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Abstract: For square contingency tables, the present paper newly considers 

the partial symmetry model which indicates that there is a symmetric 

structure of probabilities for at least one of pairs of symmetric cells. It also 

proposes the measure to express the degree of departure from the partial 

symmetry model. Examples are given. 
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Introduction 

Consider a square r×r contingency table with the 

same row and column classifications. Let pij denote the 

cell probability that an observation falls in its (i, j) cell 

(i = 1,…,r; j = 1,…,r). Consider the Symmetry (S) 

model as follows: 

 

( 1 1 )ij ijp i r j rψ= = , , ; = , , ,… …  

 

where, ψij = ψji for i≠j (Bowker, 1948; Bishop et al., 

1975, p. 282). 

For the analysis of data, the S model may fit the data 

poorly because it has the strong restriction. When the S 

model fits the data poorly, many statisticians may be 

interested in applying some models which have weaker 

restriction than the S model. There are some symmetry 

or asymmetry models; for instance, the marginal 

homogeneity model (Stuart, 1955), the quasi-symmetry 

model (Caussinus, 1965), the conditional symmetry 

model (McCullagh, 1978), the diagonals-parameter 

symmetry model (Goodman, 1979) and the cumulative 

diagonals-parameter symmetry model (Tomizawa, 1993; 

Tahata and Tomizawa, 2014), etc. 

On the other hands, some statisticians may be 

interested in measuring the degree of departure from the 

S model when the model fits the data poorly. 

Assume that pij + pji>0 for i≠j. Let /ij ijp p δ∗ =  and 

( )/c

ij ij ij jip p p p= +  for i≠j with δ = ΣΣi≠j pij. Tomizawa et al. 

(1998) gave the measure to express the degree of 

departure from the S model as follows: 
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where: 

 

( ) ( )1 1( ) 1
1

c c

ij ij jiH p p
λ λλ

λ

+ + 
 
 

= − − ,  

 

and the value at λ = 0 is taken to be the limit as λ→0, 

where λ is a real-valued parameter which is chosen 

by the user. Note that ( )

ijH
λ  is the Patil and Taillie 

(1982) diversity index of degree λ which includes the 

Shannon entropy. We point out that ( )

S

λΦ  is expressed 

as the weighted arithmetic mean of the diversity 

index ( )

ijH
λ . 

Table 1a is taken from Hashimoto (1999, p. 151) and 

Tables 1b and 1c are taken from Bishop et al. (1975, p. 

100). These data relate father’s and son’s occupational 

status categories in Japan, in Denmark and in British. 

The smaller category number means the higher status in 

each of Tables 1a-c. For example, on the father’s and 

son’s occupational status in Denmark, it seems that there 

is a symmetric structure of probabilities for several pairs 

although there is not a symmetric structure of 

probabilities for all pairs. 
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Table 1. Cross-classifications of father’s and son’s 

occupational status (a) in Japan (Hashimoto, 1999, 

p.151), (b) in Denmark and (c) in British (Bishop et al., 

1975, p.100) 

(a) in Japan 

 Son’s status 

Father’s  ------------------------------------------------------------- 

status  (1)  (2)  (3)  (4)  (5) Total 

(1) 39 39 39 57 23 197 

(2) 12 78 23 23 37 173 

(3) 6 16 78 23 20 143 

(4) 18 80 79 126 31 334 

(5) 28 106 136 122 628 1020 

Total 103 319 355 351 739 1867 

 
(b) in Denmark 

 Son’s status 

Father’s  ------------------------------------------------------------ 

status  (1)  (2)  (3)  (4)  (5) Total 

(1) 18 17 16 4 2 57 

(2) 24 105 109 59 21 318 

(3) 23 84 289 217 95 708 

(4) 8 49 175 348 198 778 

(5) 6 8 69 201 246 530 

Total 79 263 658 829 562 2391 

 
(c) in British 

 Son’s status 

Father’s ------------------------------------------------------------- 

status  (1)  (2)  (3)  (4)  (5) Total 

(1) 50 45 8 18 8 129 

(2) 28 174 84 154 55 495 

(3) 11 78 110 223 96 518 

(4) 14 150 185 714 447 1510 

(5) 3 42 72 320 411 848 

Total 106 489 459 1429 1017 3500 

 

Now we consider the model expressed as: 

 

( 1 1 )ij ijp i r j rψ= = , , ; = , , ,… …  

 

where, ψst = ψts for at least one (s, t) with s≠t. We 

shall refer to this model as the Partial Symmetry (PS) 

model. Since the S model indicates that pij equals pji 

for all (i, j), the PS model is implied by the S model. 

For each of Tables 1a-c, the PS model means that the 

probability that a father’s occupational status is i and 

son’s occupational status is j, equals the probability that 

the father’s occupational status is j and son’s 

occupational status is i for at least one (i, j), i = 1,…,5; j 

= 1,…,5; i ≠ j. 

We are now interested in measuring the degree of 

departure from the PS model than the S model. 

By the way, Tomizawa et al. (2004) gave the 

measure in the form of geometric mean, which describes 

the strength of association between the row and column 

variables for two-way contingency table, although the 

detail is omitted. In order to express the degree of 

departure from the PS model, we shall consider the 

geometric mean type measure. 

In the present paper, section 2 proposes a new 

measure which expresses the degree of departure from 

the PS model. Section 3 gives the approximate 

confidence interval of the proposed measure. Section 4 

gives Examples. Section 5 compares two measures and 

shows that the proposed measure is appropriate for 

measuring the degree of departure from PS. Section 6 

presents concluding remarks. 

Measure 

Assume that pij + pji>0 for i≠j. Consider the measure 

defined by: 
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and the value at λ = 0 is taken to be the limit as λ→0 and 

λ is a real-valued parameter which is chosen by the user. 

Note that ( )

P

λΦ  is expressed as the weighted geometric 

mean of the diversity index. The measure ( )

P

λΦ  must lie 

between 0 and 1 since ( ) ( )( )
0 2 1 / 2ijH

λ λ λλ≤ ≤ −  for i<j. For 

any λ(>-1), (i) ( )

P

λΦ  takes the minimum value 0 if and 

only if there is a structure of PS in the table and (ii) ( )

P

λΦ  

takes the maximum value 1 if and only if the degree of 

departure from PS is the largest in the sense that 1
c

ijp =  

(then 0)
c

jip =  or 1
c

jip =  (then 0)
c

ijp =  for all (i, j), i≠j. 

It is easily seen that the value of ( )

P

λΦ  is less than or 

equal to the value of ( )

S

λΦ . It may be natural because the 

necessary and sufficient condition for ( )

P

λΦ  taking the 

minimum value 0 is weaker than that for ( )

S

λΦ  taking the 

minimum value 0, and the necessary and sufficient 

condition for ( )

P

λΦ  taking the maximum value 1 is same 

as that for ( )

S

λΦ  taking the maximum value 1. 

We point out that ( )

P

λΦ  is appropriate for the 

contingency table with the nominal categories, because 

the value of ( )

P

λΦ  is invariant for same arbitrary 

permutations of the categories of rows and columns, 

namely, ( )

P

λΦ  does not depend on the order of the 

categories. 
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Approximate Confidence Interval of 

Measure 

Assume that a multinomial distribution applies to the 

r×r table. We shall obtain the approximate standard error 

and the large-sample confidence interval of ( )

P

λΦ . Let nij 

denote the observed frequency of (i, j) cell in the table 

( 1 1 ),i r j r= , , ; = , ,… …

 and let n denote the total 

number of observations, i.e., n = ΣΣnij. The sample 

version of ( )

P

λΦ , denoted by ( )ˆ
P
λ

Φ , is ( )

P

λΦ  with (pij) 

replaced by ( )ˆ
ijp , where ˆ

ijij
n np = / . Using the delta 

method (Agresti, 2013, p.587), ( )( )( )ˆ
P Pn

λλ − ΦΦ  has 

asymptotically (as n→∞) a normal distribution with 

mean zero and variance σ2
, where: 
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We note that the asymptotic normal distribution of 

( )( )( )ˆ
P Pn

λλ − ΦΦ  is applicable only when ( )
0 1

P

λ< Φ < . Let 2
σ̂  

be σ2
 with (pij) replaced by ( )ˆ

ijp  The estimated 

approximate standard error of ( )ˆ
P
λ

Φ  is 
ˆ ,nσ /

 and the 

approximate 100(1-α)% confidence interval of ( )

P

λΦ  is 

( )

2
ˆ ˆP z n

λ
α σ/± /Φ  where 

2zα /  is the quantile of the standard 

normal distribution corresponding to a two-tail 

probability equal to α. 

Examples 

Consider the data in Table 1 again. Tables 2 and 3 give 

the estimated values of measures ( )

S

λΦ  and ( )

P

λΦ  applied to 

each of Tables 1a-c. They also give the estimated 

approximate standard errors and the approximate 95% 

confidence intervals of the measures. From Table 3, for 

any λ(>-1), the confidence interval of ( )

P

λΦ  applied to the 

data in Table 1a does not include 0. So there would not be 

the structure of PS in Table 1a. On the other hand, for any 

λ(>-1), the confidence intervals of ( )

P

λΦ  applied to the data 

in each of Table 1b and 1c include 0. So there may be the 

structure of PS in each of Tables 1b and 1c. 

We shall further compare the degrees of departure 

from PS for Tables 1a-c using ( )

P

λΦ . Comparing the 

confidence intervals of ( )

P

λΦ  for Tables 1a-c, for any λ(>-

1), it is inferred that the degree of departure from PS for 

Table 1a is larger than that for each of Tables 1b and 1c. 

In a similar way, from Table 2, it is inferred that the 

degree of departure from S for Table 1a is larger than 

that for each of Tables 1b and 1c. 
 

Table 2. The estimates of ( )

S

λΦ , estimated approximate standard 

errors of ( )ˆ
S
λ

Φ  and approximate 95% confidence 

intervals of ( )

S

λΦ , applied to each of Tables 1a-c   

(a) Table 1a 

 Estimated  Standard Confidence 

λ measure ( )ˆ
S
λ

Φ  error interval 

-0.5 0.160 0.017 (0.127, 0.194) 

0 0.252 0.025 (0.203, 0.301) 

0.5 0.301 0.028 (0.245, 0.356) 

1 0.323 0.030 (0.265, 0.381) 

1.5 0.328 0.030 (0.270, 0.387) 

2 0.323 0.030 (0.265, 0.381) 

2.5 0.311 0.029 (0.254, 0.368) 

3 0.295 0.029 (0.239, 0.351) 
 
(b) Table 1b   

 Estimated  Standard  Confidence   

λ measure ( )ˆ
S
λ

Φ  error  interval 

-0.5 0.008 0.003 (0.002, 0.014) 
0 0.013 0.005 (0.003, 0.023) 
0.5 0.016 0.006 (0.004, 0.028) 
1 0.018 0.007 (0.004, 0.031) 
1.5 0.018 0.007 (0.004, 0.032) 
2 0.018 0.007 (0.004, 0.031) 
2.5 0.017 0.007 (0.004, 0.029) 
3 0.015 0.006 (0.003, 0.027) 
 
(c) Table 1c 

  Estimated  Standard  Confidence 

λ measure ( )ˆ
S
λ

Φ  error  interval 

-0.5 0.008 0.003 (0.003, 0.013) 
0 0.013 0.004 (0.005, 0.022) 
0.5 0.017 0.005 (0.006, 0.027) 
1 0.018 0.006 (0.007, 0.030) 
1.5 0.019 0.006 (0.007, 0.030) 
2 0.018 0.006 (0.007, 0.030) 
2.5 0.017 0.006 (0.006, 0.028) 
3 0.016 0.005 (0.006, 0.026) 
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Table 3. The estimates of ( )

P

λΦ , estimated approximate standard 

errors of ( )ˆ
P
λ

Φ  and approximate 95% confidence intervals 

of ( )

P

λΦ , applied to each of Tables 1a, 1b and 1c   

(a) Table 1a   

  Estimated  Standard  Confidence 

λ measure ( )ˆ
P
λ

Φ  error  interval 

-0.5 0.121 0.025 (0.072, 0.170) 
0 0.193 0.039 (0.117, 0.270) 
0.5 0.233 0.047 (0.142, 0.325) 
1 0.252 0.050 (0.154, 0.350) 
1.5 0.256 0.051 (0.157, 0.356) 
2 0.252 0.050 (0.154, 0.350) 
2.5 0.241 0.048 (0.147, 0.336) 
3 0.227 0.046 (0.138, 0.317) 

 
(b) Table 1b   

  Estimated  Standard  Confidence 

λ measure ( )ˆ
P
λ

Φ  error  interval 

-0.5 0.001 0.005 (-0.009, 0.012) 
0 0.002 0.009 (-0.016, 0.020) 
0.5 0.003 0.011 (-0.019, 0.025) 
1 0.003 0.013 (-0.021, 0.028) 
1.5 0.003 0.013 (-0.022, 0.029) 
2 0.003 0.013 (-0.021, 0.028) 
2.5 0.003 0.012 (-0.020, 0.026) 
3 0.003 0.011 (-0.018, 0.024) 

 
(c) Table 1c   

  Estimated  Standard  Confidence 

λ measure ( )ˆ
P
λ

Φ  error  interval 

-0.5 0.003 0.005 (-0.006, 0.013) 
0 0.006 0.008 (-0.010, 0.021) 
0.5 0.007 0.010 (-0.012, 0.027) 
1 0.008 0.011 (-0.013, 0.029) 
1.5 0.008 0.011 (-0.014, 0.030) 
2 0.008 0.011 (-0.013, 0.029) 
2.5 0.007 0.010 (-0.013, 0.028) 
3 0.007 0.009 (-0.012, 0.025) 

 

We point out that, for any λ(>-1) the estimated value of 
( )

P

λΦ  applied to each of Tables 1a-c is less than that of ( )

S

λΦ . 

Comparison between Measures 

Consider the 4×4 artificial cell probability tables 

given in Table 4. There is a structure of PS in each of 

Tables 4a and 4b. Table 4c has a cell with probability 

zero in the lower left triangle. Also there are two or 

more cells with probabilities zeros in Tables 4d-h. 

Tables 5 and 6 shows the values of ( )

S

λΦ  and ( )

P

λΦ  

applied to each table. We can see from Tables 4 and 6 

that, for fixed λ, the value of ( )

P

λΦ  increases as the 

number of cells with probabilities zeros in the 4 4×  

table increases.  It  may  be natural to consider that the 

degree of departure from PS increases as the number 

of cells  with probabilities zeros in the table increases. 

Table 4. Artificial cell probability tables 

(a) 

0.140 0.017 0.033 0.018 

0.017 0.141 0.004 0.018 

0.066 0.016 0.140 0.015 

0.054 0.090 0.090 0.141 

     

(b) 

0.159 0.016 0.038 0.012 

0.016 0.159 0.008 0.011 

0.076 0.032 0.160 0.009 

0.036 0.055 0.054 0.159 

 

(c) 

0.164 0.012 0.039 0.015 

0.000 0.165 0.013 0.010 

0.078 0.052 0.164 0.004 

0.045 0.050 0.024 0.165 

 

(d) 

0.158 0.071 0.008 0.013 

0.000 0.158 0.020 0.018 

0.000 0.080 0.159 0.004 

0.039 0.090 0.024 0.158 

 

(e) 

0.194 0.042 0.004 0.021 

0.000 0.195 0.009 0.016 

0.000 0.036 0.194 0.002 

0.000 0.080 0.012 0.195 

 

(f) 

0.202 0.033 0.023 0.005 

0.000 0.202 0.008 0.018 

0.000 0.000 0.202 0.002 

0.000 0.090 0.012 0.203 

 

(g) 

0.216 0.001 0.008 0.025 

0.000 0.217 0.020 0.010 

0.000 0.000 0.217 0.010 

0.000 0.000 0.060 0.216 

 

(h) 

0.215 0.079 0.013 0.021 

0.000 0.215 0.004 0.018 

0.000 0.000 0.215 0.005 

0.000 0.000 0.000 0.215 

 

Namely ( )

P

λΦ  would be appropriate for measuring the 

degree of departure from PS. On the other hand, from 

Tables 4 and 5, ( )

S

λΦ  is not appropriate for measuring 

the degree of departure from PS because, for fixed λ, 

the values of ( )

S

λΦ  applied to Tables 4a and 4b are 

unequal (although there is a structure of PS in each of 

Tables 4a and 4b). 
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Table 5. Values of  ( )

S

λΦ  for Table 4 

 λ 

 -------------------------------------------------- 

Applied tables  0 0.5 1.5 

Table 4a  0.246 0.293 0.320 

Table 4b  0.216 0.258 0.282 

Table 4c  0.244 0.286 0.310 

Table 4d  0.452 0.498 0.523 

Table 4e  0.535 0.579 0.604 

Table 4f  0.589 0.631 0.654 

Table 4g  0.691 0.728 0.748 

Table 4h 1.000 1.000 1.000 

 

Table 6. Values of  ( )

P

λΦ  for Table 4 

 λ 
 -------------------------------------------------- 

Applied tables  0 0.5 1.5 

Table 4a  0.000 0.000 0.000 

Table 4b  0.000 0.000 0.000 

Table 4c  0.192 0.231 0.255 

Table 4d  0.382 0.440 0.472 

Table 4e  0.463 0.523 0.555 

Table 4f  0.517 0.577 0.608 

Table 4g  0.626 0.681 0.709 

Table 4h  1.000 1.000 1.000 

 

Concluding Remarks 

For an r×r square contingency table, we have 

considered the PS model which has weaker restriction 

than the S model. The PS model indicates symmetry of 

probabilities for at least a pair of symmetric cells instead 

of all pairs of symmetric cells. We have proposed the 

measure to express the degree of departure from PS. The 

measure enables us to see how far cell probabilities are 

distant from those with a PS structure. 

The readers may be interested in the relationship 

between the proposed measure and the goodness-of-fit 

test for the PS model. However it may be difficult to 

discuss the relationship. 

We also have shown with Examples that ( )

P

λΦ  is 

useful for expressing and comparing the degree of 
departure from the partial symmetry toward the complete 

asymmetry between different tables. 
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