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ABSTRACT 

Mechanical systems deteriorate over time and do not perform according to their intended functions and 
eventually fail due to the failure of one or more their components or units. Failed components are either 
repaired or replaced depending of several factors such as cost, criticality, or reliability. Repair is perfect, 
minimal, or imperfect. This study assesses the performance of a standby system which upon the failure of 
any component is either replaced or repaired. Two models are constructed and analyzed, the first model 
assumes the system to be perfectly repaired after each failure, whereas in the second the failed component is 
either replaced or imperfectly repaired. Steady state availably is used as a performance measure. 
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1. INTRODUCTION 

Systems are maintained regularly to function properly 
and perform their intended design functions. 
Nevertheless, they malfunction after excessive usage and 
ultimately fail by the failure of one or more of their 
components. Failed components are either replaced or 
repaired, inexpensive and non-critical components are 
usually repaired while expensive and critical components 
are replaced. Repair could be either perfect where upon 
failure, the repaired component becomes as good as new; 
minimal repair where the component is returned to its 
status just before failure and imperfect repair which 
makes the failure of the repaired component higher prior 
to failure. In this article, a two component standby 
system is investigated. 

In this system, one component is in operation and 
the other in cold standby. Two models of the system are 
presented; the first model addresses the issue of perfect 
repair whereas the second model examines the 
performance of the system where a failed component 
undergoes two failures before complete replacement by 
a new one. In the second model and upon failure of 
operating component, it is either replaced with 
probability q or is repaired with probability p. In both 
models, steady state availability is used as a 
performance indicator. 

The literature is rich in research works pertinent to 
maintenance and repair. Barlow and Hunter (1960) used 
elementary renewal theory to obtain optimum policies. 
Nakagawa and Osaki (1975) assumed that both the 
working time and repair time of priority component 
having a general distribution while working time and 
repair time of the non-priority component is 
exponentially distributed. Some reliability indices of the 
system were derived using Markov renewal theory. 
Brown and Proschan (1983; Block et al., 1985; Kijima, 
1989) proposed and studied many repair/replacement 
policies based on working age, number of repairs, repair 
cost and their combinations. 

Zhang (2008) studied a simple repairable system with 
delayed repair time. He derived some important 
reliability indices and also obtained the optimal 
replacement policy N of this model. Agarwal and Mohan 
(2008) used the Graphical Evaluation and Review 
Technique (GERT) for reliability evaluation of the 
system to analyze an m-consecutive-k-out-of-n: F 
system. It is assumed that the system consists of n 
linearly ordered sequence of components and it fails if 
and only if there is at least m overlapping runs of k 
consecutive failed components. In this regard, the 
software mathematica is used for systematic 
computation. Haggag (2009) attempted to determine the 



Mohammed A. Hajeeh / Journal of Mathematics and Statistics 10 (3): 384-389, 2014 

 
385 Science Publications

 
JMSS 

effect of preventive maintenance on the reliability and 
performance of a system consisting of two dissimilar 
units in cold standby. The performance of the system 
was measured under the assumption of normal, partial 
failed and total failure states. The steady-state 
availability and cost was measured under exponential 
failure and repair time distributions. The results indicated 
that the system with preventive maintenance is better 
than the system without preventive maintenance. 

Mujahid and Rahim (2010) examines the 
performance of a Preventive Maintenance Warranty 
(PMW) policy for repairable products with the objective 
of finding the optimal number of preventive maintenance 
actions and the length of each action and the level of 
maintenance needed. Additionally, failure rate and 
minimal repair cost, a relationship among the PM 
intervals is derived for a special PM case. Hanagal and 
Kanade (2010a) proposed replacement policy based on 
number of down times (or shutdown) of the repairable 
system. Hanagal and Kanade (2010b) also proposed 
optimal replacement policy based on number of down 
times with priority in use when the lifetime and repair 
time are independent. Mokaddis et al. (2010) analyzed 
the reliability of two mathematical models for an 
electric power system in changing outdoor weather. 
The first was a two-unit cold standby system and the 
second was two-unit warm standby system. The 
performance of the two systems was investigated under 
normal and total failure conditions. The failure times of 
operating/spare units and repair time of failed units 
were assumed to be exponentially distributed using 
Laplace transforms to compare the Mean Time To 
Failure (MTTF) of the two systems. 

Hajeeh (2010) compared the performance of three 
configurations of two-identical component systems 
under imperfect repair. The steady state availability of 
the different configurations was derived under 
exponential distribution time to failure and repair times. 
Analysis showed that for the same components and 
parameters, the standby configuration performs 
superiorly to all the others configurations. Abdelfattah and 
El-Faheem (2011) attempted to improve a system by 
either adding hot or cold standby components, reducing 
the failure rate of some components, or by imperfect 
switches. In all the modified cases, the mean time to 
failure and the reliability function were derived and 
compared to the original system (Michlin et al., 2011) 
compared the reliability of two items by measuring the 
ratio of their times between failures under the 
assumption of exponential distribution. A methodology 
was presented to test the choice and dependences for 

determining the acceptance/rejection boundaries of such 
a test with pre-specified characteristics. 

Oke et al. (2013) studied the effectiveness and cost 
of scheduling preventive maintenance actions for ships. 
In this analysis, the direct and indirect costs were 
included in the analysis. The main costs used are the 
total maintenance cost, cost of idleness, total ship idle 
period and total ship operation period. These costs were 
computed under inflation, opportunity and combined 
opportunity and inflation and compared with the values 
corresponding to maintenance cost parameter using t-
test. Monte Carlo simulation is utilized to generate 
additional test problems. Jain (2013) examined the 
performance of multi-component repairable system. 
The steady state availability of different configurations 
of system is derived using supplementary variable 
method a recursive approach for exponential, gamma 
and uniform distributions of the repair time. Moreover, 
sensitivity analysis was conducted to evaluate the effect 
of system parameters on the reliability indices in 
addition to graphical presentation of the neuro-fuzzy 
results to explore the possibility of soft computing. 

The maintenance problem for a simple repairable 
system is an important topic. In analyzing such system, 
many researchers and authors usually assume that the 
system after repair is “as good as new”. However, in 
real-life situation, many repairable systems deteriorate 
due to aging effect and the accumulative wear, tear and 
damages. Therefore, assuming imperfect repair where 
the successive operating times of the system will 
decrease while the consecutive repair times of the 
system will increase is more realistic. In this research 
work, the performance of a standby system subjected to 
imperfect repair is analyzed. It is assumed that two 
options are available upon failure of any component, 
either to replace or repair the failed component. 
However, the component undergoes only replacement 
after a pre-specified number of imperfect repairs. 

2. MATERIALS AND METHODS 

The current paper examines the behavior of a cold 
standby system subjected to imperfect repair. Standby 
redundancy is used in order to enhance the systems’ 
performance and reduce its downtime. A Standby is hot, 
warm and cold. In hot standby, the standby component 
has the same failure rate as that of the operating 
component, in warm standby, the failure rate of the 
standby component is less than the component in 
operation while, in cold standby system, the failure rate 
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of the standby component is zero (i.e., the component 
does not fail when in standby. 

The different models used in this research work are 
based on the following assumptions: (i) Time between 
failures and repair rates are exponentially distributed; (ii) 
all failures are statistically independent; (iii) the travel 
times to and from the repair facility are negligible; (iv) the 
system becomes as good as new after each replacement. 

Several terminologies are used throughout the article, 
they are defined as follows: 
 
λi = The ith failure rate of the component, i = 1,2,…, n  
µi = The ith repair rate of the component, i = 1,2,…, n  
πj = The steady state probability of being at state j, j 

=1,2,….  
ai = Component 1 after the ith failure, i = 0,1,…,n; where 

0 means the component is new  
bi = Component 2 after the ith failure, i = 0,1,…,n; where 

0 means the component is new  
A = Steady state availability of the system 
 
2.1. Perfect Repair  

Perfect repair brings the component to the status of as 
good as new; it is as replacing the failed component by a 
new one. A pictorial presentation of a two-component 
cold standby with perfect repair is given in Fig. 1. In this 
figure, the rectangular shapes represent operation states 
while the oval shapes represent the failed states. Hence, 
the states 1, 2, 3 and 4 are the operational states and the 
states 5 and 6 represent the states where the system has 
failed (down). In state 1 both components are new, A is 
in operation and B is in standby (bald and underlined) 
represent the standby component. Upon failure of A with 
a failure rate λ, the system moves to state 2, where 
component A is in repair and component B is in 
operation. From state 2, two transitions are likely, either 
to the operational state 3 by repairing component A with 
repair rate µ, or to the failed state 5 the failure of state B 
with a failure rate λ and so on. 

The Chapman-Kolomogorov steady state transitional 
probability relationships for the Markov model for this 
system are as follows Equation 1: 
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1 2 6

2 3

3 4 5

2 5

4 6

0

( ) 0

0

( ) 0

0

0

λπ µπ
λπ λ µ π µπ
µπ λπ
λπ λ µ π µπ
λπ µπ
λπ µπ

− + =
− + + =
− =
− + + =
− =
− =

 (1) 

Using the relationships in (1) along with the 
following relationship: 
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The steady state probability of being in state 1 is 

derived. It has the following expression Equation 2: 
 

2

1 2 22

µπ
λ λµ µ

=
 + + 

 (2) 

 
In order to derive the expression for the system’s 

availability, the state transitional probabilities in terms of 
π1 are derived and summed. The expression after 
simplification and dividing the numerator and the 
denominator by λµ (λ+µ) is as follows Equation 3: 
 

1

1
( )

A λ
λ
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=
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 (3) 

 
2.2. Imperfect Repair 

Imperfect repair is widely used in many systems, 
especially the ones with expensive and no-critical 
components. In imperfect repair, components are 
repaired several times before complete replacements. In 
this repair type, the time between failures decreases (λi> 
= λ0i+1, I = 1,...,n) after each failure while the repair time 
increases (µi+1 <= µi, i = 1,...,n). In this research work, 
failed components are replaced after undergoing two 
repairs; analytical analysis of more than two failures is 
too tedious. The system is presented pictorially in Fig. 2 
where the rectangular shapes are the non-failure states, 
whereas the oval shapes represents the failed states; the 
standby component is bald and underlined. In this 
system, the process starts form state 1, where both 
components are new, A is in operational state and B is 
standby. From state 1, the process transitions to state 2 
upon the failure of component A with failure rate λ1 and 
component B is operational status and component A is in 
repair. From state 2, the process is either moves to state 3 
by the repair of components A (A0 becomes A1) with 
repair rate pµ1, to state 4 with the replacement rate qµ2, 
or to the failed state 17 by the failure of component B 
with failure rate λ1 and so on. After the second failure of 
any component, it is replaced by a new one. 
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Fig. 1. A cold standby system with perfect repair 
 

 
 

Fig. 2. Probabilistic Repair and replacement for a standby system with imperfect repair 
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The Chapman-Kolomogorov steady state transitional 
probability relationships for the Markov model for this 
system are as follows: 
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Solving the above set of Equation in (4) and evoking 

the following relationship. 
24
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=∑ , the probability of the system being in state 1, 

π1 is obtained. It has the following structure Equation 5: 
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From the above expression, the probabilities of 
different states in terms of π1 are derived. Summing, the 
state probabilities gives the steady availability of the 
system. It has the following from after manipulating and 
simplifying Equation 6: 
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3. RESULTS AND DISCUSSION 

In comparing the derivation process for availability 
for the two models, it obvious that the process for 
imperfect repair is harder and lengthier than that of 
perfect repair case. For example, the number of states in 
the perfect case is six states, while in the imperfect case 
it is around 24 states and this number will increase as the 
number of imperfect repairs increases. In addition, the 
structure of the availability formula is more complex. 

4. CONCLUSION 

Analysis shows that the performance of a perfect 
repair is superior to that of an imperfect repair. 
Moreover, deriving an analytical expression for an 
imperfect repair system is very tedious and complex 
especially as the number of states increases. However, 
although the perfect repair option provides a higher 
availability, nevertheless, it is more costly because of the 
frequent replacement of a failed component with a new 
system. The imperfect repair process has several costs in 
addition to purchase cost such as repair cost and down 
time cost, but the constitute a smaller cost when 
compared to replacement cost. 

Future work in this area should investigate the 
performance of a two-component system with more 
than two repairs in addition to systems with multiple 
components. 
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