Journal of Mathematics and Statistics 10 (3): 384-389, 2014

ISSN: 1549-3644

© 2014 Science Publications

doi:10.3844/jmssp.2014.384.389 Published Onlin€3)@014 (http://www.thescipub.com/jmss.toc)

STOCHASTIC REPAIR AND REPLACEMENT OF A
STANDBY SYSTEM

Mohammed A. Hajeeh
Techno-Economics Division, Kuwait Institute for 8afific Research, P.O. Box 24885; Safat-13109, Kuwait

Received 2013-10-09; Revised 2014-05-23; Accepted-P8113
ABSTRACT

Mechanical systems deteriorate over time and dopediorm according to their intended functions and
eventually fail due to the failure of one or moheit components or units. Failed components ateeit
repaired or replaced depending of several factoch s1s cost, criticality, or reliability. Repair perfect,
minimal, or imperfect. This study assesses theopeidnce of a standby system which upon the faibdire
any component is either replaced or repaired. Twalats are constructed and analyzed, the first model
assumes the system to be perfectly repaired atdr filure, whereas in the second the failed corapbis
either replaced or imperfectly repaired. Steadtest&ailably is used as a performance measure.
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1. INTRODUCTION The literature is rich in research works pertinent
maintenance and repair. Barlow and Hunter (1966y us
Systems are maintained regularly to function priyper elementary renewal theory to obtain optimum padicie
and perform their intended design functions. Nakagawa and Osaki (1975) assumed that both the
Nevertheless, they malfunction after excessive@isagl  working time and repair time of priority component
ultimately fail by the failure of one or more ofeth  haying a general distribution while working timedan
components. Failed components are either replaced Oepair time of the non-priority component is

repaired, inexpensive and non-critical componemss a gy onentially distributed. Some reliability indicesthe
usually repaired while expensive and critical corgauts system were derived using Markov renewal theory.
?r.f replﬁced. R_epgur could be et;ther perfect w:;g[m Brown and Proschan (1983; Bloekal., 1985; Kijima
ailure, the repaired component becomes as gooe\as 1989) proposed and studied many repair/replacement

minimal repair where the component is returnedtso i licies based K ber of e
status just before failure and imperfect repair oighi ~PO!ICIES DasSed on working age, number Of repagsair

makes the failure of the repaired component highier ~ €0St and their combinations. . .
to failure. In this article, a two component stapdb Zhang (2008) studied a simple repairable systern wit
system is investigated. delayed repair time. He derived some important
In this system, one component is in operation andreliability indices and also obtained the optimal
the other in cold standby. Two models of the systeen ~ replacement policy N of this model. Agarwal and Moh
presented; the first model addresses the issuertéq@  (2008) used the Graphical Evaluation and Review
repair whereas the second model examines thelechnique (GERT) for reliability evaluation of the
performance of the system where a failed componensystem to analyze an m-consecutive-k-out-of-n: F
undergoes two failures before complete replacerbgnt system. It is assumed that the system consists of n
a new one. In the second model and upon failure oflinearly ordered sequence of components and i fil
operating component, it is either replaced with and only if there is at least m overlapping runskof
probability g or is repaired with probability p. both consecutive failed components. In this regard, the
models, steady state availability is used as asoftware mathematica is used for systematic
performance indicator. computation. Haggag (2009) attempted to deterniiee t
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effect of preventive maintenance on the reliabibiyd determining the acceptance/rejection boundariesuoh
performance of a system consisting of two dissimila a test with pre-specified characteristics.
units in cold standby. The performance of the syste Oke et al. (2013) studied the effectiveness and cost
was measured under the assumption of normal, partiaof scheduling preventive maintenance actions fagpssh
failed and total failure states. The steady-stateln this analysis, the direct and indirect costs ever
availability and cost was measured under exporentiaincluded in the analysis. The main costs used lage t
failure and repair time distributions. The resitidicated total maintenance cost, cost of idleness, totgh stiie
that the system with preventive maintenance isebett period and total ship operation period. These coste
than the system without preventive maintenance. computed under inflation, opportunity and combined

Mujahid and Rahim (2010) examines the gpportunity and inflation and compared with theues
performance of a Preventive Maintenance Warrantycorresponding to maintenance cost parameter using t
(PMW) policy for repairable products with the olijee  test. Monte Carlo simulation is utilized to generat
of finding the optimal number of preventive maird@oe  qditional test problems. Jain (2013) examined the
actions and the length of each action and the lefel ,orformance of multi-component repairable system.
maintenance needed. Additionally, failure rate and g gieady state availability of different configtions
_rmmmal repair cost, a relat!onshlp among the PM of system is derived using supplementary variable
intervals is derived for a special PM case. Hanaglail method a recursive approach for exponential, gamma
Kanade (2010a) proposed replacement policy based %%nd uniform distributions of the repair time. Moveo
number of down times (or shutdown) of the repaeabl ensitivity analysis was conducted to evaluateeﬂm:i
system. Hanagal and K_anade (2010D) also propose f system parameters on the reliability indices in
optimal replacement policy based on number of dOwnaddition to graphical presentation of the neurcaejuz
times with priority in use when the lifetime andpadr - .
time are independent. Mokaddisal. (2010) analyzed results to e?(plore the possibility of soft _compgtln :

The maintenance problem for a simple repairable

the reliability of two mathematical models for an . . ; ;
system is an important topic. In analyzing sucheys

electric power system in changing outdoor weather.
The first was a two-unit cold standby system anel th many researchers and authors usually assume that th
system after repair is “as good as new”. Howewer, i

second was two-unit warm standby system. The i S : ,
performance of the two systems was investigateetund "€@l-life situation, many repairable systems detete
normal and total failure conditions. The failurméis of ~ due to aging effect and the accumulative wear, dear
operating/spare units and repair time of failedtzinj damages. Therefore, assuming imperfect repair where
were assumed to be exponentially distributed usingthe successive operating times of the system will
Laplace transforms to compare the Mean Time Todecrease while the consecutive repair times of the
Failure (MTTF) of the two systems. system will increase is more realistic. In thise@zh

Hajeeh (2010) compared the performance of threework, the performance of a standby system subjetcted
configurations of two-identical component systems imperfect repair is analyzed. It is assumed thad tw
under imperfect repair. The steady state avaitsbdf options are available upon failure of any component
the different configurations was derived under either to replace or repair the failed component.
exponential distribution time to failure and repiines. However, the component undergoes only replacement
Analysis showed that for the same components andafter a pre-specified number of imperfect repairs.
parameters, the standby configuration performs

superiorly to all the others configurations. Abdétih and 2. MATERIALSAND METHODS
El-Faheem (2011) attempted to improve a system by
either adding hot or cold standby components, reduc The current paper examines the behavior of a cold

the failure rate of some components, or by impérfec standby system subjected to imperfect repair. $tand
switches. In all the modified cases, the mean ttme redundancy is used in order to enhance the systems’
failure and the reliability function were derivedhda  performance and reduce its downtime. A Standbyts h
compared to the original system (Michig al., 2011) warm and cold. In hot standby, the standby compionen
compared the reliability of two items by measurihg has the same failure rate as that of the operating
ratio of their times between failures under the component, in warm standby, the failure rate of the
assumption of exponential distribution. A methodgio standby component is less than the component in
was presented to test the choice and dependences foperation while, in cold standby system, the failuate
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of the standby component is zero (i.e., the compbne
does not fail when in standby.

Using the relationships in (1) along with the
following relationship:

The different models used in this research work are

based on the following assumptions: (i) Time betwee

failures and repair rates are exponentially digtad; (ii)

all failures are statistically independent; (iijet travel

times to and from the repair facility are negligib{iv) the

system becomes as good as new after each replacemen
Several terminologies are used throughout thelaystic

they are defined as follows:

A = The I" failure rate of the component, i=1,2,..., n

w; = The I" repair rate of the component, i=1,2,..., n

m = The steady state probability of being at statg j,
=1.2,....

g = Component 1 after th® failure, i = 0,1,...,n; where
0 means the component is new
b, = Component 2 after th® failure, i = 0,1,...,n; where

0 means the component is new
A = Steady state availability of the system

2.1. Perfect Repair

Perfect repair brings the component to the statas o
good as new; it is as replacing the failed compbbgra
new one. A pictorial presentation of a two-compdnen
cold standby with perfect repair is givenRig. 1. In this
figure, the rectangular shapes represent operatees
while the oval shapes represent the failed st&tesace,
the states 1, 2, 3 and 4 are the operational saidhe
states 5 and 6 represent the states where thershste
failed (down). In state 1 both components are nkus
in operation and B is in standby (bald and unded)n
represent the standby component. Upon failure ofith
a failure rate), the system moves to state 2, where
component A is in repair and component B is in
operation. From state 2, two transitions are likelgher
to the operational state 3 by repairing componemtith
repair rateu, or to the failed state 5 the failure of state B
with a failure rated and so on.

i=1

The steady state probability of being in state 1 is

derived. It has the following expression Equation 2
ﬂz

m=—r 2
1 2|:A2+A,U+,Uz] ( )

In order to derive the expression for the system’s
availability, the state transitional probabilitiesterms of
75 are derived and summed. The expression after
simplification and dividing the numerator and the
denominator byl (A+w) is as follows Equation 3:

|

2.2. Imperfect Repair

1
- A
1. A
+

L HA+ 1)

®)

Imperfect repair is widely used in many systems,
especially the ones with expensive and no-critical
components. In imperfect repair, components are
repaired several times before complete replaceménts
this repair type, the time between failures de@eds>
=104, | = 1,...n) after each failure while the repair time
increases .1 <=y, i = 1,...n). In this research work,
failed components are replaced after undergoing two
repairs; analytical analysis of more than two fafiis
too tedious. The system is presented pictoriallffign 2
where the rectangular shapes are the non-failatesst
whereas the oval shapes represents the faileds;sthe
standby component is bald and underlined. In this

The Chapman-Kolomogorov steady state transitionalSystem, the process starts form state 1, where both

probability relationships for the Markov model fthis
system are as follows Equation 1:

-Am +um, =0

A~ (A + )11, + part, = 0
urg, = A, =0 1)
A= (A + )71, + = 0

A, — i, =0

Am, — g, =0
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components are nevd is in operational state and B is
standby. From state 1, the process transitiondatie 2
upon the failure of component A with failure radteand
component B is operational status and compoAdstin
repair. From state 2, the process is either mavetate 3
by the repair of componentd (A becomesA;) with
repair ratepu;, to state 4 with the replacement rgie,

or to the failed state 17 by the failure of companB
with failure ratel; and so on. After the second failure of
any component, it is replaced by a new one.
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Fig. 1. A cold standby system with perfect repair
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Fig. 2. Probabilistic Repair and replacement for a stargilsyem with imperfect repair
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The Chapman-Kolomogorov steady state transitional
probability relationships for the Markov model fthis

system are as follows:

— AT+ QU T+ [ JT5=0

ATt = (A Pl + QU TT,+ QU T g+ [T 5= 0
PL47T, = AT, =0

ATl = AJT, + T, =0

AT, = (A, + puy+ Q)T+ pp T, =0
AT = (A + P+ QU T+ QU T+ [T 5= 0
PH4TT = AT, =0

Q7T = ATy + 1 7T,6=0

PH47T = AT, =0

AT, = (Ay+ p) Ty + PHT =0

ATty = (Ay + )T+ QU T g+ U JT 5= 0
ATy = (Ay+ P+ QU T+ PUTT =0
My = AJTi5+ QU JT,,= 0

PHTL, = AT, =0

ATl = (Ay+ M) T+ [T o5+ QU JT =0
Aty = (Ap+ 1) T+ PUIT =0

AT, = (P + au ) 1, =0

ATt = (PA + GHR) 115 = 0

AT = (PHy + Oplp) T1g = 0
/]2”10_/127720:0

AT, = T, =0

AT, = (P, + QU ) 7T,,= 0
/]1”15_/12”23=0

ATl = HT,, =0

Solving the above set of Equation in (4) and evgkin

the following relationship.

24
> m =1, the probability of the system being in state 1,

i=1

7% is obtained. It has the following structure Ecuab:

Qi (A, + 14,)(PUy+ Qi) + UPUA + P+ Ot )]

_[
" (A + 1)ty + Q) (A + puy+au )

AA, + puy+aqu,)

AAI) | ) o+ by i)

Lo PH {1+"1(1+ P ]}
(Pt +aw,) | A, (pey+auy)

A+ + +
(A, + Py + auty) (Pt + qity)

I'IZ(AZ + ﬂZ)
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/lpu(/l+u){ A ppA+ 1)
P N o B Nl Y s 74 A(/] +#)+#
YT (puy+auy)

|

(4)

(%)

From the above expression, the probabilities of
different states in terms of are derived. Summing, the
state probabilities gives the steady availabilify tie
system. It has the following from after manipulgtiand
simplifying Equation 6:

[(A+ 1,)(A,+ py+que,)
AP, J

o)
ALt (Paraw) )\ A(pii+aus) )|

(A + ) (A + py+quy)
AP, ]

b |
(P4 +au,) APy +au)

At ) (“ p/ll]
(Pt +au)\ - i,
AP (A+ 1)

(PLy + A) (P, + QL)

((/ll + PI AR, | P+ /1])]

(A +pry+au,) A+ 1)

+

(6)

3. RESULTS AND DISCUSSION

In comparing the derivation process for availapilit
for the two models, it obvious that the process for
imperfect repair is harder and lengthier than tbt
perfect repair case. For example, the number tésta
the perfect case is six states, while in the imgmréase
it is around 24 states and this number will inceeas the
number of imperfect repairs increases. In additite,
structure of the availability formula is more coexl

4. CONCLUSION

Analysis shows that the performance of a perfect
repair is superior to that of an imperfect repair.
Moreover, deriving an analytical expression for an
imperfect repair system is very tedious and complex
especially as the number of states increases. Hawev
although the perfect repair option provides a highe
availability, nevertheless, it is more costly besmof the
frequent replacement of a failed component witheav n
system. The imperfect repair process has sevests ao
addition to purchase cost such as repair cost amchd
time cost, but the constitute a smaller cost when
compared to replacement cost.

Future work in this area should investigate the
performance of a two-component system with more
than two repairs in addition to systems with muéip
components.

JMSS



Mohammed A. Hajeeh / Journal of Mathematics antis$itzs 10 (3): 384-389, 2014

5. REFERENCES Jain, M., 2013. Availability prediction of imperfefault
coverage system with reboot and common cause
Abdelfattah, M. and A.A. El-Faheem, 2011. Reliapili failure. Int. J. Operat. Res., 17: 374-397. DOI:

equivalence factors of a system with 2 non-idehtica 10.1504/IJ0R.2013.054441

mixed lifetimes and delayed time. J. Math. Stat., 7 gijjima, M., 1989. Some result for repairable systeith

169-176. DOI: 10.3844/jmssp.2011.169.176 general repair. J. Applied Probability, 26: 89-102.
Agarwal, M. and P. Mohan, 2008. GERT analysis of m- DOI: 10.2307/3214319

consecutive-k-out-of-n: F system with overlapping ,. ., :
runs and (k-1)-step Markov dependence. Int. J.M'Ch“n’ Y.H, D. Ingman and V. Dayan, 2011.

. i . Sequential test for arbitrary ratio of mean times

?girS%ﬁ/IJORg%Sd’ES 01612.3 36-51. DO between failures. Int. J. Operat. Res. Inform. Syst
Barlow, R.E. and L.C. Hunter, 1960. Optimal prevant 2: 66-81. DOI: 10.4018/joris.2011010103

maintenance policies. J. Operat. Res., 8: 90-100Mokaddis, G.S., M.S. EL-Sherbeny and E. Al-Esayeh,

DOI: 10.1287/opre.8.1.90 2010. Comparsion between two-unit cold standby

Block, H.W., W.S. Borges and T.H. Savits, 1985. Age  and warm standby outdoor electric power systems in
dependent minimal repair. J. Applied Probability, changing weather. J. Math. Stat., 6: 17-22. DOL

22: 370-385. DOI: 10.2307/3213780 10.3844/jmssp.2011.169.176

Brown, M. and F. Proschan, 1983. Imperfect repair. Mujahid, S.N. and M.A. Rahim, 2010. Optimal
Applied  Probability, 20: 851-859. DOI: preventive maintenance warranty policy for
10.2307/3213596 repairable products with periodically increasing

Haggag, M.Y., 2009. Cost analysis of two-dissimilar failure rate. Int. J. Operat. Res., 9: 227-240. DOI
unit cold standby system with three states and 10 1504/1J0R.2010.035046
preventive maintenance using linear first order nakagawa, T. and S. Osaki, 1975. Stochastic bebavio
differential equations. J. Math. Stat., 5: 395- 400 of a two unit priority standby redundant systerrhwit

DOI: 10.3844/jmssp.2009.395.400 Lo v i
. repair. Microelectron. Reliabilty, 14: 309-313. DOI
Hajeeh, M., 2010. Performance of two-component 10.1016/0026-2714(75)90708-8

systems with imperfect repair. Int. J. Operat. Res.

Inform. Syst., 1: 50-63. DOI: Oke, S.A,, OE Charles—Owaba and .A.E. OIu_Ieye,BZOl
10.4018/joris.2010040104 Preventive maintenance schedul|ng:_DeC|S|on model
Hanagal, D.D. and R.A. Kanade, 2010a. Optimal development and case study analysis. Int. J. Qperat
replacement policy based on number of down times. ~ Res.  Inform. Syst, 4. 69-94.  DOL
Economic Quality Control, 25: 3-12. DOI: 10.4018/joris.2013040105
10.1515/eqc.2010.001 Zhang, Y.L., 2008. A geometrical process repair ehod
Hanagal, D.D. and R.A. Kanade, 2010b. Optimal for a repairable system with delayed repair. Comput
replacement policy based on number of down times Math. Appli., 55: 1629-1643. DOI:
with priority in use. Economic Q. Control, 25: 243- 10.1016/j.camwa.2007.06.020

51. DOI: 10.1515/eqc.2010.017

% Science Publications 389 JMSS



