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Abstract: In this study, we consider the Diophantine equation x
a
 + y

a
 = 

p
k
z

b
 where p is a prime number, gcd(a, b) = 1 and k,a,b ∈ ℤ

+
. We solve this 

equation parametrically by considering different cases of x and y and find 

that there exist infinitely many nontrivial integer solutions, where the 

formulated parametric solutions solve x
a
 + y

a
 = p

k
z

b
 completely for the case 

of x = y, x = −y, and either x or y is zero (not both zero). For the case of |x| ≠ 

|y| and both x and y nonzero, not every solution (x,y,z) is in the parametric 

forms proposed in Theorem 5, although any (x,y,z) in these parametric 

forms solves the Diophantine equation. 

 

Keywords: Diophantine Equation, Integer Solutions, Congruence, 

Fundamental Theorem of Arithmetic 

 

Introduction 

It is known that there exists no nonzero integer 

solution to Fermat’s equation x
n
 + y

n
 = z

n
 where n > 2, 

as proven by Andrew Wiles in 1995 (Andreescu and 

Andrica, 2002). However, interests are given to its 

variations as some may have nonzero integer solutions 

and there is no universal algorithm that solves any 

Diophantine equation as proven by Yuri Matiyasevich 

in 1970 (Steen, 1975). Some examples are y
3
 − x

3
 = k 

(Lal et al., 1966), x
2 

− Dy
2
 = nz

2
 (Cohen, 1992), x

4
 + 

2y
4
 = z

4
 + 4w

4
 (Elsenhans and Jahnel, 2006) and x

3
 + 

y
3
 = z

2
 (Zahari et al., 2011). 

In 2016, Wong and Kamarulhaili solved the 

Diophantine equation x
4
 + y

4
 = p

k
z

7
 (where p is a 

prime and k is a positive integer) nontrivially in the 

case of x = y, motivated by incomplete parametric 

solutions proposed by Ismail (2011) for her 

Diophantine equation of similar form, x
4
 + y

4
 = p

k
z

3
 

(where p is a prime, p ∈[2,13] and k is a positive 

integer). This is due to her assumption in her proofs 

that z must always contain the prime p when 

represented as product of primes (Ismail, 2011). 

Although her parametric solutions can fulfill her 

Diophantine equation, they would not yield the 

complete solutions to the equation whenever k ≡ 1 

(mod 4) (for p = 2) and k ≡ 0 (mod 4) (for p > 2) are 

concerned (Wong, 2016).  

Having identified this shortcoming by taking prime 

factor and congruence consideration into account to 

solve x
4
 + y

4
 = p

k
z

7
, we recognized that the same idea 

can be used on other similar Diophantine equations 

(Wong and Kamarulhaili, 2016). This motivates the 

study of: 

 
a a k b

x y p z+ =  (1) 

 

where p is a prime number, gcd(a,b) = 1 and k,a,b ∈ 

Z
+
. This paper aims to solve any Diophantine equation 

in the form of Equation 1. The ideas in proving the 

theorems in this study are mostly the same as that of 

Wong and Kamarulhaili (2016), with adjustments 

made to solve Equation 1 with generalized indices a 

and b and different cases of x and y. 

Our Main Results consists of five subsections, 

where each of them solves the Diophantine equation 

for different cases of x and y. The first subsection 

gives the parametric solutions for Equation 1 where x 

= y and p = 2. It considers three cases of k: k = 1; k>1 

and k ≡ 1 (mod a); k>1 and 1k ≡/  (mod a). The second 

subsection gives the parametric solutions for Equation 

1 where x = y and p>2. The third subsection gives the 

parametric solutions for Equation 1 where x = −y for 

all p. The fourth subsection gives the parametric 

solutions for Equation 1 where either x or y is zero (not 

both zero). The last subsection gives the parametric 

solutions for Equation 1 where |x| ≠ |y| and both x and y 

nonzero. Second to fifth subsections consider the cases 

of k ≡ 0 (mod a) and 0k ≡/  (mod a). 
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Main Results 

On the Diophantine Equation x
a
 + y

a
 = p

k
z

b
 where x 

= y and p = 2 

The following theorem gives the nontrivial 

parametric solutions to Equation 1 where x = y and p = 2. 

Theorem 1 

Let 
0 0 0( , , )x y z  be a nontrivial integer solution to 

2
a a k b

x y z+ =  where 
0 0 ,x y=  gcd( , ) 1a b =  and , , .k a b

+∈ℤ  

If 1,k =  then: 

 

0 0 0

( , , ),   even,  odd

( , , ) ( , , ),      odd,  even

( , , ),   and  odd

b b a

b b a

b b a

n n n a b

x y z n n n a b

n n n a b

 ± ±


= ±
 ± ± ±

 (2) 

 

where .n +∈Z  If 1k >  and 1k ≡  (mod a), then: 

 

0 0 0

( 2 , 2 , ),  even,  odd

( , , ) (2 ,2 , ),     odd,  even

( 2 , 2 , ),   and  odd

v b v b a

v b v b a

v b v b a

n n n a b

x y z n n n a b

n n n a b

 ± ±


= ±
 ± ± ±

 (3) 

 

where n +∈Z  and 1 .av k+ =  If 1k >  and 1k ≡/  (mod a), 

then: 

 

1 1 2

1 1 2

1 1 2

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

0 0 0

( 1) ( 1) ( 1)

( 2 , 2 ,2 ),  even,  odd

( , , ) (2 ,2 , 2 ),     odd,  even

( 2 , 2 , 2 ),   and  odd

c k c k c kb b a

c k c k c kb b a

c k c k c kb b a

n n n a b

x y z n n n a b

n n n a b

− − −

− − −

− − −

 ± ±


= ±
 ± ± ±

 (4) 

 

where ,n
+∈Z  c1 and c2 are smallest nonnegative 

integers such that 
1 2 1.ac bc− =  

Proof 

Let 
0 0 0( , , )x y z  be a solution to 2

a a k b
x y z+ =  where 

0 0.x y=  Then: 

 
1

0 0
2a k bx z−=  (5) 

 

The signs of x0 and z0 are influenced by the parities of 

a and b. For example, when a is odd (respectively, even) 

and b is even (respectively, odd), x0 must be positive 

(respectively, can be positive or negative) and z0 can be 

positive or negative (respectively, must be positive). 

When both a and b are odd, x0 and z0 can be either both 

positive or both negative. a and b cannot be both even 

since gcd( , ) 1.a b =  Note that in any possible case, the 

positives of x0 and z0 ensure that Equation 1 always 

holds. Thus, without loss of generality, let x0 and z0 be 

positive integers. By Fundamental Theorem of 

Arithmetic, let x0 and z0 be represented as a product of 

primes in their canonical forms, respectively: 

 

1 2

0 1 2

1

... ir

r

r i

i

x p p p pαα α α

=

= =∏  (6) 

 

1 2

0 1 2

1

... js

s

s j

j

z q q q q
βββ β

=

= =∏  (7) 

 

where pi and qj are primes, 
1 2 ... ,rp p p< < <  

1 2 ... ,sq q q< < <  r, s are nonnegative integers and ,iα  jβ  

are positive integers. Plugging Equation 6 and Equation 

7 into Equation 5, we get: 

 

1

1 1

2 ji

r s
ba k

i j

i j

p q
βα −

= =

=∏ ∏      (8) 

 

There are two cases to be considered: 1k = ; 1.k >  

Case 1 

Suppose 1k = . Then Equation 8 becomes: 

 

1 1

ji

r s
ba

i j

i j

p q
βα

= =

=∏ ∏  (9) 

 

Due to the uniqueness of canonical representation of 

integers, we have ,r s=  i jp q=  and i ja bα β=  for 

1 .i j r s≤ = ≤ =  Note that | ,ib aα  | ja bβ  and gcd( , ) 1.a b =  

We must have positive integers vi and wj such that 

i ibvα =  and .j jawβ =  Thus ( ) ( )i ja bv b aw=  and hence 

.i jv w=  So, Equation 6 and 7 respectively become: 

 

0 0

1 1

i i

b
r r

bv v

i i

i i

x y p p
= =

 
= = =  

 
∏ ∏  (10) 

 

0

1 1

j j

a
s s

aw w

j j

j j

z q q
= =

 
= =   

 
∏ ∏  (11) 

 

Let 
1 1

.ji

r s
wv

i j

i j

n p q
= =

= =∏ ∏  Then from Equation 10 and 

11, we have 
0 0

bx y n= =  and 
0

.az n=  Note that n is any 

positive integer. Depending on the parities of a and b, 

0 0 0( , , )x y z  is in one of the following forms: 

 

0 0 0

( , , ),  even,  odd

( , , ) ( , , ),     odd,  even

( , , ),   and  odd

b b a

b b a

b b a

n n n a b

x y z n n n a b

n n n a b

 ± ±


= ±
 ± ± ±

 (12) 
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where, .n +∈Z  

Case 2 

Suppose k>1. Then from Equation 5, we know that 

1

0
2 | .k ax−  Thus, 

0

1

i

r

i

i

x pα

=

=∏  must have a prime factor 

1 2.p =  Equation 6 becomes: 

 

1

0

2

2 i

r

i

i

x pαα

=

= ∏  (13) 

 
and Equation 8 becomes: 

 

1 1

2 1

2 2 ji

r s
baa k

i j

i j

p q
βαα −

= =

=∏ ∏  (14) 

 

As we compare the indices of 2 on both sides of 

Equation 14, 
1 1a kα = −  suggests that only positive 

integers k where 1k ≡  (mod a) allow Equation 14 to be 

consistent. However, in the case of 1k ≡/  (mod a), 

Equation 14 still holds if z0 has a prime factor 2. Hence, 

there are two cases that need to be considered: 1k ≡/  

(mod a); 1k ≡  (mod a). 

Case a 

Suppose 1k ≡/  (mod a). Equation 14 will not be 

consistent unless there exists a prime factor 
1 2q =  in z0. 

Thus 1

0

2

2 j

s

j

j

z q
ββ

=

= ∏  and Equation 14 becomes: 

 

1 11

2 2

2 2 ji

r s
baa k b

i j

i j

p q
βαα β− +

= =

=∏ ∏  (15) 

 

Compare the indices of 2 on both sides of Equation 

15. It is easy to check that for the linear Diophantine 

problem 
1 1 1,a b kα β− = −  

1 1 1 2( , ) ( ( 1), ( 1))c k c kα β = − −  is a 

particular solution where c1 and c2 are smallest 

nonnegative integers such that 
1 2 1.ac bc− =  Its general 

solution is thus 
1 1( 1)c k btα = − −  and 

1 2( 1)c k atβ = − −  

where 
0t ≤∈Z  (

0≤Z  refers to set of integers less than or 

equal to 0). Any integer represented in its canonical form 

is unique. Thus ,r s=  i jp q=  and i ja bα β=  for 

2 .i j r s≤ = ≤ =  Note that | ,ib aα  | ja bβ  and gcd( , ) 1.a b =  

We must have positive integers vi and wj such that 

i ibvα =  and .j jawβ =  Thus ( ) ( )i ja bv b aw=  and hence 

.i jv w=  Using these new forms, we have: 

 

1 ( 1)

0 0

2

2 2 i

b
r

vc k t

i

i

x y p− −

=

 
= =  

 
∏  (16) 

2 ( 1)

0

2

2 2 j

a
s

wc k t

j

j

z q− −

=

 
=   

 
∏  (17) 

 

Let 
2 2

2 2 .ji

r s
wvt t

i j

i j

n p q− −

= =

= =∏ ∏  Then Equation 16 and 

17 become 1 ( 1)

0 0
2c k bx y n−= =  and 2 ( 1)

0
2 ,c k az n−=  

respectively. Depending on the parities of a and b, 

0 0 0( , , )x y z  is in one of the following forms: 

 

1 1 2

1 1 2

1 1 2

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

0 0 0

( 1) ( 1) ( 1)

( 2 , 2 ,2 ),  even,  odd

( , , ) (2 ,2 , 2 ),     odd,  even

( 2 , 2 , 2 ),  and  odd

c k c k c kb b a

c k c k c kb b a

c k c k c kb b a

n n n a b

x y z n n n a b

n n n a b

− − −

− − −

− − −

 ± ±


= ±
 ± ± ±

 (18) 

 

where .n +∈Z  

Case b 

Suppose 1k ≡  (mod a). Then there are another two 

subcases to be considered: z0 has a prime factor 
1 2q = ; 

z0 does not have a prime factor 2. 

Case b1 

Suppose z0 has a prime factor 
1 2.q =  Then we have 

1

0

2

2 j

s

j

j

z q
ββ

=

= ∏ and Equation 14 becomes Equation 15. 

This subcase is solved using the same steps in Case a, 

yielding the same forms of 
0 0 0( , , )x y z  in the said case. 

Case b2 

Suppose z0 does not have a prime factor 2. Then z0 

remains as Equation 7 and in order for Equation 14 to be 

consistent, 1.s r= −  Thus Equation 14 becomes: 

 

1 1

2 2

2 2 ji

r r
baa k

i j

i j

p q
βαα −

= =

=∏ ∏  (19) 

 

Compare the indices of 2 on both sides of Equation 

19 and we see that 
1 1.a kα = −  Since | ( 1),a k −  there 

exists a positive integer v such that 1.k av= +  Thus, 

1 ( 1) 1a avα = + −  which leads to 
1 .vα =  Again, due to 

the uniqueness of canonical form of integers, i jp q=  

for 2 .i j r≤ = ≤  | ,ib aα  | ja bβ  and gcd( , ) 1.a b =  We 

must have positive integers vi and wj such that 
i ibvα =  

and .j jawβ =  This leads to .i jv w=  Using these new 

forms, we have: 

 

0 0

2

2 i

b
r

vv

i

i

x y p
=

 
= =  

 
∏  (20) 
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0

2

j

a
r

w

j

j

z q
=

 
=   
 
∏  (21) 

 

Let 
2 2

ji

r r
wv

i j

i j

n p q
= =

= =∏ ∏  and thus Equation 20 and 21 

become 
0 0

2v bx y n= =  and 
0

,az n=  respectively. 

Depending on the parities of a and b, 
0 0 0( , , )x y z  is in one 

of the following forms: 

 

0 0 0

( 2 , 2 , ),  even,  odd

( , , ) (2 ,2 , ),     odd,  even

( 2 , 2 , ),   and  odd

v b v b a

v b v b a

v b v b a

n n n a b

x y z n n n a b

n n n a b

 ± ±


= ±
 ± ± ±

 (22) 

 

where .n +∈Z  This form of solution covers that of Case 

b1 where z0 has a prime factor 2 and 1k ≡  (mod a). It is 

easy to show that for a choice of 
1n n=  in Case b1, the 

same solution can be obtained at 2

1
2c vn n=  in Case b2. 

Thus, in the case of 1k ≡  (mod a), the parametric forms 

in Case b2 is sufficient to solve for all 
0 0 0( , , ).x y z   

On the Diophantine Equation x
a
 + y

a
 = p

k
z

b
 where x 

= y and p > 2 

The following theorem gives the nontrivial 

parametric solutions to Equation 1 where x = y and p>2. 

Theorem 2 

Let (x0,y0,z0) be a nontrivial integer solution to x
a
 + y

a
 

= p
k
z

b
 where 

0 0 ,x y=  gcd( , ) 1,a b =  , ,k a b +∈ℤ  and p is a 

prime number where 2p > . If 0k ≡  (mod a), then: 

 
1 1 2

1 1 2

1 1 2

0 0 0

( 2 , 2 ,2 ),  even,  odd

( , , ) (2 ,2 , 2 ),     odd,  even

( 2 , 2 , 2 ),   and  odd

c c cv b v b a

c c cv b v b a

c c cv b v b a

p n p n n a b

x y z p n p n n a b

p n p n n a b

 ± ±


= ±
 ± ± ±

 (23) 

 

where ,n +∈Z  av k=  and c1 and c2 are smallest 

nonnegative integers such that 
1 2 1.ac bc− + =  If 0k ≡/  

(mod a), then: 
 

1 1 1 1 2 2

1 1 1 1 2 2

1 1 1 1 2 2

0 0 0

( 2 , 2 ,2 ),  even,  odd

( , , ) (2 ,2 , 2 ),     odd,  even

( 2 , 2 , 2 ),  and  odd

c d k c d k c d kb b a

c d k c d k c d kb b a

c d k c d k c d kb b a

p n p n p n a b

x y z p n p n p n a b

p n p n p n a b

 ± ±


= ±
 ± ± ±

 (24) 

 

where n∈ ℤ
+
 and c1, c2, d1 and d2 are smallest nonnegative 

integers such that –ac1 + bc2 = 1 and ad1 - bd2 = 1. 

Proof 

Let 
0 0 0( , , )x y z  be a solution to Equation 1 where 

0 0.x y=  Then: 

0 0
2 a k bx p z=  (25) 

 

Without loss of generality, let x0 and z0 be positive 

integers. By Fundamental Theorem of Arithmetic, let x0 

and z0 be represented as a product of primes 
1

i

r

i

i

pα

=
∏  and 

1

,j

s

j

j

q
β

=
∏  respectively, where pi and qj are primes, r and s 

are nonnegative integers and 
iα  and jβ  are positive 

integers. Since gcd(2, ) 1kp = , we know that 
0

2 | bz  and 

0
| .k ap x  There must be prime factors 

ip p=  in x0 and 

2jq =  in z0, where 1 i r≤ ≤  and 1 .j s≤ ≤  Let 
2p p=  and 

1 2.q =  Then: 

 

2

0

1, 2

i

r

i

i i

x p pαα

= ≠

= ∏  (26) 

 

1

0

2

2 j

s

j

j

z q
ββ

=

= ∏  (27) 

 
Plugging Equation 26 and 27 into Equation 25, we 

get: 

 

2 1

1, 2 2

2 2 ji

r s
baa b k

i j

i i j

p p p q
βαα β

= ≠ =

=∏ ∏  (28) 

 

Observe the indices of 2 in Equation 28 that in order 

for Equation 28 to be consistent, 
1 1bβ =  but 

1
β +∉Z  

(contradiction). Thus, x0 must contain a prime factor 

2ip =  where 1 ,i r≤ ≤  2.i ≠  Let 
1 2p =  and we have 

1 2

0

3

2 .i

r

i

i

x p pαα α

=

= ∏  Then Equation 28 becomes: 

 

1 2 11

3 2

2 2 ji

r s
baa a b k

i j

i j

p p p q
βαα α β+

= =

=∏ ∏  (29)  

 

As for the indices of p in Equation 29, 
2a kα =  

suggests that only positive integers k where 0k ≡  (mod 

a) allow Equation 29 to be consistent. However, in the 

case of 0k ≡/  (mod a), Equation 29 still holds if z0 has a 

prime factor p. Hence, there are two cases that need to be 

considered: 0k ≡/  (mod a); 0k ≡  (mod a). 

Case a 

Suppose 0k ≡/  (mod a). Then Equation 29 will not be 

consistent unless there exist a prime jq p=  where 

2 .j s≤ ≤  Let 
2q p=  and we have 1 2

0

3

2 .j

s

j

j

z p q
ββ β

=

= ∏  Then 

Equation 29 becomes: 
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1 2 1 21

3 3

2 2 ji

r s
baa a b b k

i j

i j

p p p q
βαα α β β+ +

= =

=∏ ∏  (30) 

 

Compare the indices of 2 and p on both sides of 

Equation 30. There are two linear Diophantine problems 

to be solved in order for Equation 30 to be consistent: 

 

1 1 1a bα β− + =  (31)  

 

2 2a b kα β− =  (32)  

 

For Equation 31, its solution is 
1 1 1c btα = −  and 

1 2 1c atβ = −  where c1 and c2 are smallest nonnegative 

integers such that 
1 2 1ac bc− + =  and 

1 0.t ≤∈Z  For 

Equation 32, its solution is 
2 1 2d k btα = −  and 

2 2 2d k atβ = −  where d1 and d2 are smallest nonnegative 

integers such that 
1 2 1ad bd− =  and 

2 0.t ≤∈Z  

Let σ and λ be permutation functions defined 

respectively as: 

 

:{3,4,..., } {3,4,..., }r rσ ֏                  (33) 

 

where ( ) 'i iσ = , 
' ' 1i ip p +< , ' ' 1i i< +  and: 

 
:{3,4,..., } {3,4,..., }s sλ ֏                  (34) 

 

where ( ) 'j jλ = , ' ' 1j jq q +< , ' ' 1j j< + . 

We apply them on the products of primes in Equation 

30 to arrange the primes in 
3

i

r
a

i

i

p α

=
∏  and 

3

j

s
b

j

j

q
β

=
∏  into their 

canonical forms and Equation 30 becomes: 

 

''1 2 1 21

' '

' 3 ' 3

2 2 ji

r s
baa a b b k

i j

i j

p p p q
βαα α β β+ +

= =

=∏ ∏  (35) 

 

Any integer represented in its canonical form is 

unique. So we have r s=  and ' 'i jp q=  for 

3 ' 'i j r s≤ = ≤ =  for Equation 35 to be consistent. 

Consequently, ' '.i ja bα β=  
'| ,ib aα  '| ja bβ  and 

gcd( , ) 1.a b =  We must have positive integers vi’ and wj’ 

such that 
' 'i ibvα =  and ' '.j jawβ =  Thus, ' '( ) ( )i ja bv b aw=  

and hence ' '.i jv w=  Using these new forms, we have: 

 

'1 1 1 2

0 0 '

' 3

2 2 i

b
r

vc d k t t

i

i

x y p p p− −

=

 
= =  

 
∏  (36) 

 

'2 2 1 2

0 '

' 3

2 2 j

a
s

wc d k t t

j

j

z p p q
− −

=

 
=   

 
∏  (37) 

Let ''1 2 1 2

' '

' 3 ' 3

2 2 ji

r s
wvt t t t

i j

i j

n p p p q
− − − −

= =

= =∏ ∏  and thus 

Equation 36 and 37 become 1 1

0 0
2c d k bx y p n= =  and 

2 2

0
2 ,c d k az p n=  respectively. Thus, in the case of 0k ≡/  

(mod a), depending on the parities of a and b, 
0 0 0( , , )x y z  

is in one of the following forms: 
 

1 1 1 1 2 2

1 1 1 1 2 2

1 1 1 1 2 2

0 0 0

( 2 , 2 ,2 ),  even,  odd

( , , ) (2 ,2 , 2 ),     odd,  even

( 2 , 2 , 2 ),  and  odd

c d k c d k c d kb b a

c d k c d k c d kb b a

c d k c d k c d kb b a

p n p n p n a b

x y z p n p n p n a b

p n p n p n a b

 ± ±


= ±
 ± ± ±

 (38) 

 

where .n +∈Z  

Case b 

Suppose that 0k ≡  (mod a). Then there are another 

two subcases to be considered: z0 has a prime factor 

jq p=  where 2 ;j s≤ ≤  z0 does not have a prime factor p 

(refer to Equation 29). 

Case b1 

Suppose that z0 has a prime factor jq p=  where 

2 .j s≤ ≤  Let 
2q p=  and we have 1 2

0

3

2 j

s

j

j

z p q
ββ β

=

= ∏  and 

Equation 29 becomes Equation 30. This subcase is 

solved using the same steps in Case a, yielding the same 

forms of 
0 0 0( , , )x y z  in the said case. 

Case b2 

Suppose that z0 does not have a prime factor p. Then z0 

is in the form of Equation 27 and in order for Equation 29 

to be consistent, 1.s r= −  Thus Equation 29 becomes: 
 

1 2 11

3 3

2 2 ji

r r
baa a b k

i j

i j

p p p q
βαα α β+

= =

=∏ ∏  (39) 

 
By comparing the indices of 2 and p on both sides of 

Equation 39, we have two equations to solve: 
 

1 1 1a bα β− + =  (40)  

 

2a kα =  (41)  

 
Equation 40 is the same as Equation 31 in Case a 

with the solution of 
1 1c btα = −  and 

1 2c atβ = −  where c1 

and c2 are smallest nonnegative integers such that 

1 2 1ac bc− + =  and 
0.t ≤∈Z  For Equation 41, note that a|k, 

so there exists a positive integer v such that k = av. So 

2a avα =  and hence 
2 .vα =  Apply Equation 33 and 34 

(where the domain and codomain of Equation 34 are 

now {3,4,…r}) on the products of primes in Equation 39 

to arrange them into canonical forms and we get: 
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''1 2 11

' '

' 3 ' 3

2 2 ji

r r
baa a b k

i j

i j

p p p q
βαα α β+

= =

=∏ ∏  (42) 

 
Any integer represented in its canonical form is 

unique, so ' 'i jp q=  and ' 'i ja bα β=  for 3 ' ' .i j r≤ = ≤  

'| ,ib aα  '| ja bβ  and gcd( , ) 1.a b =  We must have positive 

integers vi’ and wj’ such that 
' 'i ibvα =  and ' '.j jawβ =  So, 

' '( ) ( )i ja bv b aw=  and hence ' '.i jv w=  Using these new 

forms, we have: 
 

'1

0 0 '

' 3

2 2 i

b
r

vc v t

i

i

x y p p−

=

 
= =  

 
∏  (43) 

 

'2

0 '

' 3

2 2 j

a
r

wc t

j

j

z q
−

=

 
=   

 
∏  (44) 

 

Let ''

' '

' 3 ' 3

2 2 ji

r r
wvt t

i j

i j

n p q− −

= =

= =∏ ∏  and thus Equation 43 

and 44 become 1

0 0
2c v bx y p n= =  and 2

0
2 ,c az n=  

respectively. Thus, in the case of 0k ≡  (mod a), 

depending on the parities of a and b, 
0 0 0( , , )x y z  is in one 

of the following forms: 
 

1 1 2

1 1 2

1 1 2

0 0 0

( 2 , 2 ,2 ),  even,  odd

( , , ) (2 ,2 , 2 ),     odd,  even

( 2 , 2 , 2 ),   and  odd

c c cv b v b a

c c cv b v b a

c c cv b v b a

p n p n n a b

x y z p n p n n a b

p n p n n a b

 ± ±


= ±
 ± ± ±

 (45) 

 

where .n +∈Z  This form of solution covers that of Case 

b1 where z0 has a prime factor p and 0k ≡  (mod a). It is 

easy to show that for a choice of 
1n n=  in Case b1, the 

same solution can be obtained at 2

1

d vn p n=  in Case b2. 

Thus, in the case of 0k ≡  (mod a), the parametric forms 

in Case b2 is sufficient to solve for all 
0 0 0( , , ).x y z   

On the Diophantine Equation x
a
 + y

a
 = p

k
z

b
 where x 

= −y  

The following corollary gives the nontrivial 

parametric solutions to Equation 1 where .x y= −  

Corollary 3 

Let 
0 0 0( , , )x y z  be a nontrivial integer solution to 

a a k b
x y p z+ =  where 

0 0 ,x y= −  gcd( , ) 1,a b =  , ,k a b
+∈ℤ  

and p is a prime number. If 2p =  and a even, then: 

 

1 1 2

0 0 0

( 1) ( 1) ( 1)

( , , )

( , , ),                               1

( 2 , 2 , ),                         1, 1 (mod )

( 2 , 2 ,2 ),  1, 1 (mod )

b b a

v b v b a

c k c k c kb b a

x y z

n n n k

n n n k k a

n n n k k a− − −

 ± =


= ± > ≡
 ± > ≡/

∓

∓

∓

 (46) 

where, ,n
+∈Z  1av k+ =  and c1 and c2 are smallest 

nonnegative integers such that 
1 2 1.ac bc− + =  If 2p >  

and a is even, then: 
 

1 1 2

1 1 1 1 2 2

0 0 0( , , )

( 2 , 2 ,2 ),            0 (mod )

( 2 , 2 ,2 ),  0 (mod )

c c cv b v b a

c d k c d k c d kb b a

x y z

p n p n n k a

p n p n p n k a

 ± ≡
= 

± ≡/

∓

∓

 (47) 

 

where, ,n
+∈Z  av k=  and c1, c2, d1 and d2 are smallest 

nonnegative integers such that 
1 2 1ac bc− + =  and 

1 2 1.ad bd− =  If a is odd, then: 

 

0 0 0( , , ) ( , ,0)x y z n n= ± ∓  (48) 

 

where .n +∈Z  

Proof 

Let 
0 0 0( , , )x y z be a solution to Equation 1 where 

0 0.x y= −  Then: 

 

0 0 0
( )a a k bx x p z+ − =  (49) 

 
When a is odd, clearly this results in 

0 0z =  for any x0 

and thus we have 
0 0 0( , , ) ( , ,0)x y z n n= ± ∓  where .n +∈Z  

When a is even (and b is odd), 
0 0

( )a ax x+ −  

=
0 0 0

( 1) 2a a a ax x x+ − =  and Equation 49 becomes: 

 

0 0
2 a k bx p z=  (50) 

 
which is the same as Equation 5 (where p = 2) and Equation 

25 (where p>2). The steps in finding the parametric 

solutions are thus the same as those in Theorems 1 and 2, 

leading to the same forms of solution with the exception 

that the signs of x0 and y0 are opposite in the end. Hence we 

have the parametric solutions as asserted. 

On the Diophantine Equation x
a
 + y

a
 = p

k
z

b
 where x 

or y is Zero (Not Both Zero) 

The following theorem gives the nontrivial 
parametric solutions to Equation 1 where x or y is zero 
(not both zero). 

Theorem 4 

Let 
0 0 0( , , )x y z  be a nontrivial integer solution to x

a
 

+y
a
 = p

k
z

b
 where either x0 or y0 is zero (not both zero), 

gcd( , ) 1,a b =  , ,k a b
+∈ℤ  and p is a prime number. If 0k ≡  

(mod a), then: 
 

0 0 0

( ,0, )or(0, , ),     even,  odd

( , , ) ( ,0, )or(0, , ),     odd,  even

( ,0, )or(0, , ),   and  odd

v b a v b a

v b a v b a

v b a v b a

p n n p n n a b

x y z p n n p n n a b

p n n p n n a b

 ± ±


= ± ±
 ± ± ± ±

 (51) 
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where, n +∈Z  and .av k=  If 0k ≡/  (mod a), then: 
 

1 2 1 2

1 2 1 2

1 2 1 2

0 0 0( , , )

( ,0, )or(0, , ),    even,  odd

( ,0, )or(0, , ),     odd,  even

( ,0, )or(0, , ),   and  odd

c k c k c k c kb a b a

c k c k c k c kb a b a

c k c k c k c kb a b a

x y z

p n p n p n p n a b

p n p n p n p n a b

p n p n p n p n a b

 ± ±


= ± ±
 ± ± ± ±

 (52) 

 

where n +∈Z and c1 and c2 are smallest nonnegative 

integers such that 
1 2 1.ac bc− =  

Proof 

Similar idea of using the Fundamental Theorem of 

Arithmetic, prime factor consideration and congruence 

of k from Theorem 2 is applied, with one of the pair 

0 0( , )x y  now being zero.  

On the Diophantine Equation x
a
 + y

a
 = p

k
z

b
 where | 

x | ≠ | y | and Both x and y Nonzero 

The following theorem gives some nontrivial 

parametric solutions to Equation 1 where | | | |x y≠  and 

both x and y nonzero. 

Theorem 5 

If 1 1 2

0 0 0 1 2
( , , ) ( , , )g g gv vx y z p c n p c n n=  where 0k ≡  (mod 

a), ,av k=  c1 and c2 are nonzero integers, 
1 2| | | |,c c≠  

1 2
,a an c c= +  g1 and g2 are smallest nonnegative integers 

such that 
1 2 1,ag bg− + =  or 

0 0 0( , , )x y z  = 

( )1 1 1 1 2 2

1 2, ,f k g f k g f k gp c n p c n p n  where 0k ≡/  (mod a), c1 and c2 

are nonzero integers, 
1 2| | | |,c c≠  

1 2

a an c c= +  and f1, f2, g1 

and g2 are smallest nonnegative integers such that 

1 2 1af bf− =  and 
1 2 1,ag bg− + =  then 

0 0 0( , , )x y z is a 

nontrivial integer solution to a a k b
x y p z+ =  where 

0 0| | | |,x y≠ both x0 and y0 nonzero, gcd( , ) 1,a b =  , ,k a b
+∈ℤ  

and p is a prime number. 

Proof 

It is easy to show that the parametric forms above 

fulfill Equation 1. The idea of using two independent 

variables c1 and c2 to balance the equation for such case 

comes from Ismail (2011), although she did not consider 

the congruence of k which leads to missing out on some 

solutions. The following is the process through which 

the proposed parametric forms came to be. 

Let 
0 0 0( , , )x y z  be a solution to Equation 1 where 

0 1
,x p c nα β=  

0 2
,y p c nα β=  p is a prime number, c1, c2 and 

n are nonzero integers, 
1 2| | | |c c≠  and , .α β +∈Z  Plugging 

them into Equation 1, we get: 

 

1 2 0

a a a a a a k bp c n p c n p zα β α β+ =  (53) 

and thus: 

 

1 2 0
( )a a a a k bp n c c p zα β + =  (54) 

 

Setting 
1 2

a an c c= + , we get: 

 
1

0

a a k bp n p zα β + =  (55) 

 

We shall consider the congruence of k: 0k ≡/  (mod 

a); 0k ≡  (mod a). 

Case a 

Suppose that 0k ≡/  (mod a). z0 must have factors p 

and n for Equation 55 to be consistent. Let 
0

.z p nγ θ=  

Then: 

 
1a a k b b

p n p n
α β γ θ+ +=  (56) 

 

Compare the indices of p and n on both sides of 

Equation 56. There are two linear Diophantine problems 

to be solved: 
 
a b kα γ− =  (57) 

 

1a bβ θ− + =  (58) 

 
For Equation 57, the general solution is 

1 1f k btα = −  

and 
2 1f k atγ = −  where f1 and f2 are smallest nonnegative 

integers such that 
1 2 1af bf− =  and 

1 0.t ≤∈Z  For Equation 

58, the general solution is 
1 2g btβ = −  and 

2 2g atθ = −  

where g1 and g2 are smallest nonnegative integers such 

that 
1 2 1ag bg− + =  and 

2 0
.t ≤∈Z  Setting 

1 2
0,t t= =  we 

have the parametric form of 
0 0 0

( , , )x y z = 

( )1 1 1 1 2 2

1 2, ,
f k g f k g f k g

p c n p c n p n  as asserted. 

Case b 

Suppose that 0k ≡  (mod a). z0 must have a factor n 

for Equation 55 to be consistent. Let 
0

.z nθ=  Then: 

 
1a a k b

p n p n
α β θ+ =  (59) 

 
Compare the indices of p and n on both sides of 

Equation 59. There are two equations to be solved:  
 
a kα =  (60) 
 

1a bβ θ− + =  (61) 

 
For Equation 60, we see that |a k  so there exists a 

positive integer v such that .av k=  Then a avα =  and 

thus .vα =  For Equation 61 which is the same as 
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Equation 58, the general solution is 
1g btβ = −  and 

2g atθ = −  where g1 and g2 are smallest nonnegative 

integers such that 
1 2 1ag bg− + =  and 

0.t ≤∈Z  Setting t = 

0, we have 1 1 2

0 0 0 1 2
( , , ) ( , , )g g gv vx y z p c n p c n n=  as asserted. 

Note that these proposed parametric solutions do not 

cover all solutions for Equation 1 for the case of 

| | | | .x y≠  For example, it could not yield ( , , ) (1,2,1)x y z =  

for 4 4 7
17 .x y z+ =  However, any ( , , )x y z  in the 

parametric forms stated in Theorem 5 is a solution for 

Equation 1 for the case of | | | |x y≠  and both x and y 

nonzero. For example, ( , , )x y z = (410338673, 

820677346, 83521) is a solution to x
4
 + y

4
 = 17z

7
 that can 

be found using Theorem 5. 

Conclusion 

In this study, we considered different cases of ( , )x y  

to find the parametric solutions to Equation 1. For ,x y=  

Theorems 1 and 2 solve Equation 1 completely. For 

,x y= −  Corollary 3 solves Equation 1 completely. For 

either x or y is zero (not both zero), Theorem 4 solves 

Equation 1 completely. For | | | |x y≠ and both x and y 

nonzero, any ( , , )x y z  in the parametric forms stated in 

Theorem 5 is a solution to Equation 1. 

From these results, we know that there exist infinitely 

many nontrivial integer solutions to Equation 1. The 

parametric solutions formulated in the main results 

enable quick and easy solution generation whenever a 

Diophantine equation in such form is encountered. For 

example, x
5
 + y

5
 = 23

14
z

7
, x

11
 + y

11
 = 3

10
z

6
 and x

7
 + y

7
 = 

11z
3
. The ideas in this study can also be used for other 

Diophantine equations that are of similar forms.  
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