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Abstract: Statistical mechanics considers several models such as Ising 

model, Potts model, Heisenberg model etc. A rigorous mathematical 

approach based on the axiomatic foundation of probability would benefit 

the study and applications of these models. In this paper we use this 

approach to generalize some of these models into one construction named 
an interaction model. We introduce a mathematically rigorous definition of 

the model on an integer lattice that describes a physical system with many 

particles interacting with an external force and with one another; a random 

field Xt ( ) vt∈ℤ  models some property of the system such as electric 

charge, density etc. We introduce a finite model first and then define the 

thermodynamic limit of the finite models with Gibbs probability measure. 

The set of values of Xt can be unbounded for more generality. We study 

properties of the interaction model and show that Ising and Potts models 

are particular cases of the interaction model. 
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Introduction 

Statistical mechanics studies models of physical 

systems with many particles, which interact with an 

external force and with one another. Well-known models 

include Ising, Potts, Heisenberg, and n-vector models 

(see, for example, Duminil-Copin et al., 2017; 

Kashapov, 1977; Külske et al., 2014; Malyshev and 

Minlos, 1991; Malyshev, 1980). In these models a 

random field Xt is used to model some property of the 

system such as electric charge, density etc. 

Ising model is the simplest and most popular model. 

It describes a system with two states and models the 

phenomenon of ferromagnetism. It is also used in 

quantum field theory. Potts model is a generalization of 

Ising model to a system with a finite number of states. 

An n-vector model represents classical spins by n-

dimensional vectors of unit length. This model can be 

used to describe many physical phenomena. Particular 

cases of this model include the Ising model for n = 1, 

XY-model for n = 2 and Heisenberg model for n = 3. 

Kachapova and Kachapov (2016) introduced the 

concept of interaction model as a generalization of some 

existing models; there we provided a proof based on this 

concept that the random field Xt transformed by 

renormalization group converges to an independent 

random field with Gaussian distribution. 

In this paper we generalize and improve the 

interaction model from (Kachapova and Kachapov, 

2016). The new model does not have restrictions on the 

distribution of Xt and the set of values of Xt can be 

unbounded, which is an advantage of this model 
comparing to all aforementioned models, which have the 

values of Xt bounded. 

In this paper we use a rigorous mathematical 

approach based on the axiomatic foundation of 

probability. We introduce a mathematically precise 

definition of interaction model on an integer lattice: first 

as a finite model and then as the thermodynamic limit of 

the finite models with Gibbs probability measure. 

We study properties of the interaction model and 

show how some well-known models are represented as 

particular cases of the interaction model. 
In Section 1 we introduce main components of the 

interaction model of a physical system that include an 

integer lattice v
ℤ , the set of configurations of the 

system, initial independent probability measure P0 and a 

random field (  )v

t
X t∈ℤ  that models a property of the 

system. Next we introduce three characteristics of the 

interaction model: a main parameter λ, radius of 

interaction r and potential Φ. 
In Section 2 we study Gibbs modification of a 

probability measure. In particular, we split Gibbs 
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modification of the initial independent probability 

measure into two steps reflecting the influence of an 

external field on the first step and the interaction 

between particles on the second step. The first-step 

modification is mathematically simple and leaves the 

field Xt independent, therefore this construction 
simplifies mathematical computations. 

In Section 3 we define a finite interaction model 

on an integer cube using Gibbs modification of the 

initial probability measure P0. We prove some 

properties of the finite model. 

In Section 4 we define an infinite interaction model 

and in Section 5 we show that Ising and Potts models are 

particular cases of the interaction model. In Section 6 we 

discuss how to generalize our model, so that the n-vector 

model becomes its particular case too. 

1. Main Components of Interaction Model  

In Section 3 we will construct an interaction model to 

describe a physical system with many particles. Here we 

introduce its main components. 

Definition 1.1 

1. Fix a natural number v≥1 and consider a v-

dimensional integer lattice: 
 

( ){ }1 2
,..., , 1,...,v

i
i vτ τ τ= ∈ =ℤ ℤ  

 

with the distance between any two points 

,s ντ ∈ℤ defined by: 
 

1

.
v

i i

i

s sτ τ
=

− = −∑  

 

2. { }: νω ωΩ = →ℤ ℝ . 

An element  ω of Ω is called a configuration and is 
interpreted as a state of the physical system 

3. For any t
ν∈ℤ a function :

t
X Ω → ℝ  is defined by 

the following: 

 

( ) ( ).tX tω ω=  

 

4. Denote Σ the  σ-algebra generated by sets of the 

form {ω ∈ Ω | ω (t) ≤a} for all ,t aν∈ ∈ℤ ℝ . 

5. Fix P0, a probability measure on (Ω, Σ) such that for 

any 
1
,...,

n
a a ∈ℝ and distinct 

1
,...,

n
t t

ν∈ℤ : 

 

 { } ( )0 0

11

( ) ( )
n n

i i i i

ii

P t a P t aω ω
==

 
≤ = ≤ 

 
∏∩ .   (1) 

 
We call P0 the initial probability measure. 

For the rest of the paper we fix the objects , , ,X
ν Ω ∑ℤ  

and P0 from this definition. 

Remark 

 There always exists P0 satisfiying (1). For 
example, if F is any probability distribution function, 

we can take P0(ω(t) ≤ a) = F(a) for any t and define 
the rest by formula (1). 

Lemma 1.2 

 

1) (Ω, Σ, P0) is a probability space. 

2) { }t
X t ν∈ℤ  is an independent random field on this 

probability space. 

 

Proof 

The lemma immediately follows from the definitions. ■ 

Definition 1.3 

1. Consider a graph (V, E), where the set of vertices V 

is a finite subset of ν
ℤ  and E is the set of edges; 

each edge can be regarded as a pair of distinct 
vertices (there are no loops). The length of each 
edge is the distance between its end vertices. 

2. The graph (V, E) is called 1-connected if it is 
connected and the length of any of its edges equals 
1. 

3. For a finite set B ν⊂ ℤ  define its size S(B) as the 

minimum number of edges of 1-connected graphs 

(V, E) such that B V⊆ . 
 

Definition 1.4 

Here we introduce three main characteristics of 

interaction: , ,rλ Φ  and a set B. 
 
1. ,0 1λ λ∈ ≤ <ℝ . λ is called the main parameter of 

the model. 

2. , 1r r∈ ≥ℝ . r is called the radius of interaction. 

3. Denote ( ){ }andsizeB B S B rν⊂ ≠ ∅ ≤ℤB = . 

4. For each 
B

B ∈ ΦB,  is a random variable on the 

probability space 
0

( , , )
B

PΩ Σ , where ∑B is the σ-

algebra generated by sets of the form 

{ }( ) , ,t a t B aω ω∈Ω ≤ ∈ ∈ℝ ; all ΦB satisfy the 

condition: 

 
( )S B

B
λΦ ≤ . 

 

Φ is called the potential of the system. 
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Clearly, each set B∈B is finite. ΦB characterizes the 

interaction energy of the set B. If B consists of two or 

more points, then the random variable ΦB represents 
interaction between elements of the set B. If B = {t} is a 

singleton, then ΦB represents interaction of t with an 
external field and the influence of kinetic energy. 

Lemma 1.5 

If sets B, C∈B and B ∩C = ∅, then the random 

variables ΦB and ΦC are independent with respect to 
the probability measure P0, that is on the probability 

space (Ω, Σ, P0). 

Proof 

This is proven using standard techniques of 

probability theory, first for the case of discrete ΦB and 

ΦC, and then for general random variables ΦB, ΦC as 
limits of discrete random variables. ■ 

2. Gibbs Modification 

To describe interaction between particles, we modify 
the initial probability measure P0, so that the 
corresponding distribution of the random field 

{ }t
X t ν∈ℤ  is not independent any more. This section 

describes the modification in general. 

For any probability measure P on (Ω, Σ) denote .
P

 

the expectation with respect to P. 

Definition 2.1 

Suppose P is a probability measure on (Ω, Σ) and U 

is a bounded random variable on (Ω, Σ). 

Gibbs modification of the probability measure P by 

the random variable U is denoted PU and is defined as 

follows. For any event A∈Σ: 
 

( )

U

A P
U

U

P

I e
P A

e
= , (2) 

 
where IA denotes the indicator of event A. 

Remark 

Since the random variable U is bounded, both 

expectations in formula (2) exist and 0
U

P
e > . So PU(A) 

is always defined. 
The following lemma is used in literature without 

proof. In order to have a complete picture we provide an 
accurate proof here. 

Lemma 2.2 

In conditions of the previous definition: 

1) PU is a probability measure on (Ω, Σ); 

2) for any random variable Y on ( ), ,
U

U

P

P U

P

Ye
Y

e
Ω Σ = . 

Proof  

1)  

( ) 0
0;

( ) 1.

U

P
U

U U

P P

U U

P P
U

U U

P P

I e
P

e e

I e e
P

e e

∅

Ω

∅ = = =

Ω = = =

 

 
To complete the proof it remains to show that for any 

sequence of disjoint events Ai∈Σ (i = 1, 2, ...) the 
following holds: 
 

11

( )
U i U i

ii

P A P A
∞ ∞

==

 
= 

 
∑∪ . (3) 

 

Denote 
1

i

i

A A
∞

=

=∪ . First we prove: 

 

1

.
i

U U

PA A
P

i

I e I e
∞

=

= ∑  (4) 

 

U is a bounded random variable, so for some constant 
M, |U| ≤ M  and  0 < eU  ≤ eM. 

Since P is a probability measure, we have: 
 

( ) ( )
11

i i

ii

P A P A P A
∞ ∞

==

 
= = 

 
∑∪ . 

 
So for any  ε>0 there is n ∈ℕ  such that 

1

( ) M

i

i n

P A eε
∞

−

= +

≤∑ . Denote 
1

n i

i n

B A
∞

= +

= ∪ . Then: 

 

                                      ( ) M

n
P B eε −≤ .      (5) 

( )
( )

11

1 1

1

1

, .

.

0

5 .

i n

i n i n

i n

i n

n n

n n

i n A A B
ii

n n
U U U U

A A B A BP
i i PP

n
U U

A B
P

i P

n
U U U

A A BP P
i P

M M M

nB B
P P

M M

A A B I I I

I e I I e I e I e

I e I e

I e I e I e

I e e I e P B

by e eε ε

==

= =

=

=

−

= = +

 
= + = + 

 

= +

≤ − =

≤ ≤ =

  ≤ = 

∑

∑ ∑

∑

∑

∪∪

  

 
Thus: 
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1

.
i

n
U U

AA PP
i

I e I e ε
=

− ≤∑  

 

Therefore 
1

lim
i

n
U U

AA Pn
i P

I e I e
→∞

=

=∑ . That is, the series 

1
i

U

A
i P

I e
∞

=
∑ converges and 

1
i

U U

AA P
i P

I e I e
∞

=

=∑ . (4) is 

proven. 

Proof of (3) 
 

( ) 1

1

1 1

( ) 4

( ).

i

i

U
U

A
PA

iP
U i U

U U
i

P P

U

A
P

U i
U

i i
P

I eI e
P A P A by

e e

I e
P A

e

∞

∞
=

=

∞ ∞

= =

 
= = =   =   

 

= =

∑

∑ ∑

∪
 

 
2) Consider 3 cases. 

• Case 1: Y = IA (Y is an indicator of some event A∈Σ) 

Then ( )
U U

U U

A P P
A UP P U U

P P

I e Ye
Y I P A

e e
= = = = . 

• Case 2: 
1

n

i i

i

Y a Y
=

= ∑ , where each Yi is an indicator. 

Then: 
 

[ ]
1

1

1

1

1

.

U U

n

i iP P
i

n
U

U
i in Pi

iP
i

U U
i

P P

n
U

Ui i

i P P

U U

P P

Y a Y by Case

a Y eY e
a

e e

Y e
Ye

e e

α

=

=

=

=

= =

= =

= =

∑

∑
∑

∑

 

 

• Case 3: general case. 
 

It is a well known fact in probability theory that any 
random variable can be represented as a uniform limit of 

discrete random variables. Thus, for any ω∈Ω: 
 

( ) ( )lim n
n

Y Vω ω
→∞

= , 

 
where the convergence is uniform with respect to ω∈Ω 
and each Vn is a discrete random variable with a finite 
number of values; this is a random variable from Case 2. 
 

Then: 
 

lim
UU

n PPn
V Y

→∞
= . (6) 

As n→ ∞, we have for any ω∈Ω: Vn(ω) − Y(ω) → 0 

uniformly on Ω, so |Vn(ω)− Y(ω)| → 0 and: 
 

 lim | | 0n
Pn

V Y as n
→∞

− → → ∞ . (7) 

 
U is a bounded random variable, so for some constant 

M,  |U| ≤ M  and  0 < eU ≤ eM. 
 

( )

( )

( )0 7 .

U U U

n n
P P P

U M

n n
PP

M

n
P

V e Ye V Y e

V Y e e V Y

e V Y as n by

− = −

≤ − ≤ −

= − → → ∞

 

 
Therefore: 

 

lim .U U

n
P Pn

V e Ye
→∞

=  (8) 

( ) [ ]6 lim 2 lim
U U

U

n P
nP Pn n U

P

V e
Y by V by Case

e
→∞ →∞

=   = = =   

( )
lim

8 .

U U
n Pn P

U U

P P

V e Ye
by

e e

→∞= =   =    ■ 

 
Theorem 2.3 

Suppose P is a probability measure on (Ω, Σ), U1 and U2 

are bounded random variables on (Ω, Σ) and U = U1 + U2. 

Suppose 
1

1 U
P P=  and ( )

2
2 1

 
U

P P=  are consecutive 

Gibbs modifications. Then P2 = PU. 

Proof 

Using Lemma 2.2.2), for any event A∈Σ we get: 
 

2 1

2 1

1

2 2 1

1

1

2
( )

U U

A
P

U U
A

P P

U U U

P P

U

P

I e e

I e e
P A

e e e

e

= =  

 

2 1 1 2

2 1 1 2

( )

U U U U

A A
P P

U
U U U U

P P

I e e I e
P A

e e e

+

+
= = = .   ■  

 

3. Finite Interaction Model 

Denote 0 = (0,...,0), the origin in ν
ℤ . 

Definition 3.1. 

A finite interaction model with characteristics λ, r, 

Φ (from Definition 1.4) is a sequence ( ), , ,X U Λ ΛΛ A of 

four objects defined as follows. 
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1. Λ = { t ν∈ℤ | || t–0 ||≤ N} for a fixed positive integer 

N. Thus, Λ  is a cube in the lattice ν
ℤ . 

2. X is the fixed random field on (Ω, Σ) introduced in 
Definition 1.1. 

3. A function :UΛ Ω → ℝ is called the interaction 

energy and is defined by the following: 
 

( ) ( )for any ,
B

B B

Uω ω ωΛ
∈ ⊂Λ

∈Ω = Φ∑
B,

, (9) 

 
where the set B is defined in Definition 1.4. 

UΛ(ω) characterizes the energy of configuration 
ω  in Λ . 

4. Denote ( )0 U
P P

Λ
Λ = , the Gibbs modification of the 

initial probability P0 by the interaction energy UΛ. 

AΛ is the probability space ( ), , PΛΩ Σ . 

 

This ends the Definition 3.1. 

Remark 1 

The random variable UΛ  is bounded because the sum 

(9) has a finite number of addends and each ( )S B

B
λ λΦ ≤ < , 

since 0 1λ≤ < . Therefore Lemma 2.2.1) holds when stated 

for PΛ  instead of :
U

P PΛ is a probability measure on (Ω, Σ) 

and AΛ is indeed a probability space. 

Remark 2 

The random field { }t
X t ν∈ℤ  is independent on the 

base probability space (Ω, Σ, P0) but it may not be 

independent on the probability space ( ), , PΛΩ Σ . 

The finite interaction model describes a physical 
system with many particles represented by points in an 
integer cube. The random field Xt describes some 
property of the physical system. 

The main parameter λ  from Definition 1.4 is positive 
and characterizes the temperature of the system: low 

values of λ correspond to high temperatures. Our 
interaction model describes systems with fairly high 

temperatures. For λ = 0 the model describes ideal gas. 
The interaction model generalizes some well-known 

models in statistical mechanics (we give details in 
Sections 5 and 6). In those models the values of random 
variables Xt are bounded. Here we have a more general 
case when the values of Xt are not bounded. 

For brevity we denote 
0

.
P

 as 
0

. . 

Lemma 3.2. 

Suppose 
1
,..., \

n
t t ν∈ Λℤ  and 

1
,...,

n
a a ∈ℝ . Then 

1 1 0 1 1
( ) ,..., ( ) ( ) ,..., ( ) .

n n n n
P t a t a P t a t aω ω ω ωΛ    ≤ ≤ = ≤ ≤     

Proof 

For any i = 1, 2, ..., n, denote { }( )
i i i

A t aω= ≤  and 

denote 
1

n

i

i

A A
=

=∩ . 

If t ∈ Λ and a ∈ℝ , the events Ai and { }( )t aω ≤  are 

independent with respect to the probability measure P0, 

that is on the probability space (Ω, Σ, P0); this follows 
from the Definition 1.1. Based on that, similarly to 

Lemma 1.5 it is proven that for any  B⊂ Λ the random 

variables IA and ΦB are independent with respect to P0. 

Therefore IA and 
,

BU

B B

e eΛ Φ

∈ ⊂Λ

= ∏
B

 are independent with 

respect to P0. Using this independence we get: 

 

1 1

00 0

0 0

( ) ,..., ( )

( )

n n

U U

A A

U U

P t a t a

I e I e
P A

e e

ω ω

Λ Λ

Λ Λ

Λ

Λ

 ≤ ≤ 

= = =
 

 0 0 1 1
0

( ) ( ) ,..., ( ) .A n nI P A P t a t aω ω = = = ≤ ≤   ■ 

 
For the rest of this section we fix the finite interaction 

model from Definition 3.1. 

Definition 3.3 

Here we introduce random variables U′ and U″. For 

any ω∈Ω we define: 

 

1 1

'( ) ( ), "( ) ( )
B B

B B ,|B|= B B ,|B|>

U Uω ω ω ω
∈ ⊂Λ ∈ ⊂Λ

= Φ = Φ∑ ∑
B, B, 

. 

 

Thus, U = U′+ U″. The function U is split into U′ and 

U″, where U′ is a sum over singleton sets B and U″ is a 
sum over sets B with two or more elements. 

Consider consecutive Gibbs modifications P′= (P0)U ′ 

and P″ = (P′)U″. We call P′ the single modification and 

P″ the plural modification. 

Lemma 3.4. 
 
1) For any t ∈ Λ and x ∈ℝ : 

 

( )
{ }

{ }

0

0

' ,

t

t

A

t

I e

P X x

e

Φ

Φ
≤ =  

 
where A = {Xt ≤ x}. 

2) For any \t ν∈ Λℤ and x ∈ℝ : 
 

( ) ( )0
'

t t
P X x P X x≤ = ≤ . 
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3) After the single modification the field { }t
X t ν∈ℤ  is 

still independent. That is, this field is independent 

on the probability space (Ω, Σ, P′). 

Proof 

For brevity we will write { }τΦ  as τΦ . Thus: 

 

'U τ
τ∈Λ

= Φ∑  and 'Ue e τ

τ

Φ

∈Λ

= ∏ . (10) 

 

1) ( ) ( ) ( )
'

0 0

'

0

0

' ' 10

U A
A

t
U

I e
I e

P X x P A by
e

e

τ

τ

τ

τ

Φ

∈Λ

Φ

∈Λ

≤ = = =   = 

∏

∏

,
0

, 0

( )t

t

A

t

t

I e e

e e

τ

τ

τ τ

τ τ

Φ Φ

∈Λ ≠

Φ Φ

∈Λ ≠

 
⋅ ⋅  

 
= =

∏

∏

 (due to independence with 

respect to measure P0 by Lemma 1.5) 

0
, 0 0

0
0

, 0

.

.

.

t

t

t

t

A
At

t

I e e
I e

e
e e

τ

τ

τ τ

τ τ

Φ Φ
Φ

∈Λ ≠

Φ
Φ Φ

∈Λ ≠

⋅

= =
∏

∏
 

2) Denote { }t
A X x= ≤ .  

'

0

'

0

'( ) '( )

U

A

t
U

I e
P X x P A

e
≤ = =  = [by (10)] 0

0

A
I e

e

τ

τ

τ

τ

Φ

∈Λ

Φ

∈Λ

=
∏

∏
= 

(due to independence with respect to measure P0) = 

= ( )
0

0
0 00

0

( )

A

A t

I e

I P A P X x

e

τ

τ

τ

τ

Φ

∈Λ

Φ

∈Λ

= = = ≤
∏

∏
. 

3) We need to prove that for any 
1
,...,

n
a a ∈ℝ  and 

distinct 
1
,...,

n
t t

ν∈ℤ : 

 

 
( )

( ) ( )
1 2

1

1 2

1

' , ,...,

' ... ' .

n

n

nt t t

nt t

P X a X a X a

P X a P X a

≤ ≤ ≤

= ≤ ⋅ ⋅ ≤
 (11) 

 

Denote t = t1, B = {Xt ≤ a1} and 

2
2{ ,..., }

n
nt t

C X a X a= ≤ ≤ . First we prove: 

 

'( ) '( ) '( )P B C P B P C∩ = . (12) 

 

Its left-hand side equals: 

( ) ( )
'

0 0

'

0

0

' 10

U B C
B C

U

I I e
I e

P B C by
e

e

τ

τ

τ

τ

Φ

∩ ∈Λ

Φ

∈Λ

⋅

∩ = =   = 

∏

∏
. 

 

Consider 2 cases. 

• Case 1: t ∈ Λ . 

Then: 
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= (due to independence with respect to measure P0 
by Lemma 1.5): 
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• Case 2: \t ν∈ Λℤ . 

Due to independence with respect to measure P0 we 
have: 
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by part 2). Thus, (12) is proven. Then: 
 

1 2

1 2

1 2

1 2

'( , ,..., )

'( ) '( ,..., ).

n

n

nt t t

nt t t

P X a X a X a

P X a P X a X a

≤ ≤ ≤

= ≤ ⋅ ≤ ≤
 

 

Continuing by induction we get (11). ■ 
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Thus, the single modification can change 

distributions of random variables ( )t
X t ν∈ℤ  but it does 

not change their independence. Note that we do not put 
any restriction on initial distributions of Xt. 

4. Infinite Interaction Model 

Definition 4.1 

An infinite interaction model with characteristics λ, 

r, Φ is the ordered sequence of two objects (X, A) 

defined as follows. 
 
1. X is the fixed random field on (Ω, Σ) introduced in 

Definition 1.1. 
 
2. For any N = 1,2,... denote 

N
Λ = { t ν∈ℤ | || t–0 ||≤ N}. 

 
Let ( , )

N N
N X

Λ Λ
Λ A  be the finite interaction model and 

N
NP P

Λ
= the corresponding probability measure from 

Definition 3.1. 

Let Pλ be a probability measure on (Ω, Σ) that is a 
limit of the probability measures PN in some sense, 

for example, their weak limit, as N→∞. 

A is defined by: 
 

( ), ,Pλ= Ω ΣA . 

 

Thus, A is a probability space. 

3. The probability measure Pλ is called Gibbs 

measure. 

4. The infinite interaction model (X, A) is also called the 

thermodynamic limit or macroscopic limit of the 

finite interaction models ( ), ,
N N

N X U
Λ Λ

Λ A as N→∞. 

 

Remark 

The problem of existence of the probability measure 

Pλ as a limit of the probability measures PN is studied in 
literature but not in a rigorous mathematical context; it 
needs further investigation. 

5. Particular Cases of Interaction Model 

Ising Model 

Ising model is an important mathematical model of 
ferromagnetism in statistical mechanics. It can be 
described as a particular case of the interaction model: 
 

• each configuration { }: 1νω → ±ℤ ; 

• P0(Xs = 1) = P0(Xs = −1) = 0.5; 

• r = 1; 

• { } ( ) ( )s ss
h Xω λ ωΦ = , where ( )s

h s ν∈ℤ  are real 

numbers characterizing influence of an external 
field;  

• { } ( ),
( ) ( )st s ts t

J X Xω λ ω ωΦ =  if || || 1s t− = ; here Jst are 

real numbers characterizing interaction of points s 
and t;  

• in other cases ΦB = 0. 
 

According to Definition 3.3, UΛ = U′ + U″, where: 
 

,

'( ) ( ),

''( ) ( ) ( ).

t t

t

st s t

s t

U h X

U J X X

ω ω

ω λ ω ω
∈Λ

∈Λ

=

=

∑

∑
 

 
After the single modification (by U′) the distribution 

of Xt is still independent and is given by: 
 

( ) ( )
2

2 2

1
' 1 ; ' 1

1 1

t t

t t t t

h h

t th h h h

e e
P X P X

e e e e

−

−
= − = = = =

+ + +
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After the plural modification (by U″) we get the Ising 

model, that is the modification by UΛ, as proven in 

Theorem 2.3. Modification in two steps can simplify 

computations. 

Some authors study the Ising model with four point 

interaction; see, for example, (Yang et al., 2017) and 

references in it. In that case we add to the above 

definition of ΦB a clause for a 4-point set B: 
 

( ) ( )
B B t

t B

J Xω λ ω
∈

Φ = ∏ , 

 
where B consists of the vertices of a unit square or the 
vertices of a tetrahedron with three edges of length 1 and 

three other edges of length 2 . 

Potts Model 

Standard Potts model can be described as a particular 
case of the interaction model: 
 

• each configuration { }: 1,2,...,qνω →ℤ ; 

• ( )0

1
, 1,2,...,tP X i i q

q
= = = ; 

• r = 1; 

• { } ( ),
( ) ( ), ( )

st s ts t
J X Xω λ δ ω ωΦ =  if || || 1s t− = ; 

here ( )
1 ,

,
0 .

if x y
x y

if x y
δ

=
= 

≠
 

In other cases ΦB = 0. 
 

The Ising model is a particular case of the standard 

Potts model when q = 2 (it can be reduced to the Ising 

model by linear transformation Xt →2Xt −3). 
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6. Discussion 

In this study we develop a mathematically rigorous 

concept of interaction model for a physical system with 

many particles, which interact with an external force and 

with one another; a random field ( )
t

X t ν∈ℤ  models 

some property of the system such as electric charge, 

density etc. We introduce a finite model first and then 

define the thermodynamic limit of the finite models with 

Gibbs probability measure. Unlike most existing models, 

in our model the set of values of Xt can be unbounded, 

which provides more generality. 

We study properties of the interaction model. In 

particular, we split Gibbs modification of the initial 

independent probability measure into two steps 

reflecting the influence of an external field on the first 

step and the interaction between particles on the 

second step. The first-step modification is 

mathematically simple and leaves the field Xt 

independent, therefore this construction simplifies 

mathematical computations. 

Next we show that Ising and Potts models are 

particular cases of the interaction model. If we change 

the set of values of the random field Xt from ℝ  to n
ℝ , 

then the generalized interaction model will also 

include the n-vector model and its special cases for n = 2 

(XY-model) and n = 3 (Heisenberg model). We are 

planning to research further mathematical properties 

and physical applications of the interaction model. 
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