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Abstract: The Gale-Nikaidô Theorem establishes global injectivity of 

maps defined over rectangular regions provided the Jacobian matrix is a 

P-matrix. We provide a purely geometric generalization of this result in 

the plane by showing that if the image of each edge of the rectangular 

domain is realized as a graph of a function over the appropriate axis, 

then the map is injective. We also show that the hypothesis that the 

Jacobian matrix is a P-matrix is simply one way to analytically check 

this geometric condition. 
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Introduction 

The study of global injectivity results has important 
applications in Mathematical Economics, in particular 
problems in International Trade, see Samuelson 
(Samuelson, 1949; 1967). One of the main questions is 
to determine the conditions on the system of cost 
functions, denoted by F, so that the equation F(x) = y has 

at most one solution, where x is the input factor price and 
y represents cost, see the work of Mas-Colell (1979) and 
Parthasarathy (1983) for more details. 

In this study, we are motived with the Gale and Nikaidô 

(1965) global univalence theorem. It states that for a 

rectangular region given by R = {x| ai ≤ xi ≤ bi, i = 1,..., n} 

for ai < bi and F: R → n

R an orientation preserving local 

diffeomorphism for which all principal minors of the 

Jacobian matrix are everywhere positive, then F is injective. 

Our focus is to provide a purely geometric generalization 

for the planar case. As highlighted by Aleksandrov (1994), 

the Gale-Nikaidô Theorem has yet to be given a geometric 

proof, or even an interpretation. However, recently an 

elementary approach has been considered by (Fujimoto and 

Herrero, 2000). In addition, it was also shown by 

Aleksandrov (1994) that injectivity of mappings defined in 

the rectangular domains cannot be extended to mappings 

defined in arbitrary convex domains. We expect that our 

result can provide better insight for the Gale-Nikaidô 

Theorem in higher dimensions. 

Let R = [0, 1]
2
 ⊆ 2

R be the unit square in the plane. 

Consider a decomposition of the boundary of R, denoted 

by ∂R, where the 4 edges are labeled j

j
R

δ

for j = 1, 2 and 

δj = 0 or 1 and 
j

j
R

δ

= {(xi, x2) ∈ R| xj = δj}. 

Given F: R → 2
R a map of class C

1
, we say that F 

normally assembles R if, up to relabeling, for each for 

each edge j

j
R

δ

 of R, we have that its image 

( )j j

j j
F R

δ δ

ϕ= is a graph over the xi-axis, for i ≠ j where 

the unit normal at an interior point of j

j

δ

ϕ has the same 

direction in the j
th
 component as in the domain. More 

precisely, let α be a smooth curve in the plane and 

denote the normal to γ at P to be η(P; γ), then F normally 

assembles R if for all ( )int
j

j
P

δ

ϕ∈ , we have: 

 

( ) ( ); , 1 2 0j

j j j
P e

δ

η ϕ δ− >  (*) 

 

where, {e1, e2} is the canonical orthonormal basis of 
2

R . 

We also must consider a relabeling of the edges to 

account for a change of basis, for instance, the map F: 

[0, 1]×[0, 1] → 2
R given by F(x, y) = (−x, y) normally 

assembles the unit square after we relabel 0

2
R  with 

1

2
R and vice-versa. 

Our main result is the following. 

Theorem 1.1 

Let R be the unit square and F: R → 2
R  be a C

1
 

local diffeomorphism. If F normally assembles R, 

then F is injective. 

The geometric condition in the hypotheses of 

Theorem 1.1 can be analytically checked, as it will be 

shown in Proposition 2.4. Thus we will have shown that 

the Gale-Nikaidô Theorem (Gale and Nikaidô, 1965) is a 
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corollary of Theorem 1.1 which now has a purely 

geometric proof. 

Proof of Geometric Planar Results 

We will now provide the proof of our main result in 

Theorem 1.1. We will show that F will be in injective on 

the boundary of R which is enough to show that F is 

injective on the entire domain by a result of Kestelman 

(1971). Let us recall. 

Theorem 2.1 (Kestelman (1971)) 

Let F: K → n

R  be an open and locally injective map. 

If K ⊆ n

R is a compact set, ∂K is connected and F|∂K is 

injective, then F is injective. 

In addition, we will introduce a concept of exposed 

points, first introduced by the by Balreira et al. 

(2014), to determine regions of injectivity of discrete 

dynamical systems. 

Definition 2.2 

Let U ⊆ 2
R be a compact region, p∈U and v∈S

1
, that 

is, a point in the unit circle. We say that p is exposed in 

the direction of v if there exists ε > 0 such that the ray 

rv(t) = p + tv∈U for t∈(0, ε). 

From the definition, we can see that if p∈int(U), then 

p is exposed in every direction. In our applications, the 

notion of exposed points will be used to show that the 

ray in the direction v eventually will hit the boundary of 

U. Namely, if p∈U is exposed in the direction of v, then 

for some t >0, rv(t)∈∂U. 

We will only be looking at the directions ±e1 and ±e2. 

Then in order to check if P∈γ is exposed in the direction 

of δej is equivalent to check, for δ = 0 or 1, if: 
 

( ) ( ); , 1 2 0
j

P eη γ δ− >  (2.1) 

 
This amounts to looking at the sign of the j

th
 

coordinate of η(P; γ), which can be done by checking if 
the following holds: 
 

( )( ){ } ( )sgn ; 1 2j Pπ η γ δ= −  (2.2) 

 

where, πj is the projection onto the 
 
 coordinate and sgn 

is the sign function such that sgn(t) = +1, if t 0, sgn(0) = 

0 and sgn(t) = −1, if t < 0. 

Let us now consider a result indicating that the graph 

of a function only changes orientation as it crosses a 

critical point. Although this is a straightforward result, it 

sets the notation that will be used in the main result. 

Lemma 2.3 

Let f: [a, b] → R be a C
1
 map. Suppose z∈R is a 

regular value of f such that f(a) ≠ z. Consider Γf = {(x, 

f(x))| x∈[a, b]}, the graph of the map f and c = 

min{f
−1
(z)} ≠ 0/ . Then for P = (c, f(c)): 

 

( )( ){ } ( ){ } ( )1
sgn ; sgn

f f
P f a z orπ η Γ = − Γ  

 

where, or(γ) = +1 if {(1, f′(c)), η(P; Γf )} is a positively 

oriented basis of 2
R and or(Γf ) = −1 otherwise. 

Proof 

We may assume that the orientation of 2
γ ⊂ R is the 

canonical one, that is, the normal at each point is a 

positive 
2

π degree rotation of the tangent to γ. For 

simplicity, let the graph of f, denoted by Γf be given by 

the curve γ: [a, b] → 2
R  where γ (t) = (t, f(t)). Thus for 

t∈[a, b], we have η((t, f(t)); γ) = (−f′(t), 1). In particular, 

π1(η(P; γ)) = −f′(c). 

Without loss of generality, let us assume that z > f(a). 

The case where z < f(a) may be treated in analogous 

manner by a reflection of the graph of f about the x1-axis. 

We claim that for ( ){ }1
min 0c f z−

= ≠ / , we must have 

f′(c) >0. Indeed, since z is a regular value f′(c) ≠ 0. So if 

it is not the case that f′(c) > 0, we must have that f′(c) < 0 

and f is locally decreasing at c. Therefore, there is d such 

that a < d < c with f(d) > z as depicted in Fig. 1. 

Then by the Intermediate Value Theorem to f 

restricted to [a, d], we find c′ ∈(a, d) with f(c′) = z, a 

contradiction to the definition of c as the smallest pre-

image of z. Thus, f′(c) >0 and: 
 

( )( ){ } ( ){ }

( )( ) ( ){ } ( )

sgn ; sgn

1 1 1 sgn

x
P f c

f a z or

π η γ

λ

′= − =

− = − + = −

 (2.3) 

 

 
 
Fig. 1: Behavior of the graph of a function before the first 

critical point 

x2 

 
z 

 
f(a) 

a d c 
x2 
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We are now ready to give the proof of the main result. 

Proof of Theorem 1.1 

Let 0

1
R , 1

1
R , 0

2
R  and 1

2
R  be the cubical assemblage of 

R and ( )j j

j j
F R

δ δ

ϕ= . 

We will show that F|∂Ω is injective, then by 

(Kestelman, 1971) it will follow that F is injective. The 

main geometric idea is to show that whenever the 

interior of two edges intersect, at the intersection there 

will be an exposed point. Thus if we follow the ray at 

such exposed point, at every time it intersects the 

boundary again, it will continue to create exposed points 

as long as j

j

δ

ϕ can be viewed as graphs of functions with 

the correct orientation. 

Without loss of generality, it suffices to consider just 

one edge, say 0

2
ϕ  and all others can be done similarly. 

Assume that 0

2
ϕ  as a graph over the x1-axis with 

endpoints a0 and a1. Let u = (u1, u2)∈ 0

2
ϕ  be an interior 

point and consider the vertical ray in the direction of −e2 

starting at u denoted by ru: [0,∞) → 2
R  given by ru(t) = 

u − te2 = (u1, u2 − t). 

We will show that for t ≥ 0, ru(t) ( )1 0 1

2 1 1
ϕ ϕ ϕ∉ ∪ ∪ . 

Indeed, suppose towards a contradiction that this is not 

the case. Then at least one of the following possibilities 

must hold. The ray must intersect the edge above, or one 

at each side. Let us consider each scenario separately. 

Suppose for some t ≥ 0, ru(t)∈
1

2
ϕ . Since 1

2
ϕ is a graph 

over the x1-axis, there is a unique 
1

2
0t ≥  so that 

( )1 1

2 2u
r t ϕ∈ . Let ( ) ( )1 1 1

2 2 1 2
,

u
P r t u w= =  as depicted in Fig. 2. 

Since F normally assembles R, we have: 
 

( ) ( )1 1

2 2 2
; , 1 2 1 0P eη ϕ − ⋅ >  (2.4) 

 
Thus: 

 

( )({ }1 1

2 2 2
sgn ; 1n Pπ ϕ = −  (2.5) 

 

Hence the point 1

2
P  is exposed in the direction −e2 as 

depicted in Fig. 2. Therefore, the ray ru must intersect 

∂F(R) at a point ru(t) with 
1

2
t t> . If this case does not 

happen, for notation purposes, let us set 1

2
0t = . 

Suppose there is t≥0 such that ( ) 0

1
∈

u
r t ϕ . Let 

( ){ }0 0

1 1
max }

u
t t r t ϕ= ∈ and denote the point 0

1
P = ( )01u

r t = 

( )01 1
,u w . As we consider 0

1
ϕ as a graph of a function over 

the x2-axis, let us denote this map by [ ]0

1
: ,g a b → R , with 

( )0

1
g a = a0 as depicted in Fig. 3. 

 
 

Fig. 2: Intersection between ray r
u
(t) and 1

2
ϕ  creating an 

exposed point 1

2
P  

 

 
 

Fig. 3: Intersection between ray r
u
(t) and 0

1
ϕ creating an 

exposed point 0

1
P  

 

First notice that ( )0

1
,w a b∈ and from the choice of 0

1
t , 

we have that ( ) ( ){ }
1

0 0

1 1 1
minw g u

−

= . 

Next, observe that the orientation of 0

1
ϕ is the canonical 

positive orientation as F normally assembles R. Then, an 

application of Lemma 2.3 yields the following: 
 

( )( ){ } ( )( )( ){ }
( ){ } ( )

{ } ( )

( )( )

0

1

0 0 0

2 1 1 2 1 1

0 0

1 1 1

0 1

sgn ; sgn , ;

sgn

sgn 1

1 1 1

g
P u w

g a u or

a u

π η ϕ π η

ϕ

= Γ

= − ⋅

= − ⋅ +

= − + = −

 

 

Therefore 0

1
P  is exposed in the direction of −e2, as 

depicted in Fig. 3 and the ray r
u
 starting at 0

1
t  must 

intersect ∂F(R) at some point r
u
(t) with 0

1
t t> . If this case 

does not happen, for notation purposes, let us set 0

1
0t = . 
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Suppose there is t≥0 such that ( ) 1

1u
r t ϕ∈ . Let 

( ){ }1 1

1 1
max |

u
t t r t ϕ= ∈  and denote the point 1

1
P = ( )11u

r t = 

( )11 1
,u w . As we consider 1

1
ϕ  as a graph of a function over 

the x2-axis, let us denote this map by [ ]1

1
: ,g a b → R , with 

( )1

1 1
g a a= as depicted in Fig. 4.  

First notice that ( )1

1
,w a b∈ and from the choice of 0

1
t , 

we have that ( ) ( ){ }
1

1 1

11 1
minw g u

−

= . Observe that the 

orientation of 1

1
ϕ is the canonical positive orientation as F 

normally assembles R. Then, an application of Lemma 

2.3 yields the following: 

 

( )( ){ } ( )( )( ){ }
( ){ } ( )

{ } ( )

( )( )

1

1

1 1 1

2 1 1 2 1 1

1 1

1 1 1

1 1

sgn ; sgn , ;

sgn

sgn 1

1 1 1

g
P u w

g a u or

a u

π η ϕ π η

ϕ

= Γ

= − ⋅

= − ⋅ +

= − + = −

 

 

Therefore 1

1
P  is exposed in the direction of −e2, as 

depicted in Fig. 4 and the ray ru starting at 
1

1
t  must 

intersect ∂F(R) at some point ru(t) with t > 
1

1
t . If this case 

does not happen, for notation purposes, let us set 1

1
0t = . 

Now, since at least one of the cases above hold, 

consider { }* 0 1 1

1 1 2
max , , 0t t t t= > . Indeed, if one of 

corresponding case does not hold then we have that 

0
j

j
t
δ

= , but by assumption not all three can be zero. 

In any case, the point ru(t
*
) is exposed in the 

direction −e2, thus for some τ > t
*
 ≥ 0 ru(τ)∈∂F(R). 

Since F is a local diffeomorphism, the image of the 

boundary of R must contained in the boundary of the 

image of R, that is, F(∂F(R)⊆∂F(R), see (Balreira et al., 

2014, Lemma 4.4]  for  a detailed proof. Hence, it 

must be that ( ) ( )1 0 1

2 1 1
, ,

u
r τ ϕ ϕ ϕ∈ , a contradiction to the 

choice of t
*
. 

Therefore, for each 0

2
u ϕ∈ , we have that u cannot 

belong to any other edge of the boundary, so F|∂R must 

be injective and by Theorem 2.1 F is injective. 

Finally, we observe that the geometric condition of 

Theorem 1.1, that is, that F normally assembles the unit 

square can be easily checked analytically. In fact, we 

have the following result. 

Proposition 2.4 

Let R be a rectangle and F = (f, g): R → 2
R be a C

1
 

local diffeomorphism. Suppose that for every (x, y)∈∂R, 

the Jacobian matrix, DF(x, y) is a P-matrix. Then F 

normally cubically assembles R. 

 
 

Fig. 4: Intersection between ray r
u
(t) and 1

1
ϕ  creating an 

exposed point 1

1
P  

 

We remark that it is sufficient to verify the analytic 

conditions of DF(x) being a P-matrix on the boundary only, 

similarly to the results by Garcia and Zangwill (1979). 

Proof 

It will suffice to show that for ( ){ }0

2
,0 | 0 1R x x= ≤ ≤  

and ( )02F R = 0

2
ϕ , we have: 

 

( )02 2
, , 0.P eη ϕ >  

 

Indeed, let γ(t) = (f(t, 0), g(t, 0)), then for P = (t)∈ 
0

2
ϕ , we have: 

 

( ) ( )( )
( )

( )

( ) ( )( )

0

2 90

,00 1
,

1 0 ,0

,0 , ,0

x

x

x x

f t
P R t

g t

g t f t

η ϕ γ

 − 
′  = =     

= −

 

 

Therefore, ( )02 2
, ,P eη ϕ = fx(t, 0) > 0 as DF is a P-

matrix. 

Conclusion 

The geometric interpretation of injectivity provides 

insights for the proof of the Gale-Nikaidô conjeture in 

higher dimensions. The introduction of the concept of 

exposed points have been useful in other problems on 

injectivity and in problems in discrete dynamics. In 

article, it has played an important role in determining 

injectivity and the proof of a generalization of the planar 

Gale-Nikaidô Theorem. 
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