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Abstract: Linear Discriminant Analysis (LDA) is the most commonly 

employed method for classification. This method which creates a linear 

discriminant function yields optimal classification rule between two or 

more groups under the assumptions of normality and homoscedasticity 

(equal covariance matrices). However, the calculation of parametric LDA 

highly relies on the sample mean vectors and pooled sample covariance 

matrix which are sensitive to non-normality. To overcome the sensitivity of 

this method towards non-normality as well as homoscedasticity, this study 

proposes two new robust LDA models. In these models, an automatic 

trimmed mean and its corresponding winsorized mean are employed to 

replace the mean vector in the parametric LDA. Meanwhile, for the 

covariance matrix, this study introduces two robust approaches namely the 

winsorization and the multiplication of Spearman’s rho with the 

corresponding robust scale estimator used in the trimming process. 

Simulated and real financial data are used to test the performance of the 

proposed methods in terms of misclassification rate. The numerical result 

shows that the new method performs better if compared to the parametric 

LDA and the robust LDA with S-estimator. Thus, these new models can be 

recommended as alternatives to the parametric LDA when non-normality 

and heteroscedasticity (unequal covariance matrices) exist. 
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Introduction 

Linear Discriminant Analysis (LDA) is one of the 

most widely used statistical approaches for analyzing 

attribute variables in supervised classification 

(Elizabeth and Andres, 2012). The purpose of LDA is to 

determine which variable discriminates between two or 

more classes and to construct a classification model for 

predicting the group membership of new observations. In 

short, LDA aims for reliable group allocations of new 

observations based on a discriminant rule which is 

developed from a training data set with known group 

memberships. LDA are known to perform optimally 

when the assumptions of normality and homoscedasticity 

(equal covariance matrices) are met (Croux et al., 2008). 

However, the high dependencies of its calculation on 

sample mean vectors and pooled sample covariance 

matrix may increase misclassification rate in the 

existence of outliers (Sajobi et al., 2012). It is a known 

fact that mean, which possesses zero breakdown point, is 

very sensitive to outliers. To overcome this sensitivity 

problem in LDA, researchers seek for alternatives in 

Robust Linear Discriminant Analysis (RLDA). By 

substituting the classical estimators with robust 

estimators such as M-estimators, Minimum Covariance 

Determinant (MCD) (Hubert and Driessen, 2004; 

Alrawashdeh et al., 2012), Minimum Volume Ellipsoid 

(MVE) (Chorl and Rousseeuw, 1992) and S-estimators 

(He and Fung, 2000; Croux and Dehon, 2001; Lim et al., 

2014), we can develop robust discriminant model with 

minimum classification error rate (Croux et al., 2008). 

In this study, two approaches, namely trimming and 

winsorizing are proposed in the construction of new 

RLDA models to create discriminant rule that are robust 

to deviation. The coordinate-wise based estimators have 

been applied in this research with the purpose of 

producing at least one successful RLDA models to solve 

classification problems. Unlike the usual trimming and 

winsorizing process, the trimming employed in our work 

take into consideration the shape of data distribution. 
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Through this trimming approach, only outliers will be 

trimmed away leaving just the good data. A simulation 

study and a real life financial data are used to investigate 

the performance of the proposed RLDA. We are 

interested to classify “distress” and “non-distress” 

banks in Malaysia for the real life financial problem. 

Therefore, our work is scoped to two populations only 

due to the nature of the real life problem. The 

proposed RLDA are then compared to the classical 

LDA and also to the well-known robust LDA with S-

estimators. The performance of the discriminants rules 

are evaluated by misclassification rate provided by 

simulation and real life study. 

The rest of this paper is structured as follows. Section 

2 describes about discriminant rules for classical LDA 

and proposed RLDA. The results and discussions based 

on the simulation study and real life problem application 

will be delivered in the section 3. Lastly, the concluding 

remark will be provided in section 4. 

Discriminant Rules 

Suppose that we have one group of p-dimensional 

feature data, x1, from population π1 of H1 distribution 

with mean µ1 and covariance matrix Σ1 and the other 

group of data, x2, from population π2 of H2 distribution 

with mean µ2 and covariance matrix Σ2. A discriminant 

rule can be constructed to assign one new observation x0 

to π1 or π2. One of the familiar models to unravel this 

problem is via classical LDA which is derived under the 

assumptions that all the populations have identical 

covariance, such that Σ1 = Σ2 = Σ. The classical 

discriminant rule is defined as Equation 1 (Johnson and 

Wichern, 2002): 
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where, p1 and p2 are the prior probability that an 

individual comes from population π1 and π2 respectively.  

Practically, the overall misclassification probability can 

be minimized based on this classical discriminant rule. 

Since the classical parameters, µ and Σ, are usually 

undefined, hence we need to estimate the parameters 

from the sample data. However, the performance of the 

classical discriminant rule will be badly affected if non-

normality and/or heteroscedasticity (unequal covariance 

matrices) occur (GlèlèKakaï et al., 2010). It is clear that 

the classical discriminant rule will become non-robust 

due to the sensitivity of classical estimates. 

By plugging robust estimators for the location, µ and 

scatter Σ, a robust discriminant rules can be developed. 

In this study, we introduced two robust estimators 

namely the automatic trimmed mean, which is also 

known as modified one-step M-estimator (MOM) and its 

winsorized version, referred to as winsorized modified 

one-step M-estimator (WMOM) to construct RLDA 

model. Trimming and winsorizing are among the 

strategies to deal with extreme values. MOM estimate of 

location is modified from the one-step M-estimator 

which was introduced by Wilcox and Keselman (2003). 

Based on the concept of trimmed means, the MOM 

estimator is derived using data left from empirically 

determined trimming. Briefly, MOM estimator is a 

highly robust location estimator which possesses highest 

breakdown point and is defined as Equation 2: 
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where: 

i1, i2 = number of trimmed obs. for the both end of data 

i1 = ( ) ( )( ) ( )ˆ 2.24
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x(i)jk = ith ordered obs. dimension j for group k 
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Another strategy in dealing with extreme values is 

the winsorization approach. Winsorization follows the 

process of trimming, but instead of discarding the 

trimmed values, they are replaced by the remaining 

highest and lowest values. Winsorized MOM (WMOM) 

follows the same trimming process as MOM before 

replacing the trimmed values with the remaining lowest 

and highest end of the data (Haddad et al., 2013). Unlike 

MOM, WMOM will retain the original sample size and 

this approach can reduce the problem of losing 

information due to trimming. WMOM estimate of 

location and scatter can be defined as Equation 3: 
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where Wij is the winsorization of a random sample. 

Meanwhile, the covariance matrix will be 

estimated using two approaches; the winsorized 

covariance and the product of spearman correlation 

coefficient and rescaled Median Absolute Deviation 

(MADn). These covariance matrices will be paired 

with the corresponding WMOM and MOM location 

estimates to form robust discriminant rule denoted as 

RLDAWM and RLDAM, respectively. 
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Results and Discussions 

In this section, simulation study and real data 

application are implemented to evaluate on the 

performance of the two proposed RLDA models. These 

models will then be compared against the classical LDA 

model and existing RLDA with S-estimators model. 

Simulation Study 

We applied the classical and robust discriminant rules 

to the same setting employed in many related research 

works as shown below (He and Fung, 2000; Croux and 

Dehon, 2001; Todorov and Pires, 2007): 

 

A. π1: 50 N3 (0, I) 

 π2: 50 N3 (1, I) 

B. π1: 40 N3 (0, I) +10 N3 (5, 0.25
2
I) 

 π2: 40 N3 (1, I) +10 N3 (-4, 0.25
2
I) 

C. π1: 80 N3 (0, I) +20 N3 (5, 0.25
2
I) 

 π2: 8 N3 (1, I) +2 N3 (-4, 0.25
2
I) 

D. π1: 16 N3 (0, I) +4 N3 (0, 25I) 

 π2: 16 N3 (1, I) +4 N3 (1, 25I) 

E. π1: 58 N3 (0, I) +12 N3 (5, 0.25
2
I) 

 π2: 25 N3 (1, 4I) +5 N3 (-10, 0.25
2
I) 

F. π1: 40 N3 (0, I) +10 N3 (5, 25I) 

 π2: 40 N3 (1, I) +10 N3 (-4, 25I) 

 

The data was simulated under various conditions that 

could possibly be encountered in real life. To create 

these conditions, a few variables were manipulated. 

These variables were percentage of contamination (17% 

and 20%); sample sizes (10, 20, 30, 50, 70 and 100); 

nature of variances (equal and unequal); shift in shape 

(0.252 and 25) and location (±5). 

Condition A was generated from uncontaminated 

populations while conditions B, C, D, E and F were 

generated from contaminated populations. The 

procedure started by generating a training data set 

based on the various conditions to develop a 

discriminant rule for each condition. Next, generate 

another data set of size 2000 for both groups from 

uncontaminated populations to validate the 

corresponding discriminant rules. This experiment is 

replicated about 2000 times for each condition. 

In this study, the percentage of contamination and 

dimension of variables were fixed at 20% and 3, 

respectively, for conditions A, B, C, D and F. Shift in 

location with equal and unequal sample sizes were 

considered in conditions B and C respectively. For 

condition D, the shift in shape was matched with equal 

sample sizes. Unequal sample sizes and heteroscedasticity 

are considered in condition E with almost 17% on 

contamination percentage. Lastly, extreme contamination 

was considered in condition F with both location and shape 

were shifted. Table 1 presents the results of 

misclassification rate for the classical LDA and RLDA. 

From Table 1 we notice that all the models 

perform equally well when there is no contamination. 

Theoretically, under ideal condition, that is when all 

the assumptions are fulfilled, classical LDA should 

perform optimally and the results in A concur with the 

theory. Nevertheless, all the RLDA do not perform 

much worse than the classical LDA. In contrast, when 

there is contamination, the results show that the 

misclassification rate for the classical LDA inflated 

above all the other models (RLDA). In cases B, C and 

E, the RLDAM and RLDAWM perform better than 

others. They also perform as good as RLDAS for the 

rest of the cases (D and F). Furthermore, the proposed 

models (RLDAM and RLDAWM) are more efficient in 

computational aspect. 

 
Table 1. Mean, standard deviation and computational time of the misclassification rate for various LDA models 

  Classical LDA RLDAS RLDAM RLDAWM 

A Mean  0.2001 0.2005 0.2033 0.2007 

 s 0.0089 0.0091 0.0108 0.0092 

 Time (sec) 3 1177 9 4 

B Mean 0.6512 0.6296 0.2491 0.4104 

 s 0.0600 0.0582 0.0416 0.0829 

 Time (sec) 3 1176 9 4 

C Mean 0.5004 0.5005 0.4949 0.4984 

 s 0.0012 0.0014 0.0082 0.0049 

 Time (sec) 3 1223 8 4 

D Mean 0.4442 0.2172 0.2209 0.2237 

 s 0.1231 0.0230 0.0241 0.0276 

 Time (sec) 3 1156 8 4 

E Mean 0.5007 0.5008 0.4982 0.5002 

 s 0.0018 0.0021 0.0048 0.0027 

 Time (sec) 3 1114 9 4 

F Mean 0.5814 0.2021  0.2052 0.2127 

 s 0.1284 0.0099 0.0119 0.0188 

 Time (sec) 3 1101 8 4 
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Table 2. Results of the lilliefor normality test 

 P-value 

 ------------------------------------------- 

Group CA EQ 

Distress 0.0066 0.0214 

Non-distress 0.1321 0.0011 

 
Table 3. Error rate for the classical LDA and RLDA 

 AER CV 

Classical LDA 0.1111 0.1111 

RLDAS 0.0741 0.1111 

RLDAM 0.0370 0.0741 

RLDAWM 0.0370 0.0741 

 

Based on Table 1, no one single model can be the 

best across all the conditions, but taking into account the 

consistencies of the means and standard deviations of the 

misclassification rates (which are always small), RLDAM 

is the better one. It is comparable to classical LDA under 

perfect condition (no contamination) and consistently 

produces small misclassification rate even under 

contamination of data. The existing RLDA with S-

estimators performs poorly under a few cases, namely B, 

C and E. 

Real Data Application 

Besides simulation study, all the models were also 

being put to test on real data, specifically, to classify 

financially distressed and non-distressed banking 

institutions in Malaysia. The bank data were extracted 

from selected balance sheet in annual report of 27 

commercial banks from year 1988 to 1999. Two 

independent variables were used to capture variation 

in financial crisis. The variables were ratio of total 

shareholder’s fund to total assets (CA) and ratio of 

total shareholder’s fund to total Equity (EQ). Table 2 

shows the results of Lilliefor normality test for both 

variables in each group. 

Normality checking on the financial data showed a 

violation of normality assumption. The performance of 

each model was based on its corresponding Apparent 

Error Rates (AER) and estimate of error rates using cross 

Validation (CV). The results of the real data analysis are 

presented in Table 3. 

The real data results reveal that all RLDA are able to 

detect outliers and produces smaller error rates than the 

classical LDA. However, among the RLDA, the two 

proposed models produce the smallest error rates as 

compared to the existing RLDAS. Both models are found 

to be equally good as they produce equal error rates via 

AER as well as CV. The simulation and real life problem 

results proven that the proposed RLDA models provide a 

comparable performance or better in LDA. 

Conclusion 

In this study, we present two robust estimators 

namely modified one-step M-estimator (MOM) and 

winsorized one-step M-estimator (WMOM) to alleviate 

the classification problem. These two robust estimators 

used trimming and winsorizing approach to eliminate the 

outliers of the data and then form the robust discriminant 

rule. Their function as the substitutes for the classical 

estimators in Linear Discriminant Analysis (LDA) model 

very much improves the misclassification rates. Even 

when compared to the existing robust LDA using S-

estimator, the simulation and real data analysis prove 

that the two proposed models are comparable or better. 

The proposed models produce lowest error rates as 

compared to the other investigated models. Generally, 

we can conclude that MOM and WMOM estimators 

should be considered in solving classification problems 

especially when non-normality and/or heteroscedasticity 

are suspected. Thus, these new robust models are good 

alternatives for parametric LDA especially under 

violation of assumptions. 
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