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Abstract: In this study, a computational method referred to as Perturbation 

Iteration Transform Method (PITM), which is a combination of the 

conventional Laplace Transform Method (LTM) and the Perturbation 

Iteration Algorithm (PIA) is applied for the solution of Newell-Whitehead-

Segel Equations (NWSEs). Three unique examples are considered and the 

results obtained are compared with their exact solutions graphically. Also, 

the results agree with those obtained via other semi-analytical methods viz: 

New Iterative Method and Adomian Decomposition Method. This present 

method proves to be very efficient and reliable. Mathematica 10 is used for 

all the computations in this study. 
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Introduction 

The numerical and analytical approximations of 

Partial Differential Equation (PDE) problems have 

always been an active field of study in Physics, 

Mathematics and Engineering. Many researchers have 

proposed several approaches to solve different PDE 

problems. For instance, He (2005) solved some wave 

equations with the Homotopy Perturbation Method 

(HPM). Akinlabi and Edeki (2016) also solved initial-

value wave-like models using the modified Differential 

Transform Method (DTM). Likewise, Edeki et al. (2016) 

considered the numerical and the analytic solutions of 

time-fractional linear Schrödinger equations. 

In this study, we are concerned with the solution of 

the Newell-Whitehead-Segel Equations (NWSEs) 

expressed as follows: 

 

( ) ( ) ( ) ( )n

t xxx,t r x,t s x,t t x,tµ µ µ µ= + −   (1) 

 

Subject to: 
 

( ) ( )x,0 xµ ϕ=   (2) 

 

where, r,s,t∈ℝ  with r>0 and n +∈ℤ . 

Equation (1) was derived by Newell and Whitehead 

(1969; Segel, 1969) and it has been used in modeling 

various forms of problems that arise from fluid 

mechanics. It has applications in Chemical, Bio-

Engineering and Mechanical Engineering, etc. This 

equation has been applied to a number of problems. An 

example of such is in the description of traveling waves 

by Malomed (1996). Several authors have proposed 

different methods of solving this equation in the past 

years. Saravanan and Magesh (2013) solved two nonlinear 

NWS equations with both the reduced DTM and the 

Adomian Decomposition Method (ADM). A comparative 

test was carried out between these two methods where it 

was shown that the reduced DTM requires less 

computational work than the ADM. Prakash and Kumar 

(2016) used the He's Variational Iteration Method to solve 

non-linear NWSEs, Macías-Díaz and Ruiz-Ramírez 

(2011) considered the generalised NWSEs using a non-

standard symmetry-preserving method. Others are 

Aasaraai (2011; Ezzati and Shakibi, 2011; Nourazar et al., 

2011) and so on. 

The idea of using Perturbation Iteration Transform 

Method (PITM) to solve PDE problems was first 

pioneered by (Khalid et al., 2016), where the method 

was used to solve Klein-Gordon equations. The basic 

idea of this approach is that the PIA and the Laplace 

Transform (LT) Method are combined to approximate 

models arising from different fields. 

The remaining part of the paper is structured as 

follows: In section 2 and 3, we review the PIA and the 

PITM respectively. Section 4 is on the application of the 

PITM to three cases of NWS equations to show its 

efficiency. The concluding remark is given in section 5. 
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Perturbation Iteration Algorithm (Aksoy and 

Pakdemirli, 2010) 

In this section, we illustrate how the PIA works. If 

we develop a perturbation algorithm by considering one 

correction term in the perturbed expansion and the 

correction terms of the first derivatives in the Taylor 

series expansion, say n = 1 and m = 1. The algorithm will 

be referred to as PIA(1,1). 

Now, let us consider a second order differential 

equation: 
 

( ), , , 0F µ µ µ ε′′ =ɺ   (3) 

 

where, ( ),x tµ µ= , 
t

µ
µ

∂
=
∂

ɺ , 
2

2x

µ
µ

∂
′′ =

∂
 and ε is the newly 

introduced perturbed parameter. 

And if we consider only one correction term in the 

expansion: 
 

( )1n n c n
µ µ ε µ+ = +   (4)  

 
Thus, substituting (4) in (3) and expanding such in 

Taylor series with first derivatives will give: 
 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

, , ,0 , , ,0

, , ,0

 , , ,0 , , ,0 0

c n

c n

c n

F F

F

F F

µ

µ

µ ε

µ µ µ µ µ µ ε µ

µ µ µ ε µ

µ µ µ ε µ µ µ µ ε

′′

′′ ′′ +
 ′′ ′′+


′′ ′′+ + =

ɺ
ɺ ɺ ɺ

ɺ

ɺ ɺ

  (5) 

 

where, µ = µ(x,t), 
F

Fµ µ
∂

=
∂ɺ
ɺ

, 
F

Fµ µ′′

∂
=

′′∂
, 

F
Fµ µ

∂
=
∂

, 
F

Fε ε
∂

=
∂

 

and ε the perturbation parameter to be evaluated at  ε = 0. 

Reorganizing (5), we have: 
 

( ) ( ) ( )c c cn n n

F
FF F

F F F

ε
µ µ

µ µ µ

εµ µ µ′′
+

′′+ = − −
ɺ ɺ ɺ

ɺ   (6) 

 
With a guessed value, u0, the term (µc)0 is obtained 

from (6) and then put in (4) to evaluate µ1. We 
continue the iterative process using (6) and (4) till the 
result(s) are satisfied.  

Perturbation Iteration Transform Method 

(Khalid et al., 2016) 

To demonstrate the main idea of this method, we 

consider a PDE with boundary conditions of the form: 
 

( ) ( ) ( ) ( ) ( ), , , , ,A x t B x t C x t D x t h x tµ µ µ µ+ + + =   (7) 

 
with the initial condition: 

 

( ) ( ),0x xµ ϕ=   (8) 

where, A
t

∂
=
∂

 is the first order linear differential 

operator, 
2

2
B

x

∂
=
∂

is the second order linear differential 

operator, C,D are the linear and nonlinear terms and 

h(x,t) is the source term. 

Taking the LT of both sides of (7) gives: 

 

( ) ( ) ( )
( ) ( )

, , ,

, ,

L A x t +L B x t +L C x t

+L D x t =L h x t

µ µ µ

µ

          

      
  (9) 

 

Which on using the differential property of LT yield: 

 

( ) ( ) ( )

( ) ( ) ( )

1
, ,

1
, , ,

x
L A x t = L h x t

s s

L B x t C x t D x t
s

ϕ
µ

µ µ µ

  +     

−  + +  

  (10) 

 

Applying the Inverse LT to both sides of (10) gives: 

 

( ) ( )

( ) ( ) ( )1

, ,

1
, , ,

x t =H x t

L L B x t C x t D x t
s

µ

µ µ µ−  −  + +    

  (11) 

 

where, H(x,t) is the term gotten from the imposed initial 

condition with the source term. 

So, by using the PITM (11) becomes: 

 

( ) ( ) ( )

( ) ( ) ( )1

, , ,

1
, , ,

cx t H x t x t

L L B x t C x t D x t =0
s

µ µ ε

µ µ µ ε−

− +

 +  + +    

  (12) 

 

Thus: 

 

( ) ( ) ( )

( ) ( ) ( )1

, ,
,

1
, , ,

c

H x t x t
x t =

L L B x t C x t D x t
s

µ
µ

ε

µ µ µ−

−

 
−  + +    

  (13) 

 
This is the combined form of the LTM and the PIA. 

The initial point, (µc)0 is then obtained from (13) and 

then substituted in (4) to obtain µ1. The process is 

iteratively repeated for µ2, µ3 and so on. The 

approximate solution is thus obtained by: 

 

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , ,x t x t x t x t x tµ µ µ µ µ= + + + +⋯   (14) 

 

Illustrative and Numerical Examples 

Here, the proposed method is applied to the following 

problems. 
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Cases I, II and III 

Case I: Consider the Newell-Whitehead-Segel 

equation (Patade and Bhalekar, 2015): 
 

( ) ( ) ( ) ( )2, 5 , 2 , ,t xxx t x t x t x tµ µ µ µ= + +   (15) 

 
Subject to:  

 

( ),0xµ λ=      (16) 

 
With the exact solution: 

 

( )
2t

2t

2e

2 1 e

λ
λ+ −

     (17) 

 

Solution Procedure to Case I 

Taking the LT of both sides of (15), we get: 
 

( ) ( ) ( ) ( )21
, 5 , 2 , ,xxL x t = + L x t x t x t

s s

λ
µ µ µ µ   + +      (18) 

 
Applying the ILT to both sides of (18) gives: 

 

( ) ( ) ( ) ( )1 21
, 5 , 2 , ,

xx
x t = L L x t x t x t

s
µ λ µ µ µ−   + + +   

  (19) 

 
Now, by the PITM (19) becomes: 

 

( ) ( )

( ) ( ) ( )1 2

, ,

1
5 , 2 , ,

c

xx

x t x t

L L x t x t x t =0
s

µ λ µ ε

µ µ µ ε−

− +

  − + +   

  (20) 

 
Thus: 

 

( ) ( )

( ) ( ) ( )1 2

,
,

1
5 , 2 , ,

c

xx

x t
x t =

L L x t x t x t
s

µ λ
µ

ε

µ µ µ−

− +

  + + +   

  (21) 

 
This implies that: 

 

( )
( )

( )

( )

0

2

1

3 2 3 3 3 4
2 2 2

2

3 3 2 4 2 5 2 4 2 5 3

3

6 3 4 4 5 4 6 4 7 4 6 5

7 5 6 6 7 6 7 7 7 8

,

, 2

4 4
, 2

3 3 3

4 2 2 4 2 4
,

3 3 3 5 3 5

8 4 16 2

8 6 5 3 63 3

32 8 8

63 9 21 63 63

x t

x t t t

t t t
x t t t

t t t t t t
x t

t t t t t t

t t t t t

µ λ

µ λ λ

λ λ λ
µ λ λ

λ λ λ λ λ λ
µ

λ λ λ λ λ λ

λ λ λ λ λ

=

= +

= + + + +

= + + + + +

+ + + + + +

+ + + + +

⋮

 

Therefore, the solution µ(x,t) is given by: 

 

( ) ( ) ( ) ( ) ( )0 1 2 3

3 2 3 3
2 2 2 2

3 4 3 3 2 4 2 5 2 4 2

5 3 6 3 4 4 5 4 6 4 7 4

6 5 7 5 6 6 7 6 7 7 7 8

, , , , ,

4 4
2 2

3 3

4 2 2 4 2

3 3 3 3 5 3

4 8 4 16

5 8 6 5 3 63

2 32 8 8

3 63 9 21 63 63

x t x t x t x t x t

t t
t t t t

t t t t t t

t t t t t t

t t t t t t

µ µ µ µ µ

λ λ
λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

λ λ λ λ λ λ

= + + + +

= + + + + + +

+ + + + + +

+ + + + + +

+ + + + + + +

⋯

⋯

  (22) 

 

Case II: Consider the Newell-Whitehead-Segel 

equation (Patade and Bhalekar, 2015): 

 

( ) ( ) ( ) ( )2, , 2 , 3 ,t xxx t x t x t x tµ µ µ µ= + −   (23) 

 

Subject to: 

 

( ),0xµ λ=     (24) 

 

With the exact solution: 

 

( )
2t

2t

2e

2 3 1 e

λ
λ− + −

    (25) 

 

Solution Procedure to Case II 

Taking the LT of both sides of (23), we get: 

 

( ) ( ) ( ) ( )21
, , 2 , 3 ,xxL x t = + L x t x t x t

s s

λ
µ µ µ µ   + −        (26) 

 

Applying the ILT to both sides of (26) gives: 

 

( ) ( ) ( ) ( )1 21
, , 2 , 3 ,

xx
x t = +L L x t x t x t

s
µ λ µ µ µ−   + −   

    (27) 

 
Now, by the PITM (27) becomes: 

 

( ) ( )

( ) ( ) ( )1 2

, ,

1
, 2 , 3 ,

c

xx

x t x t

L L x t x t x t =0
s

µ λ µ ε

µ µ µ ε−

− +

  − + −   

    (28) 

 
Thus: 

 

( ) ( )

( ) ( ) ( )1 2

,
,

1
, 2 , 3 ,

c

xx

x t
x t =

L L x t x t x t
s

µ λ
µ

ε

µ µ µ−

− +

  + + −   

    (29) 

 

This implies that: 
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( )
( )
( )

( )

0

2

1

2 2 2 3 2 3 3 3 4

2

3 5 2 5 3
3 2 4 2 4 3

3

4 4 5 4 7 4
6 3 6 4 6 5

7 5 7 6 7 7 7 8
6 6

,

, 2 3

, 2 3 4 12 9

4 12 36
, 2 2 6

3 5 5

9 27 48
8 36 54

2 5 7

288 648 648 243
27

7 7 7 7

x t

x t t t

x t t t t t t

t t t
x t t t t

t t t
t t t

t t t t
t

µ λ

µ λ λ

µ λ λ λ λ λ

λ λ λ
µ λ λ λ

λ λ λ
λ λ λ

λ λ λ λ
λ

=

= −

= − − + −

= − − − + +

+ − − − − +

+ − − + −

⋮

 

 

Therefore, the solution µ(x,t) is given by: 
 

( ) ( ) ( ) ( ) ( )0 1 2 3

2 2 2 2 3 2 3 3 3 4

3 5 2 5 3
3 2 4 2 4 3

4 4 5 4 7 4
6 3 6 4 6 5

7 5 7 6 7 7 7 8
6 6

, , , , ,

2 3 2 3 4 12 9

4 12 36
2 2 6

3 5 5

9 27 48
8 36 54

2 5 7

288 648 648 243
27

7 7 7 7

x t x t x t x t x t

t t t t t t t

t t t
t t t

t t t
t t t

t t t t
t

µ µ µ µ µ

λ λ λ λ λ λ λ λ

λ λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ λ λ
λ

= + + + +

= + − + − − + −

+ − − − + +

+ − − − − +

+ − − + − +

⋯

⋯

    (30) 

 
Case III: Consider the Newell-Whitehead equation 

(Patade and Bhalekar, 2015): 
 

( ) ( ) ( ) ( )3, , 2 , 3 ,t xxx t x t x t x tµ µ µ µ= + −     (31) 

 
Subject to: 

 

( )
2

2

2
,0

3

x

x x

e
x

e e
µ =

+
    (32) 

 

Solution Procedure to Case III 

Taking the LT of both sides of (31), we get: 
 

( )

( ) ( ) ( )

2

2

3

1 2
,

3

1
, 2 , 3 ,

x

x x

xx

e
L x t =

s e e

+ L x t x t x t
s

µ

µ µ µ

   +

 + − 

    (33) 

 
Applying the ILT to both sides of (33) gives: 

 

( )

( ) ( ) ( )

2

2

1 3

2
,

3

1
, 2 , 3 ,

x

x x

xx

e
x t =

e e

+L L x t x t x t
s

µ

µ µ µ−

+

  + −   

    (34) 

 
Now, by the PITM (34) becomes: 

 

 

( ) ( )

( ) ( ) ( )

2

2

1 3

2
, ,

3

1
, 2 , 3 ,

x

cx x

xx

e
x t x t

e e

L L x t x t x t =0
s

µ µ ε

µ µ µ ε−

− +
+

  − + −   

    (35) 

Thus: 
 

( )
( )

( ) ( ) ( )

2

2

1 3

2
,

3
,

1
, 2 , 3 ,

x

x x

c

xx

e
x t

e e
x t =

L L x t x t x t
s

µ
µ

ε

µ µ µ−

− +
+

  + + −   

    (36) 

 
This implies that: 

 

( ) ( )
( )

( )
( )

( )
( ) ( )

( )
( )

( ) ( )

( )
( )

( )

622
3

0 1 32 2

2 222
3

22 2

2
2 2

2

3 2
2 2

2 23 3 43
2 2

2 4 6

2 3 4 33

2

3 6

22
, ,

3

4 22 6

2 22 4

3

3 1 9
,

1 1

3 6 22 6 3
,

1

xx

x x x x

x x xx

x x x x

x x x x
x

x x x x

x x x

x x

x x x x x

x

 ee
x t x t t

e e e e

 e e ee
t t

e e e e

e e e e
e t

e e e e

 e e t  e t
x t

e e

 e e e e e t
x t

e

µ µ

µ

µ

= = −
+ +

+
+ −

+ +

 + + + −
 + + 

+
= −

+ +

− + − +
=

+

−
( )
( )

( )
( )

( )
( )

( )
( )

( )

3
3 2 5 3 2 73 3

2 2

8 12

2
5 2 9 7 2 113 3

2 2

14 16

9 133
2

18

9 11 20 11 243 1

5 1 14 1

243 1 6561 1

2 1 22 1

6561

26 1

x x x x x

x x

x x x x

x x

x

x

 e e e t  e e t

e e

 e e t  e e t

e e

 e t

e

− + +
−

+ +

+ +
+ −

+ +

+
+

⋮
 

 

Therefore, the solution µ(x,t) is given by: 
 

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )
( ) ( )

( )
( )

( )

0 1 2 3

2 26 222 2
33

3 22 22 2

2
2 2 232

22

3 2 4
2 2

2 3 433 43
22

6

, , , , ,

4 222 2 6

3

2 2 3 12 4

3 1

3 6 22 6 39

1

x x xxx x

x x x xx x x x

x x x xx x
x

x x x x x

x x x xx

x

x t x t x t x t x t

 e e e ee e
t t t

e e e ee e e e

e e  e e te e
e t

e e e e e

 e e e e e e t

e

µ µ µ µ µ= + + + +

+
= − + −

+ ++ +

 + ++ + − +
 + + + 

− + − +
− +

+

⋯

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

3

6

3
3 2 5 3 2 73 3

2 2

8 12

2
5 2 9 7 2 113 3

2 2

14 16

9 133
2

18

1

9 11 20 11 243 1

5 1 14 1

243 1 6561 1

2 1 22 1

6561

26 1

x

x

x x x x x

x x

x x x x

x x

x

x

t

e

 e e e t  e e t

e e

 e e t  e e t

e e

 e t

e

+

− + +
− −

+ +

+ +
+ −

+ +

+ +
+

⋯

   (37) 
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Fig. 1. Solution graph for case I 

 

 
 

Fig. 2. Solution graph for case II  

 

 
 

Fig. 3. Solution graph for case III  
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Figure 1 is for the exact solution and the PITM 
(approximate solution) of case I. 

Figure 2 is for exact solution and the PITM 
(approximate solution) of case II. 

Figure 3 is for exact solution and the PITM 
(approximate solution) of case III. 

Discussion of Results 

In this subsection, we present the graphs for the exact 
solution and the PITM (approximate solution) for the 
three cases. 

Conclusion 

In this study, the solutions (roots) of the Newell-

Whitehead-Segel models are gotten using Perturbation 

Iteration Transform Method as a proposed computational 

method. The results are obtained with less computational 

time and are compared graphically with their exact 

solutions. In addition, these results are in good agreement 

with those by Patade and Bhalekar (2015) using other 

semi-analytical method: Adomian Decomposition Method 

and New Iterative Method. We therefore, propose this 

method for the solutions of both linear and non-linear 

PDEs in other aspects of applied sciences. 
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