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Abstract: We study the estimation of the mean 6 of a multivariate
Gaussian random variable X~Np(9,cszlp) in W, o is unknown and
estimated by the chi-square variable S°~cy,”. In this work we are
interested in studying bounds and limits of risk ratios of shrinkage
estimators to the maximum likelihood estimator X, when n and p tend to
infinity. We recall that the risk ratios of shrinkage estimators to the
maximum likelihood estimator has a lower bound B,, when n and p
tend to infinity. We show that if the shrinkage function y(S%|[X?|))
satisfies some conditions, the risk ratios of shrinkage estimators (1-
(S IX2DSY|IX? )X, which did not inevitably minimax, to attain the
limiting lower bound B,, which is strictly lower than 1.
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Introduction

The estimation by shrinkage estimators of the mean
@ of a multivariate normal distribution Np(H’ o [p) in

R” has experienced many developments since the
papers of (Stein 1956; James and Stein 1961; Stein
1981). In these works one estimates the mean & by
shrinkage estimators deduced from the empirical mean
estimator, which are better in quadratic loss than the
empirical mean estimator.

More precisely, if X represents an observation or a
sample of a multivariate normal distribution N, (9’ o’ [p),

the aim is to estimate @ by an estimator O relatively at
the quadratic loss function:

1(5.0)=s-0],

where ||.||, is the usual norm in R”. To this loss function
we associate the risk function:

R(5,0)=E,(L(5.0)).

fY///' Science

% Publications

James and Stein (1961) introduced a class of James-
Stein estimators improving the maximum likelihood
estimator &, =X, when the dimension of the space

parameters p > 3, noted:

s_[y (p=2)8* )
J; —(1 (n2)I X X;j=L.,p (1.1)
where §? ~ 52 2 is the estimate of o.

Baranchik (1964) proposed the positive-part of
James-Stein estimator dominating the James-Stein
estimator when p > 3, noted:

55 —max(o,[l—((p_z)sz]JX;j—l,...,p (1.2)

n+2)| X |°

Casella and Hwang (1982) studied the case where o
is known (o’=1) and showed that if

2
tim,, 191" ¢(>0), then:
p

p=——+0
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lim M: lim, —— 2 =—.

PTTTR(X.0) T

Thus, they showed the stability of the dominating
of James-Stein estimator and its positive-part, to the
maximum likelihood estimator, when the dimension
of space parameter p tends to infinity, in the case
where o is known.

Li (1995) has considered the following model:

(y@././t?/.,oz)~ N(Hj,oz)i=1,...,n,j=1,...,m

where, E(y,) = 9] for the group j and var(y;) =g’ is

unknown. He studied the shrinkage estimators
o= (51 ,...,é‘m) where:
s onST )y
5, —(I—Q(S T )sz(yj—y)w
with:
S2 :ZZ(J}U _)7]')2’
=l j=1
T*=n) (3,7,
Jj=1
and:

zyt/ Zj}/
=

=5 — =l V=
=y =

The James-Stein estimators are written in this case:

55 = (é‘ljs,...,é"ls )’

with N =(n—1)m .

In this case, it is clear that the maximum likelihood
estimator is §° = ;-

Li (1995) has given a lower bound for the ratio

R(6,0) , which allows him to conclude that:
R|5°,0

) R(5JS’0) R(5JS+,0)_ q

mmmmzm Hﬂ»m R(50,9) - Lz

q+
n

m———+to0

provided that . Zm:(‘gj —0) m=q exists.
Jj=1

Benmansour and Hamdaoui (2011) interested the
case where o’ is unknown. The authors showed that
1o _

2
[}

if lim,, c(>0), then the risk ratio of James-

Stein estimator 8% to the maximum likelihood

+e
estimator X, tends to ’lli
+c

fixed. Under the same

when p tends to infinity

and n is condition

— =

namely ph_mww —¢(>0), they showed that the risk
po

ratio of James-Stein estimator 87 to the maximum
likelihood estimator X, tends to the value IL when n
+c

and p tend simultaneously to infinity. They also found
the same results for the positive-part of James-Stein
estimator 057 .

Hamdaoui and Benmansour (2015) studied the
behavior of risk ratios of the general class of shrinkage
estimator proposed by Benmansour and Mourid (2007),

givenby & s =6 5 =6" +ly (S| X*[[)X , in the case

where o> is unknown. Then, they showed that

ifﬂl_i_m_MHGH;:c(>O)’ the risk ratio of shrinkage
po

estimator J, Y tends to a value less than 1, when n and

p tend simultaneously to infinity and provided that the
function  satisfies certain conditions.
In this study we adopt the same model XNNF(g,GZIF)

and independently of the observation X, we observe
§? ~ g?y? an estimator of o*. Note that R(X,9)=p0'2
is the risk of the maximum likelihood estimator. We
generalize the results given by Casella and Hwang
(1982), Benmansour and Hamdaoui (2011) and
Hamdaoui and Benmansour (2015), by studying the
class of shrinkage estimators
SZ

o (17.,,(52,“ X

estimators 5 and §7°°.
lelr

] x , which is containing the

Then we show that if

lim and the shrinkage function

+o0

=c¢(>0)

P

satisfies some conditions different from the ones

given in Hamdaoui and Benmansour (2015), the risk

ratio of the estimator J to the maximum likelihood

estimator X, tends to the value IL when n and p tend
+c

simultaneously to infinity.
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In the following we denote the general form of
shrinkage estimator as follows:

5:(1—¢(S2,||X2||))X (1.3)

In Section 1, we recall some results obtained in

Hamdaoui and Benmansour (2015). The authors
2

showed, that under the conditionp@nm”m'2 =c(>0),
(o}

the risk ratio of the shrinkage estimator J given in
(1.3), to the maximum likelihood estimator X, has a

lower bound g _

m

¢ _, when n and p tend to infinity.
l+c

The second result indicates that under the same

2
o1 =c(>0), the risk ratio of James-

condition ,lim_,

Stein estimator &5 given in (1.1), to the maximum
likelihood estimator X, tends to the value e ¢ when n
+c

and p tend simultaneously to infinity.

In Section 2, we give the main results of this paper.
We considered the general class of shrinkage estimators

SZ

= 1= (st X7

( ( )II X
minimax and we show that, if the shrinkage function
satisfies certain conditions which is different from the
ones given in Hamdaoui and Benmansour (2015), the
risk ratio of ¢ to the maximum likelihood estimator, to
attain the limiting lower bound B, provided that

2
p@wc || 9”2 =c
po

In the end we graph the corresponding risks ratios for
the estimators: James-Stein &”°, its positive-part 57
and estimators defined in selected examples for divers
values of n and p.

]X , which did not inevitably

Preliminaries
We recall that if X is a multivariate Gaussian random

2
NP(H,O'ZIP) in R? then M%ﬁ(ﬂ) where;(;(/l)

62

denotes the non-central chi-square distribution with p

degrees of freedom and non-centrality parameter
2
1= ||'9|L )
20

We recall the following lemma given in Fourdrinier
et al. (2008), that we will use often in our proofs.

Lemma 2.1

Let X~Np(6',azlp) with @ eR”. Then, for any

p=3, we have:

79

1 1 1
E =—F —— 2.1
(IIXZIIJ o’ [p—2+21<} @D
And for any p>5, we have:

1 1 1
E| —— |=—E 2.2
[(IIXZII)J o ((p—2+21<)(p—4+21<)} 2

where, K ~ P[az
20

] being the Poisson’s distribution of

o1

parameter > -
(o}

Theorem 2.2 (Hamdaoui and Benmansour, 2015)

The risk of estimator given in (1.3) is:

R(ﬁ,@) = UZE{w[Z(l;-ZK =20 (l;»fzk _2K)+ p}

where, ¢, :w(azgf,ozgﬁﬂk) and K ~ P{QZJ
20°

Furthermore:
R(5.0)2 Bp(e)
with:

(p-2)

B,(0)= O'ZE{p —2—E(p_2+2K]}.

2
Note that P(” 4 ll
20

J being the Poisson’s distribution

o1

of parameter — .
p 207

B,(9)

R(X,0)
el

if  lim =c, then:
po

We set: b,(0) = . It is clear that

=

C
lim,b (0)=——=B 2.3
Llim b, (0) o B (2.3)
2
In the particular case where ¢(S?,[| X ||):dm, we
S2
have 5d—[1—d 5 ]X,hence:
[P

R(5,,0) = azE{p +n[d*(n+ 2)—2d(p—2)]E(p_21+2Kj}.
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For d :p—_;, we obtain the James-Stein estimator
n+

(defined in (1.1)) which minimizes the risk of J;; whose
quadratic risk is:

|
R(6%,0)=c’Elp-—"—(p-2VE ——|\.
( ) o {p n+2(p ) p—-2+2K

Proposition 2.3 (Hamdaoui and Benmansour
(2015))

2
Let o1is given in (1.3), if lim , I 9”2 =c, then
po
n,,lianMZL (2.4)
’ R(X,Q) l+c
R(5".,0
lim Ro™0)_ e (2.5)

n R R(X0) e

Main Results
Limit of Risk Ratios of Shrinkage Estimators

We now rewrite the estimator in (1.3) by letting:

e
p(SPI1X2 )=y (s X ||)|| vl
is given by:
5
s, _(1—¢,/(52,||X2 ||)”X2 |JXj,j—1,....p (3.1
Theorem 3.1

Assume that J; is given in (3.1), such that p>5 and

v satisfies:

w(s?1x7) . o 1
——— converge in probability to when
p—2 n+2
p—>+0.
Sl x?
. v(SLIX1) <g(s?)a.s; where:
p—2

[( (S2 ))M} O[ﬁ) forsome y >0

191

If lim —=c, then:

p——=+n

_R(5.0)
lim, ——%=—-.
nER(XL0) e

Proof:

R(5,9)=E{i(5j —91)2}

o

- o o) £{ 36, 07

J=1

v2{336, 07 Yor -0

=

M'z

<
n

(6,-65+57 -6 )2}

We write:
=R(5.0)-R(5”.0)

then:

-£[36,-07F}
26{36,-57)67 -0,

J=1

thus:

= A +A,

A =— E{i(aj —5}5)2} (3.2)

= E{ (5, ~)(57 -0, )} (3-3)

J=

L

EE;‘S -55) } (3.4)

E{;p rtewt)[37] }

n+2
o2y [ vl sy
B po’ n+2 p-2 HXH

We write:

v (SIXT)
-

80
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and let & > 0. Then we have:

.Al:(p_z)z
po
! (57)
— 1 N
) i bt
xE 2( 2)2
1 S
*(Hz “”ﬂj X 1[7}
2 2)2
=) g (s )21 o
e
_ 2 (g2 2
(p-2) ( ! —‘/'p)( ) L
po n+2 X[ v )
We set:
2
Q (nap) pO.Z & ||X||2 Uﬁ%zg]
and:
(-2 1 *(s?) .
)= gE{(mz_""’j I (ot

Using Schwarz’s inequality, we have:

- {[ﬁrﬂ J}P[ - E] |

From the independence of H XH2 and S? and that

2
o, (n,p) < (p — 3)
po

1 —
n+2

Yy

(See formula 2.2 of Lemma

1 1
E[(zp(ﬂ))zJ_ (r=2)(p-4)

2.1), we deduce that:

)< (p-2)
P

1
n+2

al(n,p g\/n(n+2)(n+4)(n+6)

(p-2)\p-4)
p[ ]

< (1)—2)2 5\/n(n+2)(n+4)(n+6).

P (p-2)p-4)

-y,

For ¢ sufficiently small, it is clear that g (n,p)=0.,

hence , lim_a, (n,p)<0.

81

Now, we show that | lim , a,(n,p)<0, indeed:

2
p-2
e, (n,p)—( pO'Z)
2 (g2 2
E[ s j (|X|)21 L f
n {m—u/p >£J
2
S2(17—2)
po’
2 3.5
L)
X T+g (S ) -1
(n+2) X (v~
2= ()
U B R (P e
2
2(p-2)° | Lo (5)
Eqg’(S 1 .
po’ ( )HXHZ (o] >
The inequality (3.5) according to the second
condition and the following inequality: for any 4. bR,
—2ab<d® +b.
We set:
2
(r-2 1 |57
a,(n,p)= E 1 )
n(n.7) po’ (n+2) |IXIF (%W ]
and:
2
(P=2 ] oo (5)
Ay, (n,p)= Esg (S 1 R .
22( ) po_Z ( )HXH2 Uﬁ*ld/p >”J

From Schwarz’s inequality, we have:

p-2) 1
’azl(”’p)s(po_z) (n+2)2
2 ) 2
EV? (S ) pl2 1 _
X Hx TR
2

-2 1

p  (n+2)

2

» n(n+2)(n+4)(n+6)P1/2‘ 1 —y | sel

(p—2)p—4) 2 "

Thus, it is clear that , lim_a, (n,p)<0, because y,

converge in probability to

n+
From Holder’s inequality, we have:
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(p-2) we obtain:

'azz(nap)S 2
po

I+y

L4y /2 2\ | 142 r/2 R + r
R

2 I+y/2 1 i
S@E Ly 1+y/2({g2(S2)}Hlyiz(m/z)} ) )
po =4(o?) [ 2+ 43
" Ly 1+y/2 / - (U ) [2 7
l+y/2 712 14+y/2 y/2 r/2
|1X] in the neighborhood of + and:
2 1
p—2 1oy 1+
S( 0_2) E! y({gz(sz)} ) » Ly s 1—‘(p+2K _lﬂ/j
p g 2|1 Er 2 y/2
l+y X 2 _2 2 +2K
2| (a2 | 22 X1 o rf 22K
><E~l+;/ g Plﬂ/[L_W 2>S] 2
n+2 O F
X Ly

S@_?E@@%VWW#%%WEﬂ L g 1
o o 4
p p—-6——+2K
1+y 7

7/2 yi2 | 72
I+y 1 (] 1 2
x E — P ——y,| > |-
|1 v

The last inequality follows from the independence of

in the neighborhood of + 0.
For p sufficiently large, we have:

Jx]* and s°. * 2
As: z 14 < 1 ;
Evr {(SZ) }7/2 = g+ {(0'2753) }7/2
Then:
and: I+
i
+ 1
2] O R N P 1 S
£ { } =B, —6—ﬁ+2K B _6_f
X IP T X ook Ty Ty
C e . . Thus:
From Stirling’s formula which expresses that in the
neighborhood of +, we have: ,
2
1 azz(";p)ﬁ(p_z) [4(n++3] ]
vt o 2y
L(y+1)=~27zy 2e” p
and the fact that: 1 =l (et | ,
| — (g (s) )p[* .l
y p=6->
nm+w(l+_j:e}r 4
n

82



Abdenour Hamdaoui and Nadia Mezouar / Journal of Mathematics and Statistics 2017, 13 (2): 77.87

DOI: 10.3844/jmssp.2017.77.87

As E[( (sz)‘”ﬂ O(;ﬂ%

)j and the fact that

po>+o

v, in probability, it is clear that

n+2
n phl.l+wazz(n7p) <0. Hence 4,

NN
2

From (3.3) and by using Schwarz’s inequality we

have:
gt o |
2 E”z{i(& 5 )}E” {H(Js 0)2}

Hq”

JS
<oa, 2 R0
Then a, == 9. Thus,
Proposition 2.3, we have:

from formula (2.5) of

n,p llm+w

Hence by using the formula (2.4) of Proposition 2.3,
we obtain:

Example 3.2

Assume the estimator given in (3.1), such that:

2
)=z A
l/ll( H ) n+2 HXH2+1
. 2\ |, _p=2 S’
ie. 5,/,1( )—(l n+2X2+1]X

To show that the function v, (S27H XHZ), satisfies the
conditions of Theorem 3.1, we used the following lemma.
Lemma 3.3

For any a > 0, we have:

! <E ! < ! ..
m+2+a Zi,+a) m+a

Proof

From Jensen inequality, we have:

83

E ! > ! )
Zi,+ta) m+2+a

1=E] ( Zm j-‘raE( 21 j,
Inta Xnta

and using the formula (1.2) in Benmansour and
Hamdaoui (2011), we have:

I=mE| — ! +aF 21
lm+2+a zm_‘—a

then, from Jensen inequality, we obtain:

]:l{l—aE[ ! j}s L
+a) m ri+al)l m+a

Efji__
Zm+2

Now, we show that (SZ=H XHZ) satisfies conditions of
Theorem 3.1.

Indeed:
%x]
x| +1

2
Xpiak

2
Xpi2k

2
Z+2K+ 2
’ c

E /K

2
Z+2K+ 2
’ c

1

=E{(p+2K)E /K

2
Z +242K + 2
i o

The above equality according of formula (1.2) in
Benmansour and Hamdaoui (2011). From lemma 3.3,
we have:

_ (p+2K) 1

E <E{(p+2K)E /K

2
Xprriok T3
’ -

p+2+2K+—
c

gl (p+2K) |

p+2K+L2
o

On the one hand, we have:
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E (p+2K) -

: _[ 191 ]E L
p+2K+— o p+2K+—5
o o

because the covariance of two functions one increasing
and the other decreasing is non-positive, with:

x| 1L
20% |

By using lemma 3.1 of Li (1995), we have:

piler
P (p+2K) < o P 1+c:1
E —=1.
p+2K+7Z p- 2+H9” +L2 1+c¢
o o’ o
On the other hand, we have:
EMZI—[Z‘FLJE%
> .
p+2+2K+i2 G p+2+2K+i2
o o

Using lemma 3.1 of Li (1995), we have:

o2 lOF
P CELS I N SN Y
p+2K+— +u+7 +c
(e}
Thus:

2
i, £ ( X J:
X |P +1

Let a >0 and using Markov’s inequality, we have:

|

L. [XXH

Ao T
W) o
= L 0.

Therefore, the function y; satisfies the first condition
of Theorem 3.1.
For the second condition it suffices to take

1
g(S2)=n+2.

Remark 3.4

e It is obvious that the James-Stein estimator &°
satisfies the conditions of Theorem 3.1, so we
give another proof that the James-Stein estimator
&% dominating the maximum likelihood estimator
X, even if the dimension of parameter space p and
the sample size » tend to infinity

e We also note that any shrinkage estimator
dominating the James-Stein estimator dominates the
maximum likelihood estimator even if the
dimension of parameter space p and the sample size
n tend to infinity

The following Proposition gives the same results of
Theorem 3.1 with different conditions on .

Proposition 3.5
Assume that J; is given in (3.1) and that y satisfies:

2 2
1 _l//(S || X H)Sg(Sz>a.S

n+2 p—2

where the function g is monotone non-increasing such
that:

E[(g(Sz))z} - o(nz—lw) where y >0

2
If lim, Hpeo_”z =c, then:
. R(5,9) _c
0 R(X.0) 1+c
Proof:
L 2
= E{Z(@ —6’,) }
J=1
= E{Zp:(gl _51'” + §{S _‘9./)2}
J=1
:mﬁﬁp4§@fgw}
J=1
P
w26{36, o o7 o).
We write:

=R(5.0)-R(57.0)
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then:
A-’SZ =A +A,
po

where A; and A, are given in (3.2) and (3.3).
From formula (3.4) and the independence of | X HZ

and S?, we have:

_ 2 SZ’ XZ 2
N :ME{[I_W(
po” n+2 p-2

e el e

The last inequality comes from the fact that the
covariance of two functions, one increasing and the other

decreasing is non-positive.
1 1 2 1
As E| ———— |< and E[ S’ }:0(—],
(p—Z-FZK] p-2 (g( )) n*’

we have:

A

IN

1

(p—2)n(n+2)E{(g(S2))2}

p
S(p—Z)n(n-i—Z)M 1
p n2+y

where, M is a positive constant.

Thus, it is clear that , lim A, =0.

To show that , lim _A,=0 using the Schwarz’s

inequality, we have:

n,p—>+o

then A,—222* 0. Thus,
Proposition 2.3, we have:

from formula (2.5) of

R(ﬁ,&) < <
R(X,0) l+c

lim,

np

Hence by using the formula (2.4) of Proposition 2.3, we
obtain:

85

Example 3.6

Assume the estimator given in (3.1), such that:

“2 p-21
‘//z(SzaX\\z):i+2+5+2?
) -2(8%+1
fe.0, 5 XZ):[“ 22l )JX'

It is clear that the function y, satisfies conditions of
Proposition 3.5, it suffices to take:

1 1
S?) = —.
g( ) n+2S?
Simulations

We recall the forms of estimators given in Example
3.2,1e.

2

V/l(S >

XHz): r=2 HXH2
a2 e

and

5, (SZ,

Af)=1- 22 5y
w2 o

And in the Example 3.6, i.e.:

X“z):p—2+p—2

1
S?, —
"'2( n+2 n+2S8?

xZ){l

of which we illustrate graphically their risks ratios as
well as those of James-Stein and the positive-part of
James-Stein denoted respectively:

and

5,5,

_z)—Z(SZH)]X

n+2 xf

R(5,.0) R(5,.0) R(5%,0) R(5",0)
R(X.0)" R(X.,0) R(X.0)  R(X.,0)

for various values of n and p.
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1 N
.sv""’;{“-‘—.”-‘;
o8 ;,;-f"'" , ¥
s ‘Maxxmum Likelihood
4>(\\
o6 < e
2\ 7 Stain
04 !f S
N N
, " = 1
o2 ; Pazitive-pan J Stein
b 5 0 = 2 > E

R(5,.0) R(6”.0) R(5.0)

Fig. 1. Graph of risk ratios as

R(X,0) R(X,0)  R(X,0)
: 1617 - -
function of 4 ey forn=10andp=6
o
' )
oo N e =
" "\‘
’,yh""" Mazimum Likslihood
L1 P F
e
™ I Stein
— i 4‘-' L
S Positive-part J Scein
0 5 0 15 E b3 E ]

R(s,.0) R(5%,0) R(5",0)

2

R(X,0)" R(X,0) R(X,0)

Fig. 2. Graph of risk ratios as

2
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Conclusion

In context of the study of asymptotic behavior of the
risk ratios of shrinkage estimators of the mean 6 of a

multivariate Gaussian random X ~ N, (950-2 Ip) in R?,
and Hwang (1982) showed that if

1o - R(6".9)
=c>0 then the ratios ——~
P R(X,0)

R(57",0) ¢ .
————~ tend to ——, thus the James-Stein
R(X,H) l+c¢

Casella

and

Hlm

estimator 5% and the positive-part of James-Stein
estimator &7, which are minimax estimators,
dominating the maximum likelihood estimator X if the
dimension of parameter space p tends to infinity. In
our work by taking the same model, namely
X ~ NP(H,O-ZIP) with & is unknown and estimated

by the statistic §2~ 5?2 P independent of X, we
showed that for the shrinkage estimators of the form

2 2 SZ
S=1-w(S%||Xx

]X , which did not inevitably

c
minimax, we obtain the same ratio Tconstant
c

which is less than 1, when »n and p tend
simultaneously to infinity without assuming any order
relation or functional relation between n and p,

2
provided pmr_lM”e”Z =c
po

An idea would be to see whether one can obtain
similar results of the asymptotic behaviour of risk ratios
in the general case of the symmetrical spherical models,
for general classes of shrinkage estimators. Expanding
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our work to minimax estimators proposed by Maruyama
(2014) is also an idea that we currently explore.
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