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showed the efficiency of this method. 
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Introduction 

Nonlinear integral equation is an important branch in 

contemporary mathematics and arises many applied 

areas which include engineering problems, such as 

mechanics, physics, astronomy, biology, economics, 

potential theory and electrostatics (Golberg, 1990; 

Nadir and Gagui, 2014). Those equations are 

classified into Fredholm and Volterra equations 

following the upper bound of the region for the 

integral part is constant or variable. Many different 

methods are used to obtain the numerical solution of 

the nonlinear integral equations (Nadir and 

Rahmoune, 2007; Polyanin and Manzhirov, 2008): 

 

( ) ( )( ) ( ), , , ,s k s t t dt f s s tϕ ϕ
Ω

− = ∈Ω∫  (1) 

 

where, the functions f(s) and k(s, t, ϕ) are given and 

continuous functions in Ω and D(k) = Ω × Ω × I, (I∈R), 

respectively, the function ϕ(t) is to be determined as 

continuous function Ω → I. 

For the solution of the nonlinear integral equations 

we present specifics conditions for the existence of 

this ones: 

 

• k(s, t, ϕ(t)): Ω × Ω × I → R is continuous and 

bounded in this domain 

• k(s, t, ϕ): Is Lipschitzian for the third variable. In 

other words there exists L > 0 such that: 

 

( ) ( )1 2 1 2 1 2, , , , , ,k s t k s t L s t Iϕ ϕ ϕ ϕ ϕ ϕ− ≤ − ∈Ω ∈  

• f: Ω → R is continuous 

• 

( )
1

1
L b a

>
−

 

 

Depending on Ω = [a, s] or Ω = [a, b] the Equation 1 

is a nonlinear Volterra or Fredholm integral equation, 

respectively. 

We apply the Newton-Kantorovich method to the 

general nonlinear integral equation: 

 

( ) ( ) ( )( ) ( ), ,P s k s t t dt f sϕ ϕ ϕ
Ω

= − −∫  

 

It is known that, the fact where the function k(s, t, ϕ) 

is continuous and Lipshitzian for the third variable then, 

P(ϕ) is Fréchet differentiable mapping of a Banach 

spaces C(Ω) into itself for all f(s); ϕ(s) ∈ C(Ω), say: 

 

( ) ( ) ( ) ( ) ( )
( )( ) ( )

;

, ,

GD P h s P h s h s

k s t t h t dtϕ

ϕ ϕ

ϕ
Ω

′= =

−∫
 (2) 

 

where, kϕ(s, t, ϕ(t)) designates the derivative 

( )( ), ,
k

s t tϕ
ϕ

∂

∂
. 

For the resolution of the functional equation P(ϕ) = 0 

where P is Fréchet differentiable on a convex set of a 

Banach space C(Ω), Kantorovich imitates the Newton 

method for the equation of the tangent line given by the 

first two terms of Taylor’s formula, written as the 

method of successive approximation: 
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( ) ( ) ( )( )1 1 0n n n n nP P Pϕ ϕ ϕ ϕ ϕ+ +′= + − =  

 

Or equivalently: 

 

( )( ) ( )1n n n nP Pϕ ϕ ϕ ϕ+′ − = −  (3) 

 

The explicit form to the Equation 3 is given as: 

 

( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

1

, ,

, , 0

n n n n

n n n

s k s t t dt f s s s

k s t t t t dtϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

+Ω

+Ω

− − + −

− − =

∫
∫

 

 

Or still: 

 

( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

1

, ,

, ,

n n

n n n

s f s k s t t dt

k s t t t t dtϕ

ϕ ϕ

ϕ ϕ ϕ

+ Ω

+Ω

= −

+ −

∫
∫

 (4) 

 

In the Newton-Kantorovich method, we remark that, 

the kernels k(s, t, ϕn(t)) and kϕ(s, t, ϕn(t)) of the right-

hand side of the Equation 4 are replaced by the ones k(s, 

t, ϕ0(t)) and kϕ(s, t, ϕ0(t)) where ϕ0 represents the initial 

value so that, the Equation 4 becomes a linear integral 

equation. However, in our work we treat the Equation 4 

by adapted a modification, where we replace the 

expression (ϕn+1(t)- ϕn(t)) in the right-hand side by the 

one (ϕn(t)- ϕn-1(t)) so that, the Equation 4 becomes: 

 

( ) ( ) ( )( )
( )( ) ( ) ( )( )

1

1

, ,

, ,

n n

n n n

s f s k s t t dt

k s t t t t dtϕ

ϕ ϕ

ϕ ϕ ϕ

+ Ω

−Ω

= −

+ −

∫
∫

 (5) 

 

The first approximation ϕ1(s) is obtained by 

substituting the initial approximation ϕ0(s) = f(s) into the 

right hand side of the integral equation, giving: 

 

( ) ( ) ( )( )
( )( ) ( )( )

, ,

, , 0

n s f s k s t f s dt

k s t f s f s dtϕ

ϕ
Ω

Ω

= −

+ −

∫
∫

 

 

And so on, higher iterates may be defined by 

Equation 4 where we approximate the two integrals 

presented in Equation 4 by one of the basic numerical 

integration formulas such as trapezoid method, Simpson 

methods, or Gauss methods. 

Convergence and Applications Theorem 

Let P be an operator defined on a Banach space E 

into a Banach space F and Fréchet differentiable for 

ϕ∈Ω an open convex set in E, satisfies the following 

conditions: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1

0 0

1

0 0 0

1 , ,

2 ,

3 ,

A P P L

A P M

A P P N

ϕ ψ ϕ ψ ϕ ψ

ϕ ϕ

ϕ ϕ ϕ

−

−

′ ′− ≤ − ∈Ω

 ′ ≤ ∈Ω 

 ′ ≤ ∈Ω 

 

 

With the constants L,M and N satisfying LM < 1, 

1

2
LMN ≤  then there exists a domain 

( )
1 0

2 1
;

2
h

LM
ϕ ϕ ϕ

 − 
Ω = − ≤ = ⊂ Ω 

  

 such that, the 

successive approximations: 

 

( ) ( )
1

1n n n nP Pϕ ϕ ϕ ϕ
−

+
 ′= −    

 

Are defined for all n, ϕn ∈ Ω1, n = 1, 2, ... and 

converge to the exact solution ϕ ∈ Ω1 which satisfies 

P(ϕ) = 0: Further: 

 

( )
*, , 1,2,3.....

2
n n

C
C n

LMN
ϕ ϕ +− ≤ ∈ =ℝ  

 

Proof 

Indeed, it is easy to see that: 

 

( ) ( ) ( )( )( )

( )( ) ( )( )( )

( )( )

( ) ( ) ( )( )

( )( ) ( )( )( )

( ) ( ) ( )( )

( ) ( )( ) ( )

1

0

1

0

1

0

1

0

1

0

P P P t dt

P t P dt

P dt

P P P

P t P dt

P P P

P t P dt

ϕ ψ ϕ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ϕ ψ

ϕ ϕ ψ

ϕ ψ ϕ ϕ ψ

ϕ ϕ ψ ϕ ϕ ψ

ϕ ψ ϕ ϕ ψ

ϕ ϕ ψ ϕ ϕ ψ

′− = + − −

′ ′= + − − −

′+ −

′− − −

′ ′= + − − −

′− − −

′ ′≤ + − − −

∫

∫

∫

∫

∫

 

 

Using condition (A1), on Ω we obtain: 

 

( ) ( ) ( )( ) ( )
2

2

L
P P Pϕ ψ ϕ ϕ ψ ϕ ψ′− − − ≤ −  (6) 

 

Also, for ϕ ∈ Ω1, we get: 

 

( ) ( )0 0

1
P P L Lh

M
ϕ ϕ ϕ ϕ′ ′− ≤ − ≤ <  (7) 

 

Then, the relation (7) shows that P′(ϕ) is invertible 

for all ϕ ∈ Ω1 and it comes: 
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( ) ( ) ( ) ( )( )( ( )
11 11

0 0 0P I P P P Pϕ ϕ ϕ ϕ ϕ
−− −−    ′ ′ ′ ′ ′  − − −       

 

Or still: 

 

( )
( )

1

01

M
P

LM
ϕ

ϕ ϕ

−
′  ≤  − −

 

 

Given the Newton function as: 

 

( ) ( ) ( )
1

N P Pϕ ϕ ϕ ϕ
−

′= −     (8) 

 

With ϕ and N(ϕ) in Ω1 and ϕn+1 = N(ϕn), we get: 

 

( )( ) ( ) ( )( ) ( )( )
1

N N N P N P Nϕ ϕ ϕ ϕ
−

 ′− =    

 

Hence: 

 

( )( ) ( )
2

2

L
P N Nϕ ϕ ϕ≤ −  (9) 

 

On the other hand 

 

( )( )
( ) ( )

1

01

M
P N

LM N
ϕ

ϕ ϕ

−
′ ≤

− −
 (10) 

 

From the relations (9) and (10) we obtain: 

 

( )( ) ( )
( )

( ) ( )

2

02 1

LM N
N N N

LM N

ϕ ϕ
ϕ ϕ

ϕ ϕ

−
− ≤

− −
 

 

or still: 

 

( )

( )

( )

2

1

1

0

2

1 0

1 0

2 1

2 1

n n

n n

n

nn

nnn

LM

LM

LM

LM

ϕ ϕ
ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

−

+

−
− ≤

− −

−
≤

− −

 (11) 

 

From the relation ||ϕq-ϕp||≤||ϕq-ϕq-1||+||ϕq-1-ϕq-

2||+...+||ϕp+1-ϕp|| it comes the sequence ϕn is Cauchy 

sequence in Banach space. Thus this sequence ϕn 

represents the Newton iterations are defined and 

converges to the solution ϕ in Ω1 (Wouk, 1979): 

Illustrating Examples 

Example 1 

Consider the nonlinear integral equation of Volterra: 

( ) ( )
0

sin cos 1, 0 , 1
s

s t dt s s s tϕ ϕ− = + − ≤ ≤∫  

 

where, the function f(t0) is chosen so that the exact 

solution is given by: 

 

( )t tϕ =  

 

The approximate solution ( )tϕɶ  of ϕ(t) is obtained by 

the adapted Newton-Kantorovich method. 

Example 2 

Consider the nonlinear integral equation of Volterra: 

 

( ) ( ) ( ) ( )( )2

0

1
exp exp 2 1 , 0 , 1

2

s

s t dt s s s tϕ ϕ− = − − ≤ ≤∫  

 

where, the function f(t0) is chosen so that the exact 

solution is given by: 

 

( ) ( )expt tϕ =  

 

The approximate solution ( )tϕɶ of ϕ(t) is obtained by 

the adapted Newton-Kantorovich method. 

Example 3 

Consider the nonlinear integral equation of Volterra: 

 

( ) ( )2

0

1 1 1
sin sin 2 , 0 , 1

2 8 4

s

s t dt s s s s tϕ ϕ− = + − ≤ ≤∫  

 

where, the function f(t0) is chosen so that the exact 

solution is given by: 

 

( ) sint tϕ =  

 

The approximate solution ( )tϕɶ  of ϕ(t) is obtained by 

the adapted Newton-Kantorovich method. 

Example 4 

Consider the nonlinear integral equation of Fredholm: 

 

( )
( )

( )
2 2

1
2

20

1
ln 2 , 0 , 1

1 2

t x
t dx t t x t

x
ϕ

ϕ
 

− − − + ≤ ≤ +  ∫  

 

where, the function f(t0) is chosen so that the exact 

solution is given by: 

 

( )t tϕ =  
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The approximate solution ( )tϕɶ  of ϕ(t) is obtained by 

the adapted Newton-Kantorovich method. 

Example 5 

Consider the nonlinear integral equation of Fredholm: 
 

( ) ( ) ( ) ( ) ( )
1

3

0

1
cos sin sin , 0 , 1

5
t t x x dx t x tϕ π π ϕ π− = ≤ ≤∫  

 
where, the function f(t0) is chosen so that the exact 

solution is given by: 
 

( ) ( )1
sin 20 391 cos

3
t t tϕ π π= + −  

 
The approximate solution e'(t) of '(t) is obtained by 

the adapted Newton-Kantorovich method. 

Conclusion 

A numerical method for solving nonlinear Volterra 

and Fredholm integral equations, based on an adapted 

Newton-Kontorovich methods is presented. The 

efficiency of this method is tested by solving some 

examples for which the exact solution is known. This 

allows us to estimate the exactness with our numerical 

results and compare those with another results. For 

nonlinear volterra integral equations our method is 

compared with the ones, the Haar wavelets and 

collocation, the fixed point technique with cubic B-

spline scaling function, Adomian decomposition 

method and block pulse functions by collocation 

method. treated by (Babolian and Shahsavaran, 2007) 

Table 1, (Maleknejad et al., 2013) Table 2,   

(Awawdeh et al., 2009) Table 3 and (Shahsavaran, 

2011) Table 4 respectively. On the other hand for 

nonlinear Fredholm integral equations our method is 

compared with the ones, the Haar wavelet method, the 

Urysohn form by Newton-Kantorovich-quadrature 

method and A numerical method treated by        

((Lepik and Tamme, 2007)) Table 5, (Saberi-Nadja and 

Heidari, 2010) Table 6 and (Awawdeh et al., 2009) 

Table 7 respect1vely. 

 

Table 1. We present the exact and the approximate solutions of the equation in the example 1 in some arbitrary points, the error for N 

= 10 is compared with the ones treated in (Babolian and Shahsavaran, 2007) 

    Error (Babolian and 

Values of t Exact solution ϕ Approx solution ϕɶ  Error Shahsavaran, 2007) 

0.000000 0.00000e+00 0.00000e+00 0.000e+00 0e+00 

0.200000 2.000000e-01 2.000000e-01 7.4733e-10 4e-04 

0.400000 4.000000e-01 4.000000e-01 3.1445e-09 6e-04 

0.600000 6.000000e-01 6.000000e-01 7.3628e-09 7e-04 

0.800000 8.000000e-01 8.000000e-01 1.3385e-08 9e-04 

1.000000 1.00000e+00 1.00000e+00 2.0917e-08 1e-03 

 
Table 2. We present the exact and the approximate solutions of the equation in the example 1 in some arbitrary points, the error for N 

= 10 is compared with the ones treated in (Maleknejad et al., 2013) 

    Error (Maleknejad et al., 

Values of t Exact solution ϕ Approx solution ϕɶ  Error 2013) 

0.000000 0.00000e+00 0.00000e+00 0.00e+00 0.00e+00 

0.200000 2.000000e-01 2.000000e-01 7.47e-10 4.22e-08 

0.400000 4.000000e-01 4.000000e-01 3.14e-09 1.09e-08 

0.600000 6.000000e-01 6.000000e-01 7.36e-09 2.35e-08 

0.800000 8.000000e-01 8.000000e-01 1.33e-08 1.42e-08 

1.000000 1.00000e+00 1.00000e+00 2.09e-08 2.63e-08 

 
Table 3. We present the exact and the approximate solutions of the equation in the example 2 in some arbitrary points, the error for N 

= 10 is compared with the ones treated in (Abdelwahid, 2010) 

    Error (Abdelwahid, 

Values of t Exact solution ϕ Approx solution ϕɶ  Error 2010) 

0.000000 1.000000e+00 1.000000e+00 0.00e+00 0.00e+00 

0.200000 1.221403e+00 1.221919e+00 5.16e-04 9.40e-04 

0.400000 1.491825e+00 1.493531e+00 1.70e-03 3.06e-03 

0.600000 1.822119e+00 1.826756e+00 4.63e-03 8.16e-03 

0.800000 2.225541e+00 2.238233e+00 1.26e-02 2.16e-02 

1.000000 2.718282e+00 2.756934e+00 3.86e-02 6.27e-02 



Mostefa Nadir and Amina Khirani / Journal of Mathematics and Statistics 2016, 12 (3): 176.181 

DOI: 10.3844/jmssp.2016.176.181 

 

180 

Table 4. We present the exact and the approximate solutions of the equation in the example 3 in some arbitrary points, the error for N 

= 10 is compared with the ones treated in (Shahsavaran, 2011) 

    Error (Shahsavaran, 

Values of t Exact solution ϕ Approx solution ϕɶ  Error 2011) 

0.000000 0.00000e+00 0.00000e+00 0.00e+00 0.0e+00 

0.200000 1.986693e-01 1.986672e-01 2.11e-06 8.4e-03 

0.400000 3.894183e-01 3.894008e-01 1.75e-05 5.8e-03 

0.600000 5.646425e-01 5.645828e-01 5.97e-05 5.0e-03 

0.800000 7.173561e-01 7.172144e-01 1.41e-04 7.0e-03 

1.000000 8.414710e-01 8.411949e-01 2.76e-04 4.1e-03 

 
Table 5. We present the exact and the approximate solutions of the equation in the example 4 in some arbitrary points, the error for N 

= 10 is compared with the ones treated in (Lepik and Tamme, 2007) 

    Error (Lepik and 

Values of t Exact solution ϕ Appro solution ϕɶ  Error Tamme, 2007) 

0.000000 0.00000e+00 0.00000e+00 0.00e+00 2.7e-04 

0.200000 4.472136e-01 4.472137e-01 1.10e-07 2.7e-04 

0.400000 6.324555e-01 6.324560e-01 4.40e-07 2.7e-04 

0.600000 7.745967e-01 7.745977e-01 9.90e-07 2.7e-04 

0.800000 8.944272e-01 8.944290e-01 1.76e-06 2.7e-04 

1.000000 1.00000e+00 1.00000e+00 2.75e-06 2.7e-04 

 
Table 6. We present the exact and the approximate solutions of the equation in the example 5 in some arbitrary points, the error for N 

= 10 is compared with the ones treated in (Saberi-Nadja and Heidari, 2010) 

    Error (Saberi-Nadja and 

Values of t Exact solution ϕ Approx solution ϕɶ  Error  Heidari, 2010) 

0.000000 7.542669e-02 7.542663e-02 5.44e-08 4.98e-02 

0.200000 6.488067e-01 6.488067e-01 4.40e-08 4.03e-02 

0.400000 9.743646e-01 9.743646e-01 1.68e-08 1.53e-02 

0.600000 9.277484e-01 9.277484e-01 1.68e-08 1.53e-02 

0.800000 5.267638e-01 5.267638e-01 4.40e-08 4.03e-02 

1.000000 -7.542669e-02 -7.542663e-02 5.44e-08 1.53e-02 

 
Table 7. We present the exact and the approximate solutions of the equation in the example 5 in some arbitrary points, the error for N 

= 20 is compared with the ones treated in (Awawdeh et al., 2009) 

    Error (Awawdeh et al., 

Values of t Exact solution ϕ Approx solution ϕɶ  Error 2009) 

0.000000 7.542669e-002 7.542669e-002 3.19e-016 5.53e-015 

0.200000 6.488067e-001 6.488067e-001 2.22e-016 4.55e-015 

0.400000 9.743646e-001 9.743646e-001 1.11e-016 1.77e-015 

0.600000 9.277484e-001 9.277484e-001 1.11e-016 1.77e-015 

0.800000 5.267638e-001 5.267638e-001 2.22e-016 4.55e-015 

1.000000 -7.542669e-002 -7.542669e-002 3.19e-016 5.53e-015 
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