = g(β1,⋅⋅⋅, βm) 

must be defined in the same distribution as X1. Thus, 

from Corollary 3.2, we have that cov(X1, X2) ≤ 0. Hence, 

X1 and X2 are negatively correlated. 

Corollary 3.3. (Chan and Wong, 2015) 

If g(X1, X2,⋅⋅⋅, Xn) is a monotone function of each of 

its argument. Then the following holds for a set η1,⋅⋅⋅, ηm 

of independent and identically distributed normal 

random numbers on (0, 1): 

 

( ) ( )1 1 2
cov , , , , , , 0.

m m
g gη η η η η ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ − ≤   

 

Let Xi ∼N(µ, σ
2
) and Yi = 2µ-Xi. Then from the 

linearity condition of the normal random variable, we 

see that Yi ∼ N(µ, σ
2
). Thus, Xi and Yi are negatively 

correlated. This follows from the definition of 

covariance: 

 

( ) ( )

( )

cov 2 2

2

2 2

0.

i i i i

i i

i i i

X X X X

X X

X X X

µ µ
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Knock-Out Barrier Option Pricing using the MCS 

Methods 

Consider the asset price dynamics described by the 

stochastic differential equation below: 

 

( ) ( ) ( )( ),dS t S t rdt dB tσ= +  (3.1) 

 

where, B(t) is the Brownian motion defined in the risk-

neutral probability measure and r the risk-free interest 

rate. Using Ito's lemma to solve the above 3.1, we have: 
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( ) ( ) ( )
2

0 exp .
2

S t S r t B t
σ

σ

  
= − +   

  
 (3.2) 

 

From Equation 3.2, we have that B(t) ∼ 

( )t B t t⇒ ∆ ∆∼ε ε  and � follows a standard normal 

distribution with the parameters � ∼ N(0, 1). Next, we 

consider the discredited underlying asset price process 

defined by: 

 

( ) ( ) ( )
2

exp .
2

S t t S t r t t
σ

σ
+

  
+ ∆ = − ∆ + ∆   

  
ε  (3.3) 

 

The payoffs are introduced next which would be 

discounted at a risk-free interest rate and this depends 

on the type of knock-out call options being 

considered. For the zero rebate DO barrier call 

options, the discounted payoff is: 

 

( ) ( ){ }max ,0 .
r t

v t t e S t t K
+ − ∆ +

+ ∆ = + ∆ −  (3.4) 

 

Equation 3.4 above occurs when the barrier is not 

triggered (that is, when max{S
+
(t +∆t)}>B) but pays zero 

when it knocks out (that is, when max{S
+
(t +∆t)} ≤ B). 

Finally, the option value is constructed by dividing the 

sum of the discounted payoff by the number of 

simulations. Thus, the value of the Monte-Carlo 

simulated DO call option is given by: 

 

( )
1

1
.

M

M

i

V v t t
M

+

=

= + ∆∑  

 

NB: Denote the Monte-Carlo simulated UO call value to be 
*

M
V , which follows the same process as discussed above. 

The only difference is that equation (3.4) occurs when 

max{S
+
(t +∆t)}< B and zero when max{S

+
(t +∆t)}≥ B. 

Knock-Out Barrier Option Pricing using the AMCS 

Methods 

For the AMCS concept of option pricing, another 

set of asset price process is equally simulated so that 

the two processes would be negatively correlated. An 

average would be taken and this serves as the final 

simulated asset price. A more accurate result is 

obtained from the use of these antithetic pairs since the 

true option value is bounded by the positive and the 

negative pairs. Also, the generation of the pairs is 

computationally cheaper. Thus, consider two 

discretized underlying asset processes defined by: 

 

( ) ( ) ( )
2

exp
2

S t t S t r t t
σ

σ
+

  
+ ∆ = − ∆ + ∆   

  
ε  (3.5) 

And: 

 

( ) ( ) ( )
2

exp .
2

S t t S t r t t
σ

σ
−

  
+ ∆ − − ∆ − ∆   

  
ε  (3.6) 

 

Next, using the risk-neutrality condition of asset 

pricing, these payoffs are discounted and this depends on 

the type of options being considered. For the zero rebate 

DO barrier call options, the discounted payoffs are: 

 

( ) ( ){ }max ,0
r t

v t t e S t t K
+ − ∆ ++ ∆ = + ∆ −  (3.7) 

 

And: 

 

( ) ( ){ }max ,0 .
r t

v t t e S t t K
− − ∆ −

+ ∆ = + ∆ −  (3.8) 

 

Equations 3.7 and 3.8 above occur when the barrier is 

not triggered (that is, when max{S
+
(t+ ∆t)} > B) but the 

option pays zero when it knocks out (that is, when 

max{S
+
(t + ∆t)} ≤ B). The UO call option on the other 

hand pays the above when max{S
+
(t + ∆t)} < B and zero 

when max{S
+
(t + ∆t)} ≥ B. Denote its value by *

A
V . 

Finally, the mean estimator which is the required option 

value is constructed by taking the average of the 

discounted payoffs. Thus, the value of the AMCS DO call 

option is given by: 

 

( ) ( )( )
1

1 1
.

2

M

A

i

V v t t v t t
M

+ −

=

= + ∆ + + ∆∑  

 

Quasi Monte-Carlo Simulation 

Suppose we aim at calculating: 

 

( ) ( )
[ ]1
0,1

, , ,
dd

f u u f m dm =
  ∫⋯E  

 

where, s

i
u are sequences of independent uniformly 

distributed random variables. The QMCS entails using 

the approximation: 

 

( ) ( )
[ ]0,1

1

1
,

d

n

i

i

f m dm f x
n =

≈ ∑∫  

 

with the points s

i
x′  obtained deterministically in the d-

dimensional closed unit hypercube [0, 1]
d
. The QMCS 

are based on the generation of low-discrepancy 

sequences such as Halton sequence, Faure sequence, 

Sobol sequence and this is in contrast to the 

pseudorandom numbers generated by the MCS. The 

error bound for QMCS is of the form O(N
−1
(logN)

d−1
) 

and it is in contrast to the standard MCS which is of the 
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form 
1

2O N

− 
 
 

. The nodes N are chosen to ensure that 

there exists low degree of regularity in the evaluation of 

the integral and the nodes are obtained from either of the 

sequences listed above (McLeish, 2000). Thus according 

to Glasserman (2004), the error bound satisfies the 

Koksma-Hlawka inequality which is written as: 
 

( ) ( )
[ ]

( ) ( )
0,1

1

1
, ,

d

n

i n

i

f m dm f x v f D A p
n

ε

=

= − ≤∑∫  

 
where, v(f) is the Hardy-Krause variation of function of f 

and Dn(A, p) is defined below. 

Definition 3.4 

Let A be non-empty Lebesgue measurable subsets of 

[0, 1]
d
. The discrepancy of the point sets p = {x1,⋅⋅⋅, xn} 

relative to A is defined as: 
 

( )
{ }

( )
#

, sup ,
i

n d

x A
D A p A

n
λ

 ∈ 
= − 

  

 

 

where, #{xi ∈ A} is the number of points in A and λd(A) 

is the Lebesgue measure of A. Extreme discrepancy and 

star discrepancy are obtained if A takes the form: 
 

) )
1 1

, 0, , 0 1.
d d

i i i i i

i i

a b and a respectively for a b
= =

  ≤ < ≤ ∏ ∏  

 
Discrepancy measures the uniformity deviation of 

specific sequence of points in [0, 1]
d
 and deterministic 

sequences tend to fill up the given space uniformly. The 

choice of low discrepancy sequences helps in speeding up 

the rate of convergence from ( )1O n  to O(1/n) and thus, 

the analysis of the discrepancy can help in measuring the 

error of the approximation method (See Niederreiter 

(1992) for further detailed description on analysis of low 

discrepancy sequences.). Further analysis of the error 

bound shows that small errors arise if s

i
x′  with small star 

or extreme discrepancies are used and this gives the low 

discrepancy sequences. For the purpose of this research, 

we consider the Sobol sequence. The Sobol sequence 

forms discrete uniform patterns in a specific hypercube 

using base two form. The construction of Sobol sequence 

can be found in (Jäckel, 2002) and in the generation of our 

results, we used the computer program (Ace option 

pricier (Beta) (http://www.acenumerics.com/option-

pricer.html)). For the set of initial direction, this program 

used the methodology found in (Joe and Kuo, 2008) 

(Also see http://web.maths.unsw.edu.au/~fkuo/sobol/). 

The knock-out barrier option pricing using the 

QMCS method follows the same procedure as the 

standard MCS. The only difference being that the QMCS 

uses deterministic sequences in the interval [0,1] instead 

of the pseudo-random numbers resulting to the presence 

confidence intervals. Furthermore, either the Box-Muller 

method or the inverse transform method can be used to 

transform the low discrepancy sequences to normally 

distributed sequences. Thus, these sequences replace the 

normal pseudo-random numbers � as found in Equation 

3.3 so as to ensure faster rate of convergence using error 

bounds which are already known. 

Computational Results and Analysis 

This section considers some of the findings obtained 

during the implementation of the above methodologies. 

For the knock-out barrier options, we consider the non-

dividend DO and UO call options with a zero-rebate when 

the option is knocked out. First, we review the results 

presented in Wang and Wang (2011) where they 

considered different Monte-Carlo methods in the 

valuation of barrier options. The parameters K = 50, r = 

0.1, σ = 0.2, T = 1 were used to value the DO put options. 

We compare their results on AMCS and the normal MCS 

using M = 10000, with our QMCS value using 2
13
 = 8192 

paths. The following table is obtained. 

Table 1 compares the MCS, AMCS and the QMCS in 
the valuation of the DO put option with zero dividend. We 
chose the paths for the QMCS which are relatively lower 
than the number of simulations of other Monte-Carlo 
methods and yet, we observe that the QMCS performed 
outstandingly better in comparison with others, followed 
by the AMCS. The efficiency of the AMCS can be seen in 
the reduction of the variances of the MCS and this actually 
improved the results of the simulation. The standard errors 
are depicted in the brackets and we observed that the 
standard error for the MCS are much higher when 
compared to the AMCS and the QMCS. Infact, we 
observed that the QMCS need quite a few number of steps 
(as small as 2

10
 = 1024 steps) for convergence to ensue. 

For the computation time, the MCS took an average of 
0.016 sec for a simulation number of 10000, to output its 
results. The AMCS took an average of 0.031 sec, which is 
about twice that of the MCS. This was because the AMCS 
had to reduce the variances first before the actual result 
was obtained. Finally, the QMCS used an average of 
0.015 sec in conjunction with 2

10
 = 1024 steps, to output 

its results. Thus, the QMCS most a times offer higher 
accuracy with lesser computation time and this 
outperforms the results of the MCS. 

Results on Zero-Rebate DO Barrier call Options 

with at-the-Money (ATM) Features 

We consider the values obtained using MCS, AMCS 

and QMCS for the above-named option which pays no 

dividend. Here, we consider the parameters: S = K = 150, 

B = 125, r = 0.05, σ = 0.25, T = 0.5. The extended 

Black-Scholes formula in Equation 2.9 is used to obtain 
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the exact price and the value is 12.1861. Figure 1 and 2 display the results obtained. 
 
Table 1: Simulated values for DO barrier put option 

S  B Accurate  MCS AMCS QMCS 

50 40 0.6264  0.7101 (0.0171) 0.6953 (0.0119) 0.6264 (0.0000) 

55 40 0.4192  0.4607 (0.0140)  0.4527 (0.0099) 0.4192 (0.0000) 

45 40 0.6054  0.7306 (0.0174)  0.7266 (0.0123) 0.6054 (0.0000) 

50 45 0.0629  0.0899 (0.0046) 0.0858 (0.0032) 0.0629 (0.0000) 

50 35  1.4404  1.5063 (0.0288) 1.4966 (0.0203)  1.4404 (0.0000) 

50 30 1.8136  1.8689 (0.0343)  1.7969 (0.0237)  1.8136 (0.0000) 

 

 
 

Fig. 1: Option values 
 

 
 

Fig. 2: Relative errors 
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Figure 1 shows convergence of the values of barrier 
option prices when the asset price process is being 
simulated using various Monte-Carlo forms. The exact 
value remains unchanged, as it is unaffected by the 
number of simulations. The QMCS performed extremely 
well, as convergence is achieved faster and this was in 
connection to the use of Sobol sequences. This is 
followed by the performance of the AMCS, which 
reduced the variance of the ordinary MCS to achieve its 
accuracy. Figure 2 represent the plot of the relative error 
in percentage between the simulated values and the exact 
Black-Scholes price. It is calculated by: 
 

| |
100% ,

SIV EBS
Rerror

EBS

−

=  (4.1) 

 
where, EBS denotes the value of the exact Black-Scholes 
prices values and SIV is the Monte-Carlo simulated 
values (which could be the MCS, AMCS, or the QMCS 
values). We observed that the QMCS is more efficient 
since more consistency is achieved in the deviation of 
the simulated prices from the exact price. 

Results on the UO Call Options using MCS and 

AMCS Methods 

Consider the non-dividend UO call option with 
parameters: S = 50, K = 60, B = 80, r = 0.05, σ = 0.45, T 
= 0.5. The exact value of the option using the extended 
Black-Scholes pricing formula is 0.8657. We used 
different time points N = 100, N = 1000 and N = 10000. 
The number of simulations was also considered when M 
= 10

1
, 10

2
,⋅⋅⋅, 10

5
 for each of the time points. The outputs 

generated are depicted graphically in the Fig. 3 and 4. 

Figure 3 and 4 denote the MCS values and the AMCS 

values respectively, for different discretisation time 

points N. The points in the graph are the centre of our 

discussion, as they denote the option values at each of the 

specified simulation number. The points are interpolated 

using spline curve fittings. The straight line which is 

unaffected by the simulation numbers denotes the option 

value (0.8657). In each of the figures above, we compare 

the estimated values obtained when the time points are N 

= 100, 1000 and 10000. We observed that increase in the 

number of simulations and increase in the time points 

would result to a high rate of convergence of the estimated 

values to the exact value, for both the MCS and the 

AMCS values. But the rate of convergence of the AMCS 

is faster when compared to the MCS since at M = 10
5
 and 

N = 10000, the AMCS converged to the true solution. 

Figures 5 and 6 denote respectively the plot of the 

relative errors with respect to an incremental change in 

the number of simulations, for both the MCS and the 

AMCS values. The relative errors from both simulations 

are reducing with an increase in the number of 

simulations and time points. The relative errors obtained 

using the AMCS are generally lesser when compared to 

that of MCS. The exact Black-Scholes price for the zero-

rebate barrier options is obtained based on continuous 

monitoring time. Our approach entails solving the 

pricing formula using the discrete time framework. This 

price can be achieved when the time steps (∆T) are 

reduced drastically and this follows from the increment 

in the number of the discretisation time points N. Hence, 

the discreet points max0≤j≤NS(j)<B tends towards the 

continuous points max0≤t≤T S(t) < B. 

 
Table 2: Monte-Carlo simulated values for the knock-out call options 

 Option values 

 --------------------------------------------------------------------------------------------------------------------------------------------- 

 DO values     UO values 

 ---------------------------------------------------------------------- ---------------------------------------------------------------- 

Asset (S) Exact MCS AMCS QMCS Exact MCS  AMCS  QMCS 

10  0.0082 0.0080 0.0081 0.0082  0.0082 0.0080  0.0081  0.0082 

  (2.439)  (1.220) (0.000)  (2.439) (1.220) (0.000) 

13  0.3064 0.3070 0.3065 0.3064 0.3064 0.3070 0.3065 0.3064 

   (0.196) (0.033) (0.000)  (0.196) (0.033) (0.000) 

16  1.7403 1.7419  1.7408 1.7403 1.7398 1.7413  1.7403  1.7398 

  (0.092) (0.029)  (0.000)  (0.086) (0.029)  (0.000) 

19  4.2567 4.2582 4.2569 4.2567 4.2325 4.2349 4.2331 4.2525 

   (0.035) (0.005) (0.000)  (0.057) (0.014) (0.000) 

21  6.1818 6.1837 6.1819 6.1818 6.0303  6.0337 6.0310 6.0303 

  0.031) (0.002) (0.000)  (0.056) (0.012)  (0.000) 

24  9.1588 9.1611 9.1589 9.1588 8.0730 8.0739 8.0723 8.0730 

   (0.025) (0.001) (0.000)  (0.011) (0.009) (0.000) 

27  12.1564  12.1591 12.1565 12.1563 8.1537 8.1478 8.1524 8.1537 

  (0.022) (0.001) (0.001)  (0.071) (0.016) (0.000) 

30  15.1561 15.1591 15.1563 15.1561 5.8175  5.8146 5.8148 5.8175 

  (0.020) (0.001) (0.000)  (0.050)  (0.046) (0.000) 

33  18.1561  18.1594  18.1563 18.1561 2.2253  2.2263 2.2266 2.2253 

  (0.018) (0.001) (0.000)  (0.045) (0.058) (0.000) 
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Fig. 3: MCS values with different N 

 

 
 

Fig. 4: AMCS values with different N 
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Fig. 5: Error values for MCS 

 

 
 

Fig. 6: Error values for AMCS 
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Monte-Carlo Simulation Values on Knock-Out 

Barrier Call Options 

Table 2 shows the comparison of the AMCS, MCS 

and the QMCS on the DO barrier options and the UO 

barrier call options. The parameters used include: K = 

16, r = 0.1, T = 0.75, σ = 0.2, upper barrier for UO = 35 

and lower barrier for DO = 5. The following results 

were obtained: 

From Table 2 above, we observed that the exact 

values for the DO options increased without bound as 

the underlying asset price moved away from the 

barrier level. Thus, the probability of the option being 

knocked-out was slim. Whereas, the UO call resulted 

in a non-linear function, as the option values 

increased and declined at some points. The reduction 

in the option values is often due to the fact that if the 

volatility is sufficiently large, the chances of the 

option being knocked out is increased. Hence, this 

increased probability results in the decline of the 

option value. The value for the UO barrier call option 

is always less than the difference between the barrier 

level and the strike price and hence it has limited 

upside profit potential. The values obtained using the 

MCS, AMCS and QMCS as depicted in the same table 

above show similar characteristics. The table also 

shows the deviation of the simulated values from the 

exact values. For the MCS, AMCS for both UO and 

DO, we consider the number of simulations to be M = 

600000 and 2
19
 = 524288 paths. The result shows that 

the AMCS is really an improved version of the MCS, 

with regards to their deviation from the exact value. 

However, when the low discrepancy method like the 

QMCS with sobol sequences is used to output the same 

option value, a highly improved version and more 

effective result is obtained. The relative errors are further 

showed in the brackets and they are expressed in 

percentage. It follows that the errors for the AMCS is 

quite smaller than that of the MCS and high rate of 

convergence is seen in the results obtained by the QMCS. 

Also, the average computation time for the QMCS to 

simulate 2
19
 = 524288 paths is 0.187 secs. The MCS takes 

an average of 0.172 secs to simulate M = 600000 paths 

and AMCS takes about 0.203 secs (Recall, we used the 

computer program (Ace option pricier (Beta)). Hence, the 

QMCS outperforms the normal MCS and the AMCS. 

Conclusion 

A comparative study had been conducted on the 

valuation of non-dividend knock-out barrier options with 

respect to the Black-Scholes theoretical values. This 

research work had compared the prices of the exact 

Black-Scholes prices of the zero-rebate knock-out barrier 

options to Monte-Carlo simulated values. We have 

discussed results from the MCS, AMCS and the QMCS 

method and we observed that the ordinary MCS 

underpriced the option, as can be seen in the high 

discrepancies of the simulated values in comparison to 

the exact prices. It was also observed that using the 

AMCS resulted in the reduction of variance estimate 

when compared to the independent simulations obtained 

from the standard MCS method. This was made possible 

since the antithetic variables used are negatively 

correlated and thus, increasing one variable led to a 

simultaneous decrease in the other variable. Hence, the 

method gave a better and fairly accurate result when 

compared to the MCS. Furthermore, the rate of 

convergence is accelerated when the simulation nodes 

are chosen deterministically as observed by the use of 

low discrepancy sequences. Thus, the use of QMCS 

together with the Sobol sequences resulted to a more 

efficient method for valuing complex derivative, like the 

barrier options with continuous monitoring period. 

Future work will extend this result to barrier 

options with moving barrier, as well barrier options 

with double barrier. 
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