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ABSTRACT 

In this article the analysis of experiment of repeated measures design is considered which is used often 
in different fields of studies. In order to analyze the experiment of repeated measures design efficiently 
we need to select the suitable covariance structure which required a lot of efforts. In the current paper 
an approach is used to guide the selection of the covariance structure for the analysis of repeated 
measures design with high rate of success. Five well known model selection criteria are used in the 
approach. Simulation study is used to evaluate the approach in terms of its ability to select the right 
covariance structure. The evaluation of the approach was in terms of its percentage of times that it 
identifies the right covariance structure. Overall, the simulation study showed excellent performance 
for the approach in all the study cases. The main result of our article is that we recommend considering 
the approach as a standard way to select the right covariance structure. 
 
Keywords: Repeated Measures Design, Information Criteria, Bootstrap Procedure, Hierarchical Clustering 

Methods, Single Linkage Distance Measure, Kenward-Roger Method, Restricted Maximum 
Likelihood (REML) 

1. INTRODUCTION 

The correct analysis of a study according to the 
design of experiment used is very important factor to 
the success of any study. An inaccurate analyzed of a 
study can produce misleading results for that study. 
Repeated measures experimental designs require 
special attention, since in practice the observations 
within each subject are more likely to be correlated 
with different covariance structures that makes their 
analysis different from other factorial experiments 
(Bellavance et al., 1996; Gill, 1992; McCulloch, 
2003). Considering the right covariance structure for 
the observations within each subject is an important 
aspect of the analysis of repeated measures 
experiment; this is where the dependency due to the 
repeated measures is taken into account. 

The mixed procedure of the SAS System is used for 
analyzing data of repeated measures experiment since it 

has the capability of fitting the data with different 
covariance structure according to linear mixed model 
setup (Littell et al., 1999). There was a lot of attention in 
the earlier history of the linear mixed model on 
adequately modeling the covariance structure (Chi and 
Reinsel, 1989; Diggle, 1988; Goldstein et al., 1994; 
Keselman, et al., 1998; 1999a; Núñez-Antón and 
Zimmerman, 2000). Therefore the first step need to be 
considered in the statistical analysis of data of repeated 
measures experiment is deciding what the suitable 
covariance structure of the data is. Researchers often use 
the information criteria such as AIC, (Akaike, 1974), 
BIC, (Schwarz, 1978), CAIC, (Bozdogan, 1987), HQIC, 
(Hannan and Quinn, 1979) and AICC, (Hurvich and 
Tsai, 1989), for deciding what the correct covariance 
structure is according on the observed data (Keselman et al., 
1999b; Littell et al., 2000; Singer, 1998). Many studies have 
investigated the performance of those information criteria in 
selection of the covariance structure (Yanosky, 2007; 
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Ferron et al., 2002; Gomez et al., 2005; Guerin and Stroup, 
2000; Keselman et al., 1999b). Unfortunately, those 
criteria do not always select the correct covariance 
structure and thus possible impacted of misspecification 
of the covariance structure on statistical properties of the 
inferences must be taken to account (AL-Marshadi, 
2008; Yanosky, 2007; Ferron et al., 2002; Gomez et al., 
2005; Guerin and Stroup, 2000; Keselman et al., 1999a). 
Ferron et al. (2002) found that the AIC on average select 
the correct covariance structure about 79% of the time and 
the SBC select the correct covariance structure less 
frequently, on average 66% of the time. In contrast, 
(Keselman et al., 1998) found that the AIC and SBC 
were only success in select the correct covariance 
structure 47 and 35% of the time respectively. Resent a 
Monte Carlo simulation study investigated the 
misspecification impact of the covariance matrix in the 
linear mixed model (Brandon, 2013). 

Our research objective is evaluating the approach in 
selecting the right covariance structure, where the 
evaluation of the approach was in terms of its ability to 
identify the right covariance structure. 

2. METHODOLOGY 

The design of the simulated experiment is quite 
similar to the setup used in (AL-Marshadi, 2008) which 
is described below. 

The treatments were arranged in a basic form of 
repeated measures design which consists of a completely 
randomized experimental design with data collected in a 
sequence of equally spaced points in time. The design of 
the simulated experiment is consists of: 

t = 3 treatments 
r = 7 or 10 subjects per treatment level and 
a = 7 repeated measures within each treatment level 

In mixed procedure, five model selection criteria 
available, which can be used to select an appropriate 
covariance structure. The five model selection criteria are: 

 
• Akaike Information Criterion (AIC), (Akaike, 1974) 
• Schwarz Bayesian Information Criterion (BIC), 

(Schwarz, 1978) 
• Bozdogan Corrected Akaike Information Criterion 

(CAIC), (Bozdogan, 1987) 
• Hannan and Quinn Information Citerion (HQIC), 

(Hannan and Quinn, 1979) 

• Hurvich and Tsai the corrected Akaike Information 
Criterion (AICC), (Hurvich and Tsai, 1989) 

 
In this study the previous five information criterions 

were used with the approach and the approach were 
evaluated in terms of its ability to identify the right 
covariance structure. 

The algorithm of the approach involves using the 
bootstrap technique (Efron, 1983; 1986) and 
hierarchical clustering methods with single linkage 
distance measure approach (Khattree and Naik, 2000) 
as tools to calibrate with the five information criterion 
in selecting the right covariance structure. The idea of 
using the bootstrap to improve the performance of a 
model selection rule was introduced by (Efron, 1983; 
1986) and is extensively discussed by (Efron and 
Tibshirani, 1993). 

In the context of the mixed model, the algorithm for 
using the approach can be outlined as follows. 

Let the vector yij is defined as follows: 
`

2
21

... ( , )ij ija all subjy y y MVNij σ= ≈ Σ = + ∑ 
 

Jij iy u wh

ere, µi is the vector of means at kth time for the ith 
treatment, i.e., [ ]1 2 ...i i iaµ µ µ=iµ , ( )ik i k ikµ = α + τ + ατ  

and i = 1, 2,….,t; j = 1, 2,….,r; k = 1, 2,….,a., (AL-
Marshadi, 2008): 
 
1. Generate the bootstrap sample on case-by-case 

using the observed data (original sample) (i.e., 
based on resampling from (yi1 yi2,…., yir) for each 
of the ith group independently from the others). 
The bootstrap sample size is taken to be the same 
as the size of the observed sample (i.e., r). The 
properties of the bootstrap when the bootstrap 
sample size is equal to the original sample size are 
discussed by (Efron and Tibshirani, 1993) 

2. Fit the mixed model with the candidate covariance 
structures, which we would like to select the right 
covariance structure from them, to the bootstrap 
data, thereby obtaining the bootstrap 

* * * * *
, , , ,AIC BIC CAIC HQIC AICC  for the model 

with the candidate covariance structures 
3. Repeat steps (1) and (2) (W) times 
4. Researchers often use the previous collection of 

information criteria in the selection of the right model 
such as selecting the model with the smallest value 
of the information criteria (Keselman et al., 1999a; 
Littell et al., 2000; Singer, 1998). We will follow 
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different rule in our algorithm. Bootstrapping of the 
collected data given us the advantage that for each 
model and each information criteria we have (W) 
replication values (from step (1to 3). To make use of 
this advantage, we propose using the average of each 
information criteria for each model separately in the 
algorithm as a random vector that follows 5-
dimensional multivariate normal distribution: 

 

[ ]
i

AIC BIC CAIC HQIC AICC Model−
 

 
To justify that in short, let us consider each model 

separately and then each average of information criteria 
approximately follows normal distribution according to 
central limit theorem. Therefore, we can consider the 
averages of the information criteria of each model as a 
random vector that follows 5-dimensional multivariate 
normal distribution. In this stage Clustering method 
will play the main rule in our algorithm by clustering 
the models of candidate covariance structures to two 
clusters according to the five correlated variables (the 
averages of the five information criteria). One of the 
two clusters will be called the cluster of the best set of 
models of covariance structures. The cluster of the best 
set of models will be determined according to the 
cluster that contains the model of general covariance 
structure UN (Unstructured covariance structure). Then 
the best model of covariance structure will be the 
model of simplest covariance structure in the cluster of 
the best set of models of covariance structures. We 
refer to our approach as the Approach of Collaboration 
of Statistical Methods in Selecting the Correct 
Covariance Structure (ACSMSCCS). 

3. THE SIMULATION STUDY 

A simulation study of mixed model analysis of 
repeated measures data was conducted to evaluate 
ACSMSCCS approach in terms of its percentage of 
times that it identifies the right covariance structure. 
Kenward and Roger (1997) was considered for 
computing the denominator degrees of freedom for the 
tests of fixed effects from all the analyses in this 
study, where data are simulated under the null 
hypothesis. Also, the percentage of times that REML 
failing to converge with normal situation was 
reported, when the PROC MIXED procedure used 
REML without any interfering. 

Correlated multivariate normal data were generated 
according to the described experiment (AL-Marshadi, 
2008). There were 12 scenarios to generate data 

involving six covariance structures and two different 
sample sizes (r = 7 and 10 subjects per treatment). For 
each scenario, 5000 datasets were simulated. SAS PROC 
IML code was written to generate the datasets according 
to the described design (AL-Marshadi, 2008). The 
algorithm of ACSMSCCS approach was applied to each 
one of the 5000 generated data sets. The Percentage of 
times that the ACSMSCCS approach selects the right 
covariance structure was reported.  

Six common covariance matrix structures were used 
to simulate correlated error models for the simulated 
experiment. The six settings of the common covariance 
matrix are given in Table 1 which can be categorized to 
six common covariance structures. The first one, (Setting 
No. 1) represents Compound Symmetry (CS) covariance 
structures. The second one, (Setting No. 2) represents 
first-order Autoregressive (AR) (1) covariance structure. 
The third one, (Setting No. 3) represents Toeplitz (TOEP) 
covariance structure. The fourth one, (Setting No. 4) 
represents Heterogeneous Compound Symmetry (HCS) 
covariance structure. The fifth one, (Setting No. 5) 
Heterogeneous first-order Autoregressive (ARH) (1) 
covariance structure. The sixth one, (Setting No. 6) 
represents Unstructured (UN) covariance structure. 

4. RESULTS 

Table 2 summarizes results of the percentage of 
times that the ACSMSCCS approach selects the right 
covariance structure from the six Covariance structures, 
when W = 10, r = 7. Table 3 summarizes results of the 
percentage of times that the ACSMSCCS approach 
selects the right covariance structure from the six 
Covariance structures, when W = 10, r = 10. Also, the 
comparison of the results in Table 2 and 3 may suggest 
that the performance of the approach improved with 
increasing of sample size. 

Finally, Table 4 showed the percentage of times 
that the PROC MIXED procedure failing to converge 
when the PROC MIXED procedure used REML 
without any interfering for all the investigated settings 
of covariance matrix and W = 10 and r = 7. Table 5 
showed the percentage of times that the PROC 
MIXED procedure failing to converge when the 
PROC MIXED procedure used REML without any 
interfering for all the investigated settings of 
covariance matrix and W = 10 and r = 10. In general, 
the comparison of the results in Table 4 and 5 may 
suggest that the convergence problem could be 
overcome with the increasing the of sample size.
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Table 1. The 6 settings of the covariance matrix structures used in the simulations 
Setting No. Covariance matrix 

1 

16 12.8 12.8 12.8 12.8 12.8 12.8

12.8 16 12.8 12.8 12.8 12.8 12.8

12.8 12.8 16 12.8 12.8 12.8 12.8

12.8 12.8 12.8 16 12.8 12.8 12.8

12.8 12.8 12.8 12.8 16 12.8 12.8

12.8 12.8 12.8 12.8 12.8 16 12.8

12.8 12.8 12.8 12.8 12.8 12.8 16

 
 
 
 
 
 




 






 

2 

16 14.4 12.96 11.664 10.4976 9.44784 8.503056

14.4 16 14.4 12.96 11.664 10.4976 9.44784

12.96 14.4 16 14.4 12.96 11.664 10.4976

11.664 12.96 14.4 16 14.4 12.96 11.664

10.4976 11.664 12.96 14.4 16 14.4 12.96

9.44784 10.4976 11.664 12.96 14.4 16 14.4

8.503056 9.44784 10.4976 11.664 12.96 14.4 16

 
 
 
 
 
 
 
 
 
 
 

 

3 

16 1.6 8 6.4 4.8 3.2 11.2

1.6 16 1.6 8 6.4 4.8 3.2

8 1.6 16 1.6 8 6.4 4.8

6.4 8 1.6 16 1.6 8 6.4

4.8 6.4 8 1.6 16 1.6 8

3.2 4.8 6.4 8 1.6 16 1.6

11.2 3.2 4.8 6.4 8 1.6 16

 
 
 
 
 
 
 
 
 
 
 

 

4 

4 4.8 6.4 8 9.6 11.2 12.8

4.8 9 9.6 12 14.4 16.8 19.2

6.4 9.6 16 16 19.2 22.4 25.6

8 12 16 25 24 28 32

9.6 14.4 19.2 24 36 33.6 38.4

11.2 16.8 22.4 28 33.6 49 44.8

12.8 19.2 25.6 32 38.4 44.8 64

 
 
 
 
 
 
 
 
 
 
 

 

5 

4 4.8 5.12 5.12 4.9152 4.58752 4.194304

4.8 9 9.6 9.6 9.216 8.60160 7.86432

5.12 9.6 16 16 15.36 14.336 13.1072

5.12 9.6 16 25 24 22.4 20.48

4.9152 9.216 15.36 24 36 33.6 30.72

4.58752 8.6016 14.336 22.4 33.6 49 44.8

4.194304 7.86432 13.1072 20.48 30.72 44.8 64

 
 
 
 
 
 
 
 
 
 
 

 

6 

4 2.4 4.8 8 8.4 7 4.96

2.4 9 2.4 1.5 2.7 7.35 10.8

4.8 2.4 16 3.4 10.08 15.4 6.48

8 1.5 3.4 25 18.9 16.45 9.2

8.4 2.7 10.08 18.9 36 4.62 22.56

7 7.35 15.4 16.45 4.62 49 16.24

4.96 10.8 6.48 9.2 22.56 16.24 64

 
 
 
 
 
 
 
 
 
 
 
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Table 2. The percentage of times that the ACSMSCCS approach selects the true covariance structures from the possible Covariance 
structures when r = 7 and W = 10 

The correct model The cluster of the best set of covariance structures The percent of success (%) 
CS CS, CSH, TOEP, TOEPH, UN 98.16 
AR (1) AR (1), ARH (1), TOEP, TOEPH, UN 99.54 
TOEP TOEP, TOEPH, UN 97.52 
CSH CSH, ARH (1), TOEPH, UN 98.34 
ARH (1) ARH (1), TOEPH, UN 96.56 
UN UN 97.32 
Over all the percent of success  97.91 
 
Table 3. The percentage of times that the ACSMSCCS approach selects the true covariance structures from the possible Covariance 

structures when r = 10 and W = 10 
The correct model The cluster of the best set of covariance structures The percent of success (%) 
CS CS, CSH, TOEP, TOEPH, UN 97.54 
AR (1) AR (1), ARH (1), TOEP, TOEPH, UN 99.74 
TOEP TOEP, TOEPH, UN 97.12 
CSH CSH, ARH (1), TOEPH, UN 99.14 
ARH (1) ARH (1), TOEPH, UN 97.00 
UN UN 97.78 
Over all the percent of success   98.05 
 
Table 4: The Percentage of times that the PROC MIXED procedure failing to converge when the PROC MIXED procedure used 

REML without any interfering for all the investigated settings of covariance matrix and W = 10 and r = 7 
 The right covariance structure 
 ------------------------------------------------------------------------------------------------------------------------------ 
The fitted structure AR(1) (%) ARH(1) (%) CS (%) CSH (%) TOEP (%) TOEPH (%) UN (%) 
CS 0 0 0 0.00 0 0.00 0.04 
AR (1) 0 0 0 0.00 0 0.00 0.08 
TOEP 0 0 0 0.00 0 0.02 0.04 
CSH 0 0 0 0.00 0 0.00 0.22 
ARH (1) 0 0 0 0.00 0 0.02 0.20 
UN 0 0 0 0.04 0 0.02 9.18 
 
Table 5. The Percentage of times that the PROC MIXED procedure failing to converge when the PROC MIXED procedure used 

REML without any interfering for all the investigated settings of covariance matrix and W = 10 and r = 10 
The fitted structure The right covariance structure 
 ------------------------------------------------------------------------------------------------------------------------------------ 
 AR (1) (%) ARH (1) (%) CS (%) CSH (%) TOEP (%) TOEPH (%) UN (%) 
CS 0 0 0 0 0 0.02 0.00 
AR (1) 0 0 0 0 0 0.00 0.00 
TOEP 0 0 0 0 0 0.00 0.00 
CSH 0 0 0 0 0 0.00 0.02 
ARH (1) 0 0 0 0 0 0.00 0.00 
UN 0 0 0 0 0 0.00 12.80 

 
5. CONCLUSION 

In our simulation, we considered repeated measure 
design, looking at the performance of the ACSMSCCS 
approach for selecting the right covariance structure with 
different settings of the covariance structures. Overall, 
the ACSMSCCS approach provided excellent tool to 
select the right covariance structure under the 

investigated covariance structures. In future studies, it 
would be interesting to investigate the performance of 
the approach with other experimental designs such as 
repeated repeated measure design where there are two 
levels of repeated measures. 

In addition, there is a need to consider more 
covariance structures and clustering algorithm in the 
future studies. 
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