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Abstract: In this study we introduce a new method of adding two shape 

parameters to any baseline bivariate distribution function (df) to get a 

more flexible family of bivariate df's. Through the additional parameters 

we can fully control the type of the resulting family. This method is 

applied to yield a new two-parameter extension of the bivariate standard 

normal distribution, denoted by BSSN. The statistical properties of the 

BSSN family are studied. Moreover, via a mixture of the BSSN family 

and the standard bivariate logistic df, we get a more capable family, 

denoted by FBSSN. Theoretically, each of the marginals of the FBSSN 

contains all the possible types of df's with respect to the signs of skewness 

and excess kurtosis. In addition, each possesses very wide range of the 

indices of skewness and kurtosis. Finally, we compare the families BSSN 

and FBSSN with some important competitors (i.e., some generalized 

families of bivariate df's) via real data examples. AMS 2010 Subject 

Classification: 62-07; 62E10; 62F99. 

 

Keywords: Bivariate Non-Normal Distribution, Parametric Family, Mixture 

Distributions, Bivariate Data Modeling 

 

Introduction 

Multivariate data is obtained when we observe more 
than one statistical outcome variable at a time. 
Therefore, it consists of two or more observed random 
variables (rv's) that are usually correlated. The most 
appropriate and commonplace multivariate distribution 
that can describe the multivariate data is the multivariate 
normal distribution. Most likely, the popularity of 
normal distribution is due to the ease of simulation and 
the possibility of deriving closed-form theoretical 
results. It is rare, however, that the multivariate normal 
distribution can describe the given multivariate data. 
Virtually, most of the obtainable multivariate data are 
skewed and heavy tailed. So we are in bad need to non-
normal multivariate df's to describe such data. Examples 
of random phenomenona that are governed by non 
normal multivariate df's would be lengths of time among 
malfunctions in machinery, waiting times and growth 
data such as bacterial growth. 

Actually, the non-normal multivariate df's are needed 

in several cases. First, when the marginal df's are not 

normal. Second, when the contour of the constant density 

is not ellipse. Third, the conditional expectations are not 

linear regressions. Last, the variances and covariances of 

conditional df's are dependent of the values of the 

conditioning variables. Although the roots of multivariate 

distribution theory lie in univariate distribution theory, the 

extension to the multivariate domain introduces additional 

concepts and issues of particular relevance. 

Despite the paucity of studies tackling the 

generalized families of multivariate df's in comparison to 

the studies, that tackle the generalized families of 

univariate df's, many authors have considered and 

studied the multivariate df's that describe non-normal 

multivariate data. Among those authors are Cook and 

Johnson (1981; 1986). They found that non-normal df's 

with normal margins would be appropriate for some 

bivariate geological data. Early work goes back to 

Edgeworth (1896), where families of bivariate 

distributions are derived as series involving the 

bivariate probability density function (pdf) and all its 

partial derivatives as well as the cumulants of the 

distribution (cf. Mardia, 1970). In our study, we mainly 

focus on studying the bivariate models. Generally, a 
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bivariate df is better suited for practical use when it has 

the following properties: 

 

• The bivariate df is mathematically tractable, i.e., we 

can derive its distributional characterizations, e.g., 

moments, cross moments, median vector, mode 

vector, marginal skewness and kurtosis. Moreover, 

via the parameters of the bivariate df, we can control 

some of its characterizations 

• The bivariate df is flexible to model various types of 

data by possessing a wide range of the indices of the 

marginal skewness, the marginal kurtosis and the 

correlation coefficient 

• The bivariate df is motivated by important 

applications 

 

In this study we suggest a method of adding two 

parameters to any base bivariate df to obtain a new 

generalized family of bivariate df's, which is more 

flexible to fit bivariate data. This new method is based 

on the mixture of the df's of some random vectors (X1, 

X2) and (-X1, -X2). We apply this method on the 

bivariate standard normal distribution, denoted by BN, 

to yield an extension of the bivariate normal 

distribution, which can serve as a strong competitor of 

many known non-normal bivariate distributions. For 

example, the new extension of the bivariate normal 

distribution contains, beside the normal df itself, 

positively-negatively asymmetric and leptokurtic-

platykurtic marginals. Moreover, through the added 

two parameters, one can fully control the skewness, 

kurtosis of the marginals of this family, as well as its 

correlation coefficient. Briey, the suggested new family 

of bivariate df's satisfies the above mentioned 

preferable properties 1-3. 

The rest of the paper unfolds as follows. Section 2 

briey outlines two important nonnormal bivariate df's. 

In section 3, we introduce and study a new suggested 

family of bivariate normal df, denoted by BSSN. 

Moreover, we show that the BSSN family is capable of 

describing many types of statistical bivariate data. 

Finally, we suggest a more competent family, which is 

an extension of the BSSN family, denoted by FBSSN. 

Theoretically, each of the marginals of the FBSSN 

family contains all the possible types of df's with 

respect to the signs of skewness and excess kurtosis 

and possesses very wide range of the indices of 

skewness and kurtosis. In section 4, the AIC and BIC 

criteria are used to compare the families BSSN, 

FBSSN, Bivariate Tukey g-h (denoted by BT-g-h), 

Bivariate Skew Normal (denoted by BSN), Bivariate 

Mixture Normal (denoted by BMN) and the usual 

Bivariate Normal df (denoted by BN) by means of three 

real bivariate data sets, concerning the air pollution. 

Section 5, is devoted to a brief discussion. 

Two Important Non-Normal Bivariate df's 

In this section we review the bivariate g-and-h df, 
which is introduced by Kowalchuk and Headrick (2010) 
and the bivariate skew normal df (Azzalini, 2005). 

Bivariate g-and-h Distribution 

The g-and-h univariate distribution was suggested by 
Tukey (1977) and discussed by Hoaglin and Peters 
(1979) and Hoaglin (1983). This distribution is defined 
by transforming the standard normal variable Z to: 
 

( )
( ) 2

,

exp 1
exp ,

2
g h

gZ h
X T Z Z

g

−  
= =  

 
 (2.1) 

 
where, g is a real constant controlling the skewness and 

h is a nonnegative real constant controlling the kurtosis, 

or elongation (for the definition of g-and-h distribution 

when h∈ℝ, see Martinez and Iglewicz, 1984). It can be 

shown that T0,0(Z) = Z is the normal one, the 

distribution of T0,h(Z) has heavier tails than normal 

(increasingly with h) and ( )
( )

,0

exp 1
g

gZ
T Z

g

−

= , coincides 

with the location-scale log-normal distribution. The sign 

of g controls the direction of skewness but not the 

amount. Positive values of g skew the distribution to 

right tail while negative values of g skew the 

distribution to the left tail. Therefore, this family of df's 

encompasses a remarkable variety of distribution types. 

Moreover, since Tg,h(z) increases monotonically in z, 

the df of X can be written as FX(x) = ( )( )1

,g hT x
−

Φ , where 

Φ(.) denotes the standard normal df. Clearly, this 

distribution is not easily mathematically tractable, 

because it does not have simple expression for density. 

However, Martinez (1981) derives the nth moment about 

the origin, when g ≠ 0 and 
1

0 h
n

≤ < , as: 

 

( ) ( )
( )

( )

2

0

1
1 exp .

2 11

n
in

n
i

n i gn
E X

i nhg nh =

  −     = −  
 −−    

∑  

 
A common approach for generating correlated g-and-

h distributions uses the Equation 2.1 with bivariate 

normal data with a specified correlation structure (see 

Wilcox, 1995; Wilcox and Keselman, 2001; 2003; 

Wilcox et al., 2000). Namely, a random vector 2
X ∈ℝ is 

said to have a standard bivariate g-and-h distribution, 

where ( ) 2

1 2
,

T

g g g= ∈ℝ  controls the skewness and h = 

(h1, h2)
T
∈ 2

+
ℝ  controls the kurtosis, if it can be 

represented as: 

 

( ) ( )( )
1 1 2 2

1 2, ,
, ,

T

g h g h
X T Z T Z=  (2.2) 
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where, (Z1,Z2)
T
 has a standard bivariate normal Φρ(.,.) 

with correlation coefficient ρ and ( )
,

i i
ig h

T Z , i = 1, 2, is 

defined in (2.1). It is worth mentioning that the original 

(normal) correlation structure is not maintained because 

this structure is not invariant to the transformation (2.1). 

For example, Wilcox (1995) used the transformation 

(2.1), with h = 0, in the context of a bivariate case with a 

correlation of ρ = 0.5 where both distributions have g = 1 

and h = 0. Wilcox (1995) showed that X1 = T1,0(Z1) and 

X2 = T1,0(Z2) will have the correlation coefficient of 

0.378. In general the correlation between ( )
1 1

1 1,g h
X T Z=  

and ( )
2 2

2 2,g h
X T Z=  can be expressed as: 

 

( ) ( ) ( )
1 1 2 2

1 2 1 2 1 2, ,
, ,x g h g h

T z T z z z dz dz
ρ

ρ φ
∞ ∞

−∞ −∞

= ∫ ∫  

 

where, φρ(z1, z2) is the standard bivariate normal density, 

with correlation ρ and in general we have ρX ≠ ρ. 

Bivariate Skew Normal Distribution 

The term Skew-Normal (SN) df refers to a parametric 

class of df's which includes the standard normal as a 

special case. A rv Y is said to be skew-normal with 

parameter λ, written Y∼SN(λ), if its density function (cf. 

Azzalini, 1985; Gupta et al., 2002) is: 
 

( ) ( ) ( ); 2 , ,
Y
A z z z zλ φ λ= Φ ∈ℝ  (2.3) 

 

where, φ(.) denotes the standard normal density function. 

The parameter λ regulates the skewness and λ = 0 

corresponds to standard normal df. It is worth 

mentioning that the rv Y itself may be interpreted as the 

following transformation of normal rv's: 

1
2

| |
1

Y Z
λ

λ

=

+

+
2

2

1

1

Z

λ+

, where Z1 and Z2 are two 

independent rv's following the standard normal 

distribution. The advantage of this distribution family 

is that it persists many statistical properties of the 

normal distribution, in particular, Y
2
∼ 2

1
χ . The SN df 

enables us getting rid of the assumption that the 

underlying population distribution is symmetric. Such 

an extension is necessary because in practice, the 

underlying distribution may be well skew rather than 

being symmetric. 

When applying the SN df in statistical inference, we 

frequently need to study the joint df of a random 

sample from the population. Therefore, the study of 

multivariate SN df is of a considerable interest. 

Azzalini (1985) introduced the following bivariate 

extension of the density in (2.3). A random vector 
2

Y ∈ℝ follows a bivariate SN, denoted BSN1, if the joint 

density of Y  has the following form: 

( ) ( ) ( ) ( )1

1 1 2 2
; ; ,

Y
f Y c y y yλ φ λ λ= Ω Φ Φ  (2.4) 

 

where, λ1, 2
λ ∈ℝ, c is the normalizing constant and 

( );yφ Ω  is the density of a bivariate normal distribution 

with correlation matrix Ω = (ρij), i, j = 1, 2, ρij = ρ, if i = j, 

while ρij = 
1 1

ji

i j

λλ
ρ

λ λ+ +

, if i ≠ j. Note that Ω is 

generally not the correlation matrix of Y . Clearly, the df 

defined in (2.4) is just a direct and formal extension of the 

univariate SN distribution defined in (2.3). In Azzalini 

and Dalla Valle (1996) pointed out the disadvantage of 

the model defined in (2.4) and suggested the following 

version for bivariate SN distribution, denoted by BSN2. 

A random vector 2
V ∈ℝ  follows BSN2 distribution if 

the joint density of V has the following form: 
 

( ) ( ) ( )2

1 1 2 2
; 2 ; .

V
f V v v vλ φ λ λ= Ω Φ +  (2.5) 

 
Azzalini and Dalla Valle (1996) and Azzalini and 

Capitanio (1999) showed that the model (2.5) has some 

interesting statistical properties such as the quadratic 

form of a skew normal random vector is 2

2
χ , along with 

a probabilistic interpretation on the basis of the 

stochastic representation. However, in the definition is Ω 

not the correlation matrix of V. Moreover, Ω = I (where I 

is the identity matrix of order 2×2) does not imply that 

all components of V are independent. In a series of 

articles, Gupta and Chen (2001; 2003; 2004) pointed that 

neither of the bivariate skew-normal models (2.4, 2.5) 

cohere with the joint distribution of a random sample 

from a univariate skew-normal distribution. They 

introduced an alternative bivariate skew-normal model 

which overcomes this problem. 

Bivariate SS-Normal Distribution and the 

Full Family 

It is known that the mixture model, which is a convex 

combination of two pdf's is a powerful and flexible tool 

of modeling complex data because it combines the 

properties of the individual densities. In Barakat (2015) 

suggested a univariate generalized distribution family, 

which is simpler than the most well-known families. 

This is because it is a mixture of a baseline distribution 

and its reverse (i.e., the distribution of the negative rv), 

after adding a location parameter to the baseline 

distribution and adding the same location parameter with 

a different sign to the reverse of the baseline distribution. 

By this way the utilized location parameter turns to a 

shape parameter and we get a two-parameter generalized 

distribution family. This family has an individual trait, 

on which it has been built, that if this family contained 
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any distribution, it should contain also its reverse 

distribution. This trait makes us name this family as the 

stable. Barakat (2015) suggested a new univariate 

generalized family, denoted by SSN, by taking the 

standard normal distribution as the baseline distribution 

of the stable symmetric family. Barakat (2015) showed 

that the SSN family contains all the possible types of df's 

(there are nine possible types, see Barakat, 2015. 

Moreover, any family that contains these nine types is 

called full family, cf. Barakat and Khaled, 2017), except 

the type "symmetric and leptokurtic", denoted by 0+; 

i.e., positive excess kurtosis or the df has a more acute 

peak around the mean and fatter tails than normal df. 

Moreover, the SSN family has a very remarkable wide 

range of the indices of skewness and kurtosis. Therefore, 

it is capable of describing more types of statistical data 

than many other known families. 

Bivariate SS-normal distribution 

Barakat's method (2015) can be applied on any 

baseline bivariate df ( ) ( )
1 2

1 2,
,

X X X
F x F x x=  to get the 

following bivariate stable symmetric family: 
 

( ) ( ) ( )

( )

( ) ( )

1 2
1 2,

1 2

1 2 1 2

; , ; , ,

,

, , ,

X

X

X X

F x c F x c F x c x c

F x c x c

F x c x c F x c x c

ξ ξ ξ
α α α

α

α α

−

= = + +

+ − −

= + + + − + − +
ɶ

 (3.1) 

 

where, 0 α≤  = 1-α ≤ 1, c∈ℝ, X− = (-X1,-X2) and 

( ) ( ) ( ) ( )
1 2

1 2
1 .

X XX X
F x F x F x F x= − − +
ɶ  

 
The survivor function of the bivariate df (3.1) is 

given by: 
 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

1 2
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1 2
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1 2 1 2

1 2 1 2
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1
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1 ,

, , ,

XX X

XX X
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F x c F x c F x c F x c

F x c F x c F x c x c

F x c F x c F x c x c

F x c x c F x c x c
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α α α α

α α

α

α

α α

= − − +

= − +
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= + + + − + − +

ɶ

ɶ

ɶ

 

 

where, ( ) ( )1
i i

i iX X
F x F x= − , i = 1, 2. Moreover, the pdf 

of the df (3.1) is given by: 
 

( ) ( ) ( )

( ) ( )

1 2 1 2

1 2 1 2

; , , ,

, , .

X X

X X

f x c f x c x c f x c x c

f x c x c f x c x c

ξ α α α

α α
−

= + + + − + − +

= + + + − −

 

 

If the baseline df 
X

F  is symmetric, i.e., ( )X
F x  = 

( )X
F x
−

 = ( )X
F x−ɶ , the definition (3.1) becomes: 

( ) ( ) ( )1 2 1 2
; , , , .

X X
F x c F x c x c F x c x cξ α α α= + + + − −  (3.2) 

Let us now apply (3.2) on the standard bivariate 
normal distribution Φρ(x), with correlation coefficient ρ. 
Then, a new skew bivariate normal distribution, denoted 
by BSSN, or W = (W1, W2) ∼ BSSN, is defined by: 
 

( ) ( ) ( )1 2 1 2
; , , , , .

W
F x c x c x c x c x c

ρ ρ
α ρ α α= Φ + + + Φ − −  (3.3) 

 
The moment generating function can be easily 

derived by using (3.3) in the form: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
0,0 0,0 0,0

, ,
, , , ,

tW sW

W c c
M t s E e L t s L t s

α α

+

−
= = +  (3.4) 

 
where: 
 

( ) ( ) ( ) ( )0,0 2 2

,

1
, exp 2 .

2
c

L t s t s c t ts s
α

α ρ
 

= − + + + + 
 

 

 
The following lemma, which is directly obtained by 

using (3.4), gives the marginal means, marginal 
variances, marginal coefficients of skewness and kurtosis 
of the BSSN family (3.3) 

Lemma 3.1 

For each of the marginals of the BSSN df, we have: 
 

• The mean is 
i
W

µ = -c(2α-1), i = 1, 2 

• The variance is 2

i
W

σ = 1 + 4c
2
αα , i = 1, 2 

• The coefficient of skewness is: 
 

[ ] ( )

( )

3

1

3

2 2

1
0, 0,

2

8 2 1 1 1
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2 2
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W
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c
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c
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αα α
γ α α
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• The coefficient of kurtosis is: 
 

[ ]
( )(
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22 2

2

2
2
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3 3
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3 3 3 3
3, , ,

6 6

3 3 3 3
3, , ; 1,2.

6 6

 + + − +  =
+


±= =




 − +
< ∈    

  


 − +> ∉ =  
 

i
W

c c

c

if
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if i

αα α
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α

α

α

 

 
Clearly, if c = 0 the BSSN family becomes the 

standard bivariate normal df for any α. Thus, apart from 

the value c = 0, Lemma 3.1 shows that the parameter α 

solo controls the marginal kurtosis of the BSSN family. 

On the other hand, both the parameters α and c control 

the marginal skewness of the BSSN family in the 
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following manner: Each of the marginals of BSSN 

family has the type: 
 

, . .,00, 0,

1
, . .,0 , ,

2

3 3
, . ., 0, , 0,

6

3 3
, . ., , , 0,
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3 3 1
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




 

 

It is worth noting that, each of the marginals of 

BSSN df has eight types out of the nine possible types 

of df's. Namely, the only excluded type from the BSSN 

family is the type 0+. Moreover, in view of the results of 

Barakat (2015) the BSSN family possesses a very wide 

range of the indices of marginal skewness and kurtosis. 

The following interesting theorem shows that the BSSN 

family is not only tractable but we can easily control its 

correlation coefficient. 

Theorem 3.1 

The correlation coefficient, denoted by ρW, of the 

BSSN family is given by: 

 
2

2

4
,

4 1
W

c

c

αα ρ
ρ ρ

αα

+
= ≥

+

 

 

for all -1≤ρ≤1, c∈ℝ and 0 ≤α≤1, Moreover: 

 

• ρW = ρ, if and only if ρ = 1, or 2
cαα = 0 

• ρW = 1, if and only if ρ = 1 

• ρW = -1, if and only if ρ = −1 and 2
cαα  = 0 

• ρW = 0, if and only if −1≤ρ = 
2

4 0cαα− ≤  

 

Proof 

First, let us adopt the conventions 
( ) ( )
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,
0,0

c
L
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,
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c
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α
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Therefore: 
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On combining (3.5) with the first and second results 

of Lemma 3.1, we get: 
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2
1 2

2
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.

1 4
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ρ αα
ρ
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+

= =
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On the other hand, since 2

4 0cαα ≥ , the inequality ρW 

≥ ρ is obvious, as well as the remaining implications 

concerning ρW. This completes the proof of the theorem. 

For any fitting data purpose, it is more convenient to 

consider the location-scale BSSN df: 
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µ µ
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α α
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 (3.6) 

 
where, c1 = µ1-cσ1, c

★

1
= µ1+ cσ1, c2 = µ2−cσ2 and 

c
★

2
= µ2 + cσ2. Moreover, in any fitting problem we 

should get the estimates 
1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,c c c cα ρ σ
★ ★

1 2
 and 

2
σ̂ . 

Clearly, the estimation problem for these parameters is 

strongly relevant to the problem of estimating mixtures 

of bivariate normal distributions. Actually, many 

efficient methods were discussed by many authors, 

among them we mention Quandt and Ramsey (1978) 

and Lin et al. (2007). 

Further Extension for BSSN Family 

Barakat and Khaled (2017) called any generalized 

family that contains all the possible types of df's (nine 

types), a full family. As we have seen before the 

BSSN family has eight marginal types out of the nine 

possible types of df's. Namely, the only excluded 

marginal type from the BSSN family is the type 0+. 

Since the mixture operation is linear with respect to 

all the moments, we can suggest a full bivariate 

family of df's by mixing the BSSN family with any 

tractable symmetric leptokurtic df, namely the standard 

bivariate logistic df suggested by Gumbel (1961). The 

standard bivariate logistic df is defined by: 
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( ) ( )

( )
1 2
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1
, , , 1,2.

1

U
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u i

e e
− −

= ≤ ≤

= ∈ −∞ ∞ =

+ +

 (3.7) 

 

Therefore, given three parameters 0 ≤ α, β ≤ 1 and 

c∈ℝ, the full family of df's is given by: 
 

( ) ( ) ( )

( ) ( )
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.

U U

U

F x c F x c L x
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L x

η

ρ ρ

α β β α β

β α α

β
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+

 (3.8) 

 
The moment generating function can be easily 

derived by using (3.8) in the form: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
0,0 0,0 0,0

, , , ,

t s

W U
M t s E e M t s M t s

η η

η
β β

+
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where, ( ) ( )0,0
,

W
M t s  is defined by (3.4) and ( ) ( )0,0

,

U
M t s  = 

Γ(1-t)Γ(1+t+ s)Γ(1−s) is the moment generating function 

of the df (3.7) (cf. Gumbel, 1961). By using the moment 

generating function (3.9), we can compute all the 

marginal and the cross moments of the family (3.8). For 

examples: 
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Thus COV(η1, η2) = β[ρ + c
2
(1-β(α-α )

2
)] +

2

6

π
β , 

which implies: 
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 (3.10) 

 

Note that, in (3.10) if β = 1, then ρη = ρW. Moreover, 

if β = 0, then ρη = 
1

2
U
ρ . 

Clearly, each marginal of the FBSSN family 

possesses a very wide range of the indices of skewness 

and kurtosis (at least not less than the BSSN family). 

Moreover, each marginal of the FBSSN family contains 

all the possible types of df's. Therefore, the FBSSN 

family provides a general and flexible mechanism for 

fitting a wide spectrum of real world bivariate data set. 

The location-scale FBSSN df is given by: 
 

( )1 2 1 2

1 1 2 2

1 2

1 1 2 2

1 2

1 1 2 2

1 2

1 1 2 2 1 1 2 2

1 2

1 2 1 2

1 1 2 2

3

1 2

; , , , , , ,

,

,

,

, ,

, ,

U

U

F x c

x x
c c

x x
c c

x x
L

x c x c x c x c

x x
L

η

ρ

ρ

ρ ρ

α ρ µ µ σ σ

µ µ
αβ

σ σ

µ µ
αβ

σ σ

µ µ
β

σ σ

α α
σ σ σ σ

µ µ
α

σ σ

 − −
= Φ + + 

 

 − −
+ Φ − − 

 

 − −
+  

 

   − − − −
= Φ + Φ   

   

 − −
+  

 

★ ★

 (2.11) 

 

where, c1 = µ1−cσ1, 1
c
★ = µ1 + cσ1, c2 = µ2-cσ2, 1

c
★  = µ2 

+ cσ2, α1 = αβ, α2 =αβ  and α3 = β . 

Modeling of Air Pollution 

Air pollution is a very important environmental and 

social issue. In addition, it is a complex problem posing 

multiple challenges in terms of management and 

reduction of harmful pollutants. Air pollutants are 

released from anthropogenic and natural sources. 

In this section we consider three daily data sets for air 

pollution from the London Air Quality Network 

(LAQN), from 01/01/2010 to 31/12/2016. This 

network is a united resource for air pollution 

measurements, which are fundamental to support air 

quality administration. The LAQN was framed in 

1993 to arrange and enhance air pollution checking in 

London. People living in the city of London can check 

the updates of the level of air pollution data through 

the web site “www:londonair:org:uk”. We consider 

the following three pollutants: The Nitric Oxide (NO), 

the Nitrogen Dioxide (NO2) and the Sulphur Dioxide 

(SO2). These data sets can be downloaded by any 

researcher in the form of a report every half hour, 

every hour or every day according to the type of study 

from the following site 

“www.londonair.org.uk/london/asp/datadownload.asp

”. The summary statistics for these data sets are given 

in Table 1. 

In this study, we compare the location-scale BSSN and 

FBSSN families (3.6) and (3.11) with the location-scale 

BT-g-h family 1 1 2 2

1 2

, ; ,
X

x x
F h g

µ µ

σ σ

 − −
 
 

 (where σ > 0 and 
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the rv X is defined by (2.2)), the location-scale BSN2 family 

2 1 1 2 2

1 2

, ;
V

x x
F

µ µ
λ

σ σ

 − −
 
 

, (where its pdf is defined by 

(2.5)), the location-scale bivariate mixture normal df 

BMN(x; α, c, ρ, µ, σ) = 1 1 2 2

1 2

,

x x

ρ

µ µ
α

σ σ

 − −
Φ  

 
 + 

1 3 2 4

3 4

,

x x

ρ

µ µ
α

σ σ

 − −
Φ  

 
 (the correlation coefficient of MBN 

is denoted by 
MBN
ρ ) and the location-scale bivariate normal 

df BN(z; ρ, µ, σ) = 1 1 1 1

2 2

,

z z

ρ

µ µ

σ σ

 − −
Φ  

 
 (with correlation 

coefficient 
BN
ρ ρ= ). The estimates of the parameters of 

these families are calculated using the R package as 

follows: For BT-g-h we use ghyp package, for BSN2 we 

use sn package, for BN families we use stats package, for 

BSSN, BMN families we use maxLik package and for 

FBSSN we use maxLik and VGAM packages. These 

estimates are summarized in Tables 2-4. To compare the 

fittings of these families we used Akaike Information 

Criterion (AIC) (Akaike, 1973) and the Bayesian 

Information Criterion (BIC) (Schwarz, 1978). These criteria 

are based on the likelihood value of the model, the number 

of observations and the number of parameters thereof. The 

comparison results are summarized in Table 5-7. These 

tables show that the FBSSN family has the smallest values 

of the AIC and BIC criteria in the three tables, followed by 

the BSSN family. On the contrary, the families BT-g-h 

and BSN2 have the largest values of those criteria.

 
Table 1: Summary statistics 

  Descriptive statistics for air pollutants 

  ------------------------------------------------------------------------------------------------------------------------- 

Pollution n Minimum Maximum Median Mean SD Skewness Kurtosis 

Nitric oxide 2138 0 279.00 3.600 8.704 16.30 6.24 66.84 

Nitrogen Dioxide 2138 1 105.40 21.900 24.630 13.15 1.15 5.02 

Sulfur Dioxide 2138 0 28.10 2.400 2.635 1.52 5.46 75.89 

 
Table 2: Parameter estimation for (NO, NO2) 

 ML parameters estimation 

 ------------------------------------------------------------------------------------------------------------------------------------- 

BT-g- h family h1  h2 g1 g2  µ1  µ2      σ1  σ2  ρΧ  

 0.05  4.09 6.98 4.74  2.14 20.18      11.34 12.91 0.65 

BSN2 family λ1   λ2   µ1 µ2      σ1  σ2  ρV  

 3786893.35 -35996.82  0.01 19.87      18.47 13.98 0.73 

BSSN family   α1  α2 c1 1
c
★  c2 2

c
★      σ1  σ2  ρW  

   0.30 0.70 15.02 15.98 7.93 10.06     20.00 11.98 0.69 

FBSSN family  α1  α2  α3 c1 1
c
★  c2 2

c
★  µ1  µ2   σ1  σ2  ρη 

  0.002 1.8e-02 0.98 40.27 15.80 7.85 10.07 14.6 19.9   50.03 12.1 0.49 

BMN family  α1  α2  µ1 µ2 µ3 µ4  σ1 σ2 σ3 σ4         MBN
ρ  

  0.001  0.999  8.36 4.75 5.95 4.28  1.72 14.49 11.02 10.65 0.20 

BN df       µ1 µ2     σ1 σ2 ρBN 

       8.70 24.63     16.30 13.15 0.68 

 
Table 3: Parameter estimation for (NO, SO2) 

 ML parameters estimation 

 ----------------------------------------------------------------------------------------------------------------------------------------- 

BT-g-h family h1 h2 g1 g2   µ1 µ2     σ1 σ2 ρΧ  

 0.03 4.05 6.77 0.39   2.66 2.29     11.48 1.33 0.26 

BSN2 family λ1  λ2   µ1  µ2   σ1  σ2  ρV 

 13253651.9 14891.3  -0.007752721 2.373941   18.48162 1.53843 0.358536 

BSSN family   α1 α2  c1 1
c
★  c2 2

c
★     σ1 σ2 ρW 

   0.69 0.31  10.96 2.60 9.85 2.48    16.98 2.19 0.48 

FBSSN family  α1 α2 α3 c1 1
c
★  c2 2

c
★  µ1  µ2   σ1 σ2 ρη 

  0.93  0.05 0.015 14.93 10.05 18.16 17.09 16.74 20.25   22.99 5.94 0.45 

BMN family   α1 α2  µ1 µ2 µ3 µ4  σ1 σ2 σ3 σ4 ρBMN 

   0.997 0.003  9.88 10.72 10.45 17.04  14.63 15.72 7.88 12.47 0.37 

BN df       µ1 µ2     σ1 σ2 ρBN 

       8.70 2.63     16.30 1.51 0.32 
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Table 4: Parameter estimation for (NO2, SO2) 

 ML parameters estimation 

 -------------------------------------------------------------------------------------------------------------------------------------- 

BT-g -h family h1 h2 g1 g2   µ1 µ2     σ1 σ2 ρΧ  

 0.18 4.30 3.53 0.31   21.23 2.34     13.31 1.31 0.30 

BSN2 family  λ1 λ2    µ1 µ2     σ1 σ2 ρV 

  0.38 3.84    18.83 1.05     14.37 2.19 0.49 

BSSN family  α1 α2   c1 1
c
★  c2 2

c
★     σ1 σ2 ρW 

  0.05 0.95   8.47 9.61 11.55 15.531    15.12 11.83 0.47 

FBSSN family α1 α2  α3 c1 1
c
★  c2 2

c
★  µ1  µ2   σ1 σ2 ρη 

 0.007 2.03e-01 0.79 43.45 15.17 8.06 10.59 15.39 20.24   29.18 10.39 0.42 

BMN family   α1 α2  µ1 µ2 µ3 µ4  σ1 σ2 σ3 σ4 ρBMN 

   0.99 0.01  8.42 11.35 9.34 15.46  15.37 10.47 8.92 13.59 0.18 

BN df      µ1  µ2     σ1 σ2 ρBN 

      24.63  2.63     13.15 1.52 0.31 
 
Table 5: AIC and BIC for (NO, NO2) 

 BT-g-h family  BSN2 family BSSN family FSSBN family BMN family BN df 

AIC 31252.1 31316.18 15627.55 13976.85 22788.66 25884.06 

BIC 31297.44 31350.19 15672.89 14039.2 22845.34 25935.4 
 
Table 6: AIC and BIC for (NO, SO2) 

 BT-g-h family BSN2 family BSSN family FBSSN family BMN family BN df 

AIC 22531.32 23202.76 11093.45 8066.54 11201.42 17768.64 

BIC 22576.66 23236.77 11138.79 8128.884 11258.09 17819.98 
 
Table 7: AIC and BIC for (NO2, SO2) 

 BT-g-h family BSN2 family BSSN family FSSN family BMN family BN df 

AIC 23625.52 24050.74 13377.9 11692.85 14145.68 16866.95 

BIC 23670.86 24084.75 13423.24 11755.19 14202.35 16918.29 

 
Therefore, the best model that fits these data sets is the 
FBSSN family and the second model is the BSSN 
family. On the other hand, the worst two models that fit 
these data sets are BT-g-h and BSN2 families. 

Concluding Remark 

In this study, we adhered to the most agreed upon 
theoretical conditions that make any family of bivariate df's 
to be capable of fitting many different types of bivariate 
data. According to these theoretical conditions we 
constructed the BSSN family and extended it to the FBSSN 
family, which is more a capable family to describe many 
bivariate data sets of different types. We applied the 
constructed families with other popular families on three 
bivariate data sets concerning three air pollutants. We used 
the AIC and BIC criteria to compare the fittings of these 
families. The result of the comparisons shows that the 
FBSSN family is the best followed by the BSSN family. 
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