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ABSTRACT

In this article the analysis of experiment of rejgglameasures design is considered which is uset oft
in different fields of studies. In order to analythe experiment of repeated measures design «ifigie
we need to select the suitable covariance struatinieh required a lot of efforts. In the currentppa

an approach is used to guide the selection of theartance structure for the analysis of repeated
measures design with high rate of success. Fivé kmelwn model selection criteria are used in the
approach. Simulation study is used to evaluateajtygroach in terms of its ability to select the tigh
covariance structure. The evaluation of the appdroaas in terms of its percentage of times that it
identifies the right covariance structure. Over#le simulation study showed excellent performance
for the approach in all the study cases. The masult of our article is that we recommend consiuggri
the approach as a standard way to select the cmldriance structure.

Keywords. Repeated Measures Design, Information Criteria,t&cap Procedure, Hierarchical Clustering
Methods, Single Linkage Distance Measure, KenwardeR Method, Restricted Maximum
Likelihood (REML)

1. INTRODUCTION has the capability of fitting the data with diffate
covariance structure according to linear mixed rhode
The correct analysis of a study according to the setup (Littellet al., 1999). There was a lot of attention in
design of experiment used is very important factor the earlier history of the linear mixed model on
the success of any study. An inaccurate analyzeal of adequately modeling the covariance structure (@i a
study can produce misleading results for that study Reinsel, 1989; Diggle, 1988; Goldsteat al., 1994;
Repeated measures experimental designs requir&eselman, et al., 1998; 1999a; Nufez-Anton and
special attention, since in practice the observatio Zimmerman, 2000). Therefore the first step needbeo
within each subject are more likely to be corredate considered in the statistical analysis of dataepfeated
with different covariance structures that makesirthe measures experiment is deciding what the suitable
analysis different from other factorial experiments covariance structure of the data is. Researchézs ofe
(Bellavance et al., 1996; Gill, 1992; McCulloch, the information criteria such as AIC, (Akaike, 1974
2003). Considering the right covariance structwe f BIC, (Schwarz, 1978), CAIC, (Bozdogan, 1987), HQIC,
the observations within each subject is an impdrtan (Hannan and Quinn, 1979) and AICC, (Hurvich and
aspect of the analysis of repeated measuresTsai, 1989), for deciding what the correct covarén
experiment; this is where the dependency due to thestructure is according on the observed data (Kesedtal .,
repeated measures is taken into account. 1999b; Littellet al., 2000; Singer, 1998). Many studies have
The mixed procedure of the SAS System is used forinvestigated the performance of those informatitteria in
analyzing data of repeated measures experimens #inc selection of the covariance structure (Yanosky, 7200
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Ferronet al., 2002; Gomeet al., 2005; Guerin and Stroup, ¢ Hurvich and Tsai the corrected Akaike Information

2000; Keselmanet al., 1999b). Unfortunately, those Criterion (AICC), (Hurvich and Tsai, 1989)
criteria do not always select the correct covamganc
structure and thus possible impacted of misspetifin In this study the previous five information critams

of the covariance structure on statistical propertif the ~ Were used with the approach and the approach were
inferences must be taken to account (AL-Marshadi,evaluated in terms of its ability to identify theght
2008; Yanosky, 2007; Ferret al., 2002; Gomest al., ~ covariance structure. . .

2005; Guerin and Stroup, 2000; Keselneal., 1999a). The algorithm of the approach involves using the
Ferronet al. (2002) found that the AIC on average select Pootstrap  technique  (Efron, 1983; 1986) and
the correct covariance structure about 79% ofithe and ~ hierarchical clustering methods with single linkage
the SBC select the correct covariance structurs les distance measure approach (Khattree and Naik, 2000)
frequently, on average 66% of the time. In confrast S tools to calibr:_;lte with th_e five informationteri_on
(Keselmanet al., 1998) found that the AIC and SBC N ;electmg the right covariance structure. Theaidf
were only success in select the correct covariance!Sing the bootstrap to improve the performance of a
structure 47 and 35% of the time respectively. Reae ~Model selection rule was introduced by (Efron, 1983
Monte Carlo simulation study investigated the 1986) and is extensively discussed by (Efron and

misspecification impact of the covariance matrixtiie | PShirani, 1993). , .
linear mixed model (Brandon, 2013). In the context of the mixed model, the algorithm fo

using the approach can be outlined as follows.

Our research objective is evaluating the approach i . ;
) 9 PP Let the vector y is defined as follows:

selecting the right covariance structure, where the .
evaluation of the approach was in terms of itsitybib Yi :[yijl Viz - yija:l =MVN(y, ,Z,, =Jo?

w T2)Wh
identify the right covariance structure.

ere, | is the vector of means &h time for theith
2. METHODOLOGY treatment, i.e.p =ty - M|, Hi =05 + T+ (@D
andi=1,2,...tj=1,2,... k=1, 2,...3aAL¢
The design of the simulated experiment is quite Marshadi, 2008):
similar to the setup used in (AL-Marshadi, 2008)ickh

is described below. 1. Generate the bootstrap sample on case-by-case
The treatments were arranged in a basic form of  using the observed data (original sample) (i.e.,
repeated measures design which consists of a ctahyple based on resampling fronyi{ yis,...., i) for each
randomized experimental design with data colledtea of the ith group independently from the others).
sequence of equally spaced points in time. Thegdes The bootstrap sample size is taken to be the same
the simulated experiment is consists of: as the size of the observed sample (i.e., r). The

{ = 3 treatments properties of the bootstrap when the bootstrap
r =7 or 10 subjects per treatment level and sample size is equal to the original sample siee ar

a = 7 repeated measures within each treatment level discussed by (Efron and Tibshirani, 1993)
2. Fit the mixed model with the candidate covariance

In mixed procedure, five model selection criteria structures, which we would like to select the right
available, which can be used to select an apptepria covariance structure from them, to the bootstrap
covariance structure. The five model selectiorstare: data, thereby  obtaining the  bootstrap

AlC*,BIC*,CAIC* ,HQlé ,AICé for the model
»  Akaike Information Criterion (AIC), (Akaike, 1974) with the candidate covariance structures
» Schwarz Bayesian Information Criterion (BIC), 3. Repeat steps (1) and (2) (W) times

(Schwarz, 1978) 4. Researchers often use the previous collection of
* Bozdogan Corrected Akaike Information Criterion information criteria in the selection of the righbdel

(CAIC), (Bozdogan, 1987) such as selecting the model with the smallest value
« Hannan and Quinn Information Citerion (HQIC), of the information criteria (Keselmaat al., 1999a;

(Hannan and Quinn, 1979) Littell et al., 2000; Singer, 1998). We will follow
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different rule in our algorithm. Bootstrapping dfet  involving six covariance structures and two differe
collected data given us the advantage that for eactsample sizes (r = 7 and 10 subjects per treatmEat).
model and each information criteria we have (W) €ach scenario, 5000 datasets were simulated. SAXCPR
replication values (from step (1to 3). To make ase ML code was written to generate the datasets aaogr
this advantage, we propose using the average bf eact® the described design (AL-Marshadi, 2008). The

information criteria for each model separately fie t ~ l90rithm of ACSMSCCS approach was applied to each
algorthm as a random vector that follows 5- one of the 5000 generated data sets. The Perceotage

dimensional multivariate normal distribution: times_that the ACSMSCCS approach selects the right
covariance structure was reported.

Six common covariance matrix structures were used
to simulate correlated error models for the sinadat
experiment. The six settings of the common covagan
matrix are given irmable 1 which can be categorized to
six common covariance structures. The first onettii®)

No. 1) represents Compound Symmetry (CS) covariance
structures. The second one, (Setting No. 2) reptese

[AC BIC CAIC HQIC AICC]\)o4q.

To justify that in short, let us consider each mode
separately and then each average of informatidarai
approximately follows normal distribution accorditm
central limit theorem. Therefore, we can consider t

averages of the information criteria of each maakeh f q . .
random vector that follows 5-dimensional multivagia rStorder Autoregressive (AR) (1) covariance stue.

normal distribution. In this stage Clustering matho ! N€ third one, (Setting No. 3) represents Toegl2EP)

will play the main rule in our algorithm by clusieg covariance structure. The fourth one, (Setting Mp.
the models of candidate covariance structures  tw 'eépresents Heterogeneous Compound Symmetry (HCS)
clusters according to the five correlated varialthe ~ Covariance structure. The fifth one, (Setting N9g. 5
averages of the five information criteria). Onetbé  Heterogeneous first-order Autoregressive (ARH) (1)
two clusters will be called the cluster of the best of ~ covariance structure. The sixth one, (Setting Np. 6
models of covariance structures. The cluster ofothgt ~ represents Unstructured (UN) covariance structure.

set of models will be determined according to the

cluster that contains the model of general covaean 4. RESULTS

structure UN (Unstructured covariance structurdjem

the best model of covariance structure will be the Table 2 summarizes results of the percentage of
model of simplest covariance structure in the @usf times that the ACSMSCCS approach selects the right
the best set of models of covariance structures. Wecovariance structure from the six Covariance stmes,
refer to our approach as the Approach of Collallomat when W = 10, r = 7Table 3 summarizes results of the
of Statistical Methods in Selecting the Correct percentage of times that the ACSMSCCS approach

Covariance Structure (ACSMSCCS). selects the right covariance structure from the six
Covariance structures, when W = 10, r = 10. Alée, t
3. THE SIMULATION STUDY comparison of the results ihable 2 and3 may suggest

A simulation study of mixed model analysis of that the performance of the approach improved with
'gcreasing of sample size.

repeated measures data was conducted to evaluat Finally, Table 4 showed the percentage of times
ACSMSCCS approach in terms of its percentage of ’ i~
bp ! "s P 9 that the PROC MIXED procedure failing to converge

times that it identifies the right covariance sture.
Kenward and Roger (1997) was considered forWhen the PROC MIXED procedure used REML

computing the denominator degrees of freedom fer th Without any interfering for all the investigatedtiggs
tests of fixed effects from all the analyses insthi Of covariance matrix and W = 10 and r =Tzable 5

study, where data are simulated under the nullShowed the percentage of times that the PROC
hypothesis. Also, the percentage of times that REMLMIXED procedure failing to converge when the
failing to converge with normal situation was PROC MIXED procedure used REML without any
reported, when the PROC MIXED procedure usedinterfering for all the investigated settings of
REML without any interfering. covariance matrix and W = 10 and r = 10. In general
Correlated multivariate normal data were generatedthe comparison of the results irable 4 and 5 may
according to the described experiment (AL-Marshadi, suggest that the convergence problem could be
2008). There were 12 scenarios to generate datdvercome with the increasing the of sample size.
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Table 1. The 6 settings of the covariance matrix structuised in the simulations

Setting No. Covariance matrix

(16 12.8 12.8 12.8 12.8 12.8
128 16 128 128 12.8 12.8
12.8 128 16 12.8 12.8 12.8
1 12.8 12.8 128 16 12.8 12.8
12.8 12.8 128 128 16 128
12.8 12.8 128 128 12.8 16
12.8 128 12.8 128 12.8 128

R e o o o

16 14.4 12.96 11.664 10.4976 9.44784 8.503(

14.4 16 14.4 12.96 11.664 10.4976 9.447%¢

12.96 14.4 16 14.4 1296 11.664 10.49f

2 11.664 12.96 14.4 16 14.4 12.96 11.66-
10.4976 11.664 12.96 14.4 16 144 12.9¢

9.44784 10.4976 11.664 12.96 14.4 16 14.4

18.503056 9.44784 10.4976 11.664 12.96 14.4 14

16 16 8 64 48 32 11f
16 16 16 8 64 48 3.
8 16 16 16 8 6.4 48
3 64 8 16 16 1.6 8 6.4
48 64 8 16 16 16 8
32 48 64 8 16 16 16
112 32 48 64 8 1.6 1

4 48 64 8 96 112 12F
48 9 96 12 144 16.8 19/
64 96 16 16 192 22.4 25|
4 8 12 16 25 24 28 32
96 14.4 19.2 24 36 33.6 38|
112 16.8 224 28 336 49 44
|12.8 19.2 25.6 32 384 448 6/

4 4.8 5.12 512 4.9152 4.58752 4.1943

4.8 9 9.6 9.6 9.216 8.60160 7.8643

5.12 9.6 16 16 1536 14.336 13.107

5 5.12 9.6 16 25 24 22.4 20.48
49152 9.216 15.36 24 36 33.6 30.72

458752 8.6016 14336 224 33.6 49 44.8

14.194304 7.86432 13.1072 20.48 30.72 44.8 64

4 24 48 8 8.4 7  4.96
24 9 24 15 27 7.35 108
48 24 16 3.4 1008 154 6.4¢
6 8 15 34 25 189 1645 9.7
84 27 1008 189 36 462 225
7 735 154 1645 462 49 16.2
1496 10.8 6.48 9.2 2256 16.24 64
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Table2. The percentage of times that the ACSMSCCS apprseletts the true covariance structures from theiplesCovariance

structures whenr=7 and W =10

The correct model

The cluster of the best set vAance structures

The percent of success (%)

CS CS, CSH, TOEP, TOEPH, UN 98.16
AR (1) AR (1), ARH (1), TOEP, TOEPH, UN 99.54
TOEP TOEP, TOEPH, UN 97.52
CSH CSH, ARH (1), TOEPH, UN 98.34
ARH (1) ARH (1), TOEPH, UN 96.56
UN UN 97.32
Over all the percent of success 97.91

Table3. The percentage of times that the ACSMSCCS apprselgltts the true covariance structures from thsiplesCovariance
structures when r = 10 and W = 10
The correct model The cluster of the best set vadance structures

The percent of success (%)

Cs CS, CSH, TOEP, TOEPH, UN 97.54
AR (1) AR (1), ARH (1), TOEP, TOEPH, UN 99.74
TOEP TOEP, TOEPH, UN 97.12
CSH CSH, ARH (1), TOEPH, UN 99.14
ARH (1) ARH (1), TOEPH, UN 97.00
UN UN 97.78
Over all the percent of success 98.05

Table4: The Percentage of times that the PROC MIXED proeedailing to converge when the PROC MIXED procedused
REML without any interfering for all the investigat settings of covariance matrix and W = 10 and’'r =

The right covariance structure

The fitted structure AR(1) (%) ARH(1) (%) CS (%) B%%) TOEP (%) TOEPH (%) UN (%)
cs 0 0 0 0.00 0 0.00 0.04
AR (1) 0 0 0 0.00 0 0.00 0.08
TOEP 0 0 0 0.00 0 0.02 0.04
CSH 0 0 0 0.00 0 0.00 0.22
ARH (1) 0 0 0 0.00 0 0.02 0.20
UN 0 0 0 0.04 0 0.02 9.18

Table5. The Percentage of times that the PROC MIXED procedailing to converge when the PROC MIXED proaedused
REML without any interfering for all the investigat settings of covariance matrix and W = 10 and 6=

The fitted structure  The right covariance structure

AR (1) (%)  ARH (1) (%) CS (%) CSH (%) TOEP (%) TPH (%)  UN (%)
CS 0 0 0 0 0 0.02 0.00
AR (1) 0 0 0 0 0 0.00 0.00
TOEP 0 0 0 0 0 0.00 0.00
CSH 0 0 0 0 0 0.00 0.02
ARH (1) 0 0 0 0 0 0.00 0.00
UN 0 0 0 0 0 0.00 12.80

investigated covariance structures. In future stsdit
would be interesting to investigate the performaate

In our simulation, we considered repeated measurehe approach with other experimental designs sich a
design, looking at the performance of the ACSMSCCSrepeated repeated measure design where there are tw
approach for selecting the right covariance stmectith levels of repeated measures.
different settings of the covariance structureser@¥, In addition, there is a need to consider more
the ACSMSCCS approach provided excellent tool to covariance structures and clustering algorithmhae t
select the right covariance structure under thefuture studies.

5. CONCLUSION
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