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Abstract: In this article, the convoluted exponential distribution which 

was derived as the sum of two independent exponentially distributed 

random variables was compared with the exponential distribution in 

terms of flexibility when applied to four real data sets. The idea is to 

verify if the convoluted exponential distribution would perform better 

than the exponential distribution in modeling real life situations. Some 

other basic statistical properties of the convoluted exponential 

distribution were also identified. 
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Introduction 

The concept of convolution is a very useful topic in 
the theory of statistics. As a result, a number of 
researchers have worked on the sum of Independent and 
Identically Distributed (IID) random variables. For 
instance, Sun (2011) defined and studied the convoluted 
beta Weibull distribution, Shittu et al. (2012) proposed 
and studied the convoluted beta exponential distribution, 
Oguntunde et al. (2014) studied the convoluted 
exponential distribution. Meanwhile, applications to real 
data sets were not examined in all these researches. 

Let Z denote a random variable, it has the Probability 
Density Function (PDF) of the convoluted beta Weibull 
distribution (the sum of two independent beta Weibull 
variates) given by: 
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The corresponding Cumulative Density Function 

(CDF) is given by: 
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For z, β1, β2, γ1, γ2,>0 and β1γ2  ≠ β2γ1 

where, β1, β2, γ1 and γ2 are scale parameters. 
Details about how Equation 1 and 2 were derived are 

rigorously explained in Sun (2011). 
In the same way, the PDF of the convoluted beta 

exponential distribution is given by: 
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The corresponding CDF is given by: 
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For b1, b2, λ1, λ2, z > 0 
For details about the construction of Equation 3 and 

4, readers are referred to Shittu et al. (2012). 
Another interesting part of the concept of convolution 

is when the sum of independent random variables from 
different distributions is considered. 

The interest of this research is to further explore the 
convoluted exponential distribution defined in 
Oguntunde et al. (2014) by assessing its flexibility over 
the exponential distribution using four real data sets. The 
rest of this paper is structured as follows; details about 
the convoluted exponential distribution (including 
existing and new properties) are provided in section 2, 
real life applications are discussed in section 3, followed 
by a concluding remark. 

Convoluted Exponential Distribution: 

Existing and More Properties 

In this section, the PDF, CDF and basic properties of 

the convoluted exponential distribution are highlighted 

as available in Oguntunde et al. (2014). Also, some other 

new properties are given. 
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The PDF of the convoluted exponential distribution is 

given by: 

 

( ) ( )1 2-λ z -λ z1 2
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 (5) 

 

The corresponding CDF is given by: 
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For λ1, λ2, z > 0 

where; λ1 and λ2 are scale parameters 

The mean is given by: 
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The moment generating function is given by: 
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Renyi Entropy 

The Renyi entropy being one of the functions used in 

quantifying the uncertainty or randomness in a system is 

mathematically given by: 
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For p ≠ 1 and p>0 

For the Convoluted Exponential distribution, the 

entropy is derived from: 
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Emperical Study 

The tables for the mean and variance of the 

convoluted exponential distribution are provided in 

Table 1 and 2 respectively. 

It can be observed from Table 1 that the mean of the 

Convoluted Exponential distribution decreases as the 

parameter increases and vice versa. 

Table 2 reveals that the variance of the Convoluted 

Exponential distribution decreases as the value of the 

parameters increases and vice versa. 

Application 

The convoluted exponential distribution and the 

exponential distribution are both applied to four real 

data sets and the distribution corresponding to the best 

fit is selected using the Akaike Information Criteria 

(AIC) and the Log-likelihood. 
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Table 1. Mean of the convoluted exponential distribution at different parameter values 

 λ2 = 1 λ2 = 2 λ2 = 3 λ2 = 4 λ2 = 5 λ2 = 6 λ2 = 7 λ2 = 8 λ2 = 9 λ2 = 10 

λ1 = 1 2.000 1.500 1.333 1.250 1.200 1.167 1.143 1.125 1.111 1.100 

λ1 = 2 1.500 1.000 0.833 0.750 0.700 0.667 0.643 0.625 0.611 0.600 

λ1 = 3 1.333 0.833 0.667 0.583 0.533 0.500 0.476 0.458 0.444 0.433 

λ1 = 4 1.250 0.750 0.583 0.500 0.450 0.417 0.393 0.375 0.361 0.350 

λ1 = 5 1.200 0.700 0.533 0.450 0.400 0.367 0.343 0.325 0.311 0.300 

λ1 = 6 1.167 0.67 0.500 0.417 0.367 0.333 0.310 0.292 0.278 0.267 

λ1 = 7 1.143 0.643 0.476 0.393 0.343 0.310 0.286 0.268 0.254 0.243 

λ1 = 8 1.125 0.625 0.458 0.375 0.325 0.292 0.268 0.250 0.236 0.225 

λ1 = 9 1.111 0.611 0.444 0.361 0.311 0.278 0.254 0.236 0.222 0.211 

λ1 = 10 1.100 0.600 0.433 0.350 0.300 0.267 0.243 0.225 0.211 0.200 

 
Table 2. Variance of the convoluted exponential distribution at different parameter values 

 λ2 = 1 λ2 = 2 λ2 = 3 λ2 = 4 λ2 = 5 λ2 = 6 λ2 = 7 λ2 = 8 λ2 = 9 λ2 = 10 

λ1 = 1 2.000 1.250 1.111 1.062 1.040 1.028 1.020 1.016 1.012 1.010 

λ1 = 2 1.250 0.500 0.361 0.313 0.290 0.278 0.270 0.266 0.262 0.260 

λ1 = 3 1.111 0.361 0.222 0.174 0.151 0.139 0.132 0.127 0.123 0.121 

λ1 = 4 1.063 0.313 0.174 0.125 0.103 0.090 0.083 0.078 0.075 0.073 

λ1 = 5 1.040 0.290 0.151 0.103 0.080 0.068 0.060 0.056 0.052 0.050 

λ1 = 6 1.028 0.278 0.139 0.090 0.068 0.056 0.048 0.043 0.040 0.038 

λ1 = 7 1.020 0.270 0.132 0.083 0.060 0.048 0.041 0.036 0.033 0.030 

λ1 = 8 1.016 0.266 0.127 0.078 0.056 0.043 0.036 0.031 0.028 0.026 

λ1 = 9 1.012 0.262 0.123 0.075 0.052 0.040 0.033 0.028 0.025 0.022 

λ1 = 10 1.010 0.260 0.121 0.073 0.050 0.038 0.030 0.026 0.022 0.020 

 

Data Set I 

The first data set represents the height of 100 female 

athletes (measured in centimeters); it is one of the 

thirteen variables in the Australian athletes’ data reported 

in Cook and Weisberg (1994). The data was collected at 

the Australian Institute of Sport. It has been previously 

used and analyzed by (Jamalizadeh et al., 2011; 

Choudhury and Abdul Matin, 2011; Al-Aqtash et al., 

2014). The data is as follows: 

 

148.9, 149.0, 156.0, 156.9, 157.9, 158.9, 162.0, 162.0, 

162.5, 163.0, 163.9, 165.0, 166.1, 166.7, 167.3, 167.9, 

168.0, 168.6, 169.1, 169.8, 169.9, 170.0, 170.0, 170.3, 

170.8, 171.1, 171.4, 171.4, 171.6, 171.7, 172.0, 172.2, 

172.3, 172.5, 172.6, 172.7, 173.0, 173.3, 173.3, 173.5, 

173.6, 173.7, 173.8, 174.0, 174.0, 174.0, 174.1, 174.1, 

174.4, 175.0, 175.0, 175.0, 175.3, 175.6, 176.0, 176.0, 

176.0, 176.0, 176.8, 177.0, 177.3, 177.3, 177.5, 177.5, 

177.8, 177.9, 178.0, 178.2, 178.7, 178.9, 179.3, 179.5, 

179.6, 179.6, 179.7, 179.7, 179.8, 179.9, 180.2, 180.2, 

180.5, 180.5, 180.9, 181.0, 181.3, 182.1, 182.7, 183.0, 

183.3, 183.3, 184.6, 184.7, 185.0, 185.2, 186.2, 186.3, 

188.7, 189.7, 193.4, 195.9. 

 

The data is summarized in Table 3 and the 

performances of the competing distributions are given in 

Table 4. 

Data Set II 

The second data set was reported by (Bjerkedal, 

1960) and it has also been studied by (Tahir et al., 

2014). It represents the survival times of 72 guinea 

pigs (in days) infected with virulent tubercle. The data 

is as follows: 

 

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 

105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 

120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 

153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 

196, 197, 202, 213, 215, 216, 222, 230,231, 240, 245, 

251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 

432, 458, 555. 
 

The data is summarized in Table 5 and the 

performances of the competing distributions are given in 

Table 6. 

Data Set III 

The third data set has been previously studied by 

(Quesenberry and Kent, 1982; Pal and Tiensuwan, 

2014). It represents the time to failure of a 

ployster/viscose yarn in a textile experiment at 2.3% 

strain level. The data is as follows: 

86, 146, 251, 653, 98, 249, 400, 292, 131, 169, 

175, 176, 76, 264, 15, 364, 195, 262, 88, 264, 157, 
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220, 42, 321, 180, 198, 38, 20, 61, 121, 282, 224, 149, 

180, 325, 250, 196, 90, 229, 166, 38, 337, 65, 151, 

341, 40, 40, 135, 597, 246, 211, 180, 93, 315, 353, 

571, 124, 279, 81, 186, 497, 182, 423, 185, 229, 400, 

338, 290, 398, 71, 246, 185, 188, 568, 55, 55, 61, 244,  

20, 284, 393, 396, 203, 829, 239, 236, 286, 194, 277, 
143, 198, 264, 105, 203, 124, 137, 135, 350, 193, 188. 
 

The data is summarized in Table 7 and the 
performances of the competing distributions are given in 
Table 8. 

 

Table 3. Summary of data on height of 100 female athletes 

Min. Q1 Q2 Q3 Mean Variance Skewness Kurtosis Max. 

148.9 171.0 175.0 179.7 174.6 67.9339 -0.5598 4.1967 195.9 

 
Table 4. Performance of distributions with standard errors in parentheses using DATA I 

Distributions Estimates t-statistic p-value Log-likelihood AIC 

Exponential  ( )ˆ 0.0057276 0.0005729λ =  9.998 < 2×10−16 -616.2463 1234.493 

Convoluted exponential ( )1
ˆ 0.005728 0.0005729λ =  9.998 < 2×10−16 -616.2449 1236.49 

 ( )2
ˆ 391.7 2.966λ =  132.07 < 2×10−16 

 
Table 5. Summary of data on survival times of 72 guinea pigs 

Min. Q1 Q2 Q3 Mean Variance Skewness Kurtosis Max. 

10.0 108.0 149.5 224.0 176.8 10705.1 1.3413 4.9885 555.0 

 
Table 6. Performance of distributions with standard errors in parentheses using DATA II 

Distributions Estimates t-statistic p-value Log-likelihood AIC 

Exponential ( )0.0056550 0.0006666λ
∧

=  8.484 < 2×10−16 -444.615 891.2299 

Convoluted exponential ( )1
ˆ 0.005655 0.0006666λ =  8.484 < 2×10−16 -444.614 893.2281 

 ( )2
ˆ 0.04461 2.966λ =  150.429 < 2×10−16 

 
Table 7. Summary of data on failure times of Yarn at 2.3% strain level 

Min. Q1 Q2 Q3 Mean Variance Skewness Kurtosis Max. 

15.0 129.2 195.5 282.5 222.0 20914.38 1.3600 5.8601 829.0 

 
Table 8. Performance of distributions with standard errors in parentheses using DATA III 

Distributions Estimates t-statistic p-value Log-likelihood AIC 

Exponential ( )ˆ 0.0045049 0.0004506λ =  9.988 < 2×10−16 -640.2587  1282.517 

Convoluted exponential ( )1
ˆ 0.004505 0.0004506λ =  9.998  < 2×10−16 -640.2585 1284.517 

 ( )2
ˆ 2309 2.966λ =  778.597 < 2×10−16 

 
Table 9. Summary of data on electronic components 

Min. Q1 Q2 Q3 Mean Variance Skewness Kurtosis Max. 

0.030 0.775 1.795 2.900 1.936 2.062 0.603 2.720 5.090 

 
Table 10. Performance of distributions with standard errors in parentheses using DATA IV 

Distributions Estimates t-statistic p-value Log-likelihood AIC 

Exponential ( )ˆ 0.5167 0.1155λ =  4.472 7.75×10−6 -33.20731 68.41463 

Convoluted exponential ( )1
ˆ 0.5187 0.1160λ =  4.471 7.78×10−6 -33.14827 70.29655

  ( )2
ˆ 131.4146 8.3888λ =  15.665 < 2×10−16 
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Data Set IV 

The fourth data set has been previously used by 
(Teimouri and Gupta, 2013; Nasiru, 2015). It 
represents the lifetime of 20 electronic components. 
The data is as follows: 
 

0.03, 0.22, 0.73, 1.25, 1.52, 1.8, 2.38, 2.87, 3.14, 4.72, 

0.12, 0.35, 0.79, 1.41, 1.79, 1.94, 2.4, 2.99, 3.17, 5.09 

 
The data is summarized in Table 9 and the 

performances of the competing distributions are given in 
Table 10. 

Remark 

Considering Table 4, 6, 8 and 10, the model with the 
lowest AIC or highest log-likelihood is considered to be 
the best fit. This means that the exponential distribution 
is considered the best fit and thereby highlighted. 

Conclusion 

A comparison between the convoluted exponential 

distribution and the exponential distribution has been 

successfully done in terms of real life applications. It 

was observed that the exponential distribution out-

performed the convoluted exponential distribution 

considering the four applications provided in this 

research. The decisions and conclusion in this study is 

based on the log-likelihood and AIC values posed by 

the distributions under study. For all the four data sets, 

the AIC value of the Exponential distribution is the 

lowest while its log-likelihood values are higher than 

that of the Convoluted Exponential distribution. 

Nevertheless, the authors did not underrate the concept 

of convolution. Convolution still remains a relevant 

topic in the theory of statistics. Further research would 

involve comparing convoluted beta Weibull distribution 

derived by (Sun, 2011) with beta Weibull distribution 

derived by (Famoye et al., 2005) and comparing 

convoluted beta exponential distribution derived by 

(Shittu et al., 2012) with beta exponential distribution 

derived by (Nadarajah and Kotz, 2006) to assess their 

flexibilities in modeling real life data sets. 
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