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ABSTRACT

The mixture distribution is defined as one of th@smimportant ways to obtain new probability
distributions in applied probability and severaearch areas. According to the previous reasorhave
been looking for more flexible alternative to thfetime data. Therefore, we introduced a new mixed
distribution, namely the Mixture Generalized Gam(@wGG) distribution, which is obtained by mixing
between generalized gamma distribution and lengikeld generalized gamma distribution is introduced.
The MGG distribution is capable of modeling bathsitaped hazard rate, which contains special sub-
models, hamely, the exponential, length biased mepiial, generalized gamma, length biased gamma and
length biased generalized gamma distributions. Vésgmnt some useful properties of the MGG distrduti
such as mean, variance, skewness, kurtosis anddhesta. Parameter estimations are also implemented
using maximum likelihood method. The applicatiortled MGG distribution is illustrated by real dat.s
The results demonstrate that MGG distribution ceovipe the fitted values more consistent and flexib
framework than a number of distribution include ortant lifetime data; the generalized gamma, length
biased generalized gamma and the three parametgbaMdistributions.

Keywords: Generalized Gamma Distribution, Length Biased Galimyd Gamma Distribution, Mixture
Distribution, Hazard Rate, Life Time Data Analysis

1. INTRODUCTION Where:
aandpB = Shape parameters and
The family of the gamma distribution is very famous A = A scale parameter
distribution in the literature for analyzing skewddta [ (a) =The gamma function, defined by
such as Restét al. (2013). The Generalized Gamma r(a):"“”ya-le-ydy
0

(GG) distribution was introduced by Stacy (1962) an

was included special sub-models such as the exfiahen ) o .

Weibull, gamma and Rayleigh distributions, amortugot As well as the .Cur.nulauve Distribution Function

distributions. The GG distribution is appropriatest ~ (CDF) of GG distribution, denoted &S(x), can be

modeling data with dissimilar types of hazard rétethe ~ €XPressed as follows Equation 2-4:

figure of bathtub and unimodal. This typical isqtieal for i

estimating individual hazard rate and both relahegards 6(x) =1_r(“'(“) ) @)

and relative times by Cox (2008). Its Probabilitgrisity r(a)

Function (PDF) is given by Equation 1:

where, r(a,b):jya‘le‘ydyis the upper incomplete gamma
b

B

a(x)=

y B
(O™ ) for x>0:a,bA> 0 (1) _
r (o function.
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Furthermore, some useful mathematical propertiesfamilies and wildlife populations were the subjettan

such as mean and thih moment are given as follows:

)

Eg(X): ) Q)
And:
Eg(xr)zgr(ﬁ)) r=12 3,.. 4)

Recently, Ahmeckt al. (2013a) presented a Length
biased Generalized Gamma (LGG) distribution which
obtained pdf as Equation 5:

AB
F(a+l]
B

By (5), it is simple to show that the cdf of LGG
distribution is given by Equation 6:

r(ml,(xx)BJ
B )
F(a+1]
B
From (5), we can provide some helpful mathematical

properties; such as mean and the rth moment di@@
distribution, respectively are given by Equaticand 8:

r((ﬁ;]

g, (x)= ()Lx)“[j ™ forx > 0@ BA>C (5)

G, (x) 6)

EL(X)ZXF(Q&%‘] (7)
And:
EL(xf):F(wrgljr =12:¢ (8)

XT(&+1J
p
Moreover, the concept of length biased distribution
found in various applications in lifetime area sashtfamily
history disease and survival events. The studyuofidn
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article developed by Patil and Rao (1978). Patilal.
(1986) presented a list of the most common formthef
weight function useful in scientific and statistica
literature as well as some basic theorems for wedyh
distributions and length biased as special casg the
arrived at the conclusion. For example, Nanuwond an
Bodhisuwan (2014) presented the length biased Beta
Pareto distribution. However, LGG distribution
simultaneously provides great flexibility in moduei
data in practice. One such class of distributiorss w
generated from the logit of the two-component nritu
model, which extends the original family of distritons
with the length biased distributions, provide pdiwker
and popular tools for generating flexible distribut
with attractive statistical and probabilistic projes.

The mixture distribution is defined as one of the
most crucial ways to obtain new probability
distributions in applied probability and severadearch
areas. According to the former reason. We have been
looking for a more flexible alternative to the
Generalized Gamma (GG) distribution. Nadarajah and
Gupta (2007) used the GG distribution with appi@ato
drought data. Then Cat al. (2007) offered a parametric
survival analysis and taxonomy of the GG distrimuti
Alkarni (2012) obtained a class of distributionsig@lizes
several distributions with any proper continuodstiline
distribution by compounding truncated logarithmic
distribution with decreasing hazard rate. Sattsgmattand
Talangtam (2012) found the infinite mixture Lognatm
distributions for reducing the problem of the numbé
components and fitting of truncated and/or censdid.
Recently, There are many researchers have appiied i
various field such as Mahes al. (2014) proposed a
generalized regression neural network for the diagnof
the hepatitis B virus diease and Bisveasl. (2014) used
the networks of the present day communication syste
frequently flood or water logging, sudden failufeoae or
few nodes in generalized real time multigraphs.

The purpose of this study is to investigate the
properties of a new mixture generalized gamma
distribution, which was obtained by mixing the GG
distribution with the LGG distribution and is more
flexible in fitting lifetime data. Section 2 introdes the
Mixture Generalized Gamma (MGG) distribution and is
concerned with mixture of the GG distribution witie
LGG distribution. It contains as well-known lifeten
special sub-models. Useful mathematical propenies
the MGG distribution including the rth moment, mean

variance, skewness, kurtosis and hazard rate. In
addition, section 3 the parameters of the MGG
JMSS
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distribution are estimated by Maximum Likelihood Let F (x) is the cdf for a generalized class of
Estimation (MLE) and are presented the comparisondistribution for defined by definition 2, is gentrd by
analysis among the GG, LGG, MGG and the threeapplying to the MGG distribution Equation 11:
parameters Weibull distributions based on real data
Finally, conclusion is included in section 4.

F(x)=[[po( ) {19 g ()] ct
2. MATERIALSAND METHODS 0

2.1. Mixture Generalized Gamma Distribution :Fi q ) dtf l'b’l o( ) o 11
In this section we proposed a new mixture =pd ¥ € 1) G( ¥

distribution to create extensively flexible distrtton and

considered some special cases. By substitute (2) and (6) into (11), we then obtain

Definition 1

Let g(x) and g(x) are the pdf and length biased pdf r a+} x
of the random variable (r.v.) X respectively, whgre 0 F(x)=pl 1 I'(ax) {1 1 '
and Gp<1 then the mixture length biased distribution of P I (a)
X produced by the mixture between g(x) an¢kyin the r °‘+§
form of pg (X)+(1-p)g (X). L

B
Theorem 1 pr (o, ()’ (1-p)r[a+ﬁ,(xx) j
=1

Let X~MGG(a, B, A, p). The pdf and cdf respectively I'(a) r[wlj

are given by Equation 9: p

In Fig. 1, we present some graphs of MGG

f(x)=| =P+ (L-p)ix ;43(%)()‘4“1(;‘(“)[3 (9) distribution, for different values af, similarly inFig. 2,
r(a) r(wlj for B. We consider some well-known special sub-models
of the MGG distribution in the following corollase
For x > 0;a, B, A > 0.; 0< p<1 and Equation 10: Corollary 1
1 If p = 0 then the MGG distribution reduces to the&
pF(a, ()LX)B) (1-p)F(a+B,(xx)Bj distribution with parametersi, B and A is defined by
F(x)=1 (10) Equation 12:
I(a) F(Ml]
B f(x)= 1 1 (3x)" gt (12)
Pr oof F(MB]

If X is distributed as MGG distribution with, 3, A
and mixing p parameters and if its pdf, is obtain b Proof

replacement (1) and (5) in Definition 1, (9) calldt - A : .
) : i Substituting p = 0 into (9), we obtained (12) whish
two-component mixture distribution, can be followssd introduced by Ahmeet al. (2013b).

. (X):p[ B (XX)uIi»le-(kx)B:l_‘_(l_p) Corollary 2
If a =3 =1andp =0, then the MGG distribution
deduces to length biased exponential distribution

AB ()P |4 P (1-p)ax 29 (ax) a0 Ahmedet al. (2013a) and its pdf is given by:
e :
B B f (x)=2’xe™
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Fig. 1. The pdf of MGG distribution for different values of
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Fig. 2. The pdf of MGG distribution for different values f
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Pr oof variance, coefficient of kurtosis, coefficient dfesvness
and hazard rate are provided as follows:

Definition 2

Ey(X") and E(X') are the rth moments of original
distribution and length biased distribution of the. X
Corollary 3 respectively. If 8p<1, then the rth moments of the

If B =1 and p = 0 then the MGG distribution reduces Mixture distribution is define by:
to length biased gamma distribution which preseigd
Ahmedet al. (2013b) as follows: E(X")=pE, (X')+(1-0) E (X
x>0r= 123

Substitutinga = 3 = 1 into (12) reduces to

f (x)=A’xe™

_F(a+l) Theorem 2
Let X~MGG(a,B,A,p), the rth moment of r.v. X is

Pr oof written Equation 14:
Replacing3 = 1 in (12), we have:
r r+1
atl 1 pl"((ﬁﬁj (l-p)r[m-ﬁj
f(x)=—r X E(x)=—- + (14)
T (a+1) v () r((ﬁl]

Corollary 4
where, x>0,r=1, 2, 3,... <p<1.
If p =1, then the MGG distribution derived to GG

distribution and its pdf is defined by Stacy (1962) Proof

Equation 13: If X~MGG (a,B,\,p) from Definition 2, by substitute
(4) and (8), then the rth moment is given by:

F(x)=—P ()t e (13)
F(a) r r+1) |
o) =)
Pr oof E(X")= +(1-

Replacing p = 1 in (9) may be expressed as (1). B
Corollary 5 pl"[a+] L p)l"( +r+1]
If a=p =1andp =1, then the MGG distribution :lr B) B

reduces to exponential distribution and its pdf &an M| T(a) F(Mlj
written as: p
f (x)=re™ From (14), it is straightforward to mean, the seton
four moments and variance respectively as:
Pr oof
pr 0t+1 (1—p)F 0t+f2
Replacinga =3 = 1 in (13) we obtain: 1 B B
S T 1
f(x)=he’™ o r(‘“ﬁ]
2.2. Moments of the MGG Distribution pl"[a+2] (1-p)1"[a+3j
In this section, we will consider the rth moment of E(X?)== BJ, B
rv. X~MGG(@,B,A,p). The MGG distribution presents » I(a) r[a+1J
various properties including: The rth moment, mean, p
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pl| a+— (1-p)F ot+—
E(X)=35 g(m)Bj+ r[Eéfj
_pl" 0t+i‘r (1-p)F a+§ ]
E(x")=33 E(m)ﬁ]+ F[Eéfj
o+ 2 (1-p) o+
varlx)=5z prg(a)) 1;){(3][3]
[pl“(ow;] El-p)l“[ow;] 2
NS
We set:

pl"(a+;;]l"(a+[;]+(1-p)l"(a)r(a+iglj
F(a)l"(owé‘]

Note that,w (a,B,p.i) is defined when i0 I and let,
W=/o(wp,p,2) ©*(ap.p.]) consequently, the coefficient

of skewnessd() in (15) and the coefficient of kurtosis
(ay) in (16) can be written as Equation 15 and 16:

w(a,B,p,i):

[Z)(a,B,p,S) -3 (a,8,0,2) o (o,p,p.2) +20*(ct,B,p, 1) | (15)
W3
o=[0(uppd) w(appIu(pp) )

(.0 2o (0.0, 0 (. 1)/ W

We illustrate activities of mean and variance in
Table 1 that are increasing functions of Also,
Table 2 show skewness in (15) and kurtosis in (16)
for different valuesa and p are independent of
parametera. Moreover, we discover that both the

2.3. Hazard Rate

Hazard rate (or failure rate) are expansively apply
several fields. For example; Wahyudi al. (2011)
offered the trivariate hazard rate function of driate
liftime distribution. By definition, the hazard eabf a
r.v. X with pdf f(x) and cdf F(x) can be written by

Using (9) and (10), the hazard rate of the MGG
distribution may be expressed as Equation 17:

P, (1-p)ax

briod

(2 e

I'l o+—,X
5]
el

pl"(a,x)l"[oﬁ;j+(l-p)1"(a)l"[a+;,xj

h(x)=

(17)

When substituting different values of parameters in
(17) then we get some hazard rate of the MGG
distribution which it present iRig. 3:

When p = 0 then the hazard rate of the MGG
distribution reduces to the hazard rate of the LGG
distribution

e When p = 1 then the hazard rate of the MGG
distribution deduces to the hazard rate of the GG
distribution

e Whena =B = p = 1 then the hazard rate of the
MGG distribution derived to the hazard rate of the
exponential distribution

2.4. Limit Behaviour

skewness and kurtosis are increasing functions of p  The limit of pdf of MGG as %~ is 0 and the limit

except are both decreasing functionsiof
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as x—1/\ is given by:
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Fig. 3. Plot of the hazard rates of the MGG distributiondifferent values of parameters

Table 1. Mean and variance of MGG distribution for varimadues ofo, B, A and p

p=0.2 p=05 p=0.8
a B A Mean Variance Mean Variance Mean Variance
3 2 0.1 17.7666 24.3478 17.3354 24.4835 16.9042 2474.
0.3 5.9222 2.7053 5.77850 2.7204 5.6347 2.6942
0.9 1.9741 0.3006 1.92620 0.3023 1.8782 0.2994
4 0.1 12.9785 3.5930 12.8914 3.6457 12.8043 3.6832
0.3 4.3262 0.3992 4.29710 0.4051 4.2681 0.4092
0.9 1.4421 0.0444 1.43240 0.0450 1.4227 0.0455
6 0.1 11.8225 1.3829 11.7861 1.4006 11.7496 1.4157
0.3 3.9408 0.1537 3.92870 0.1556 3.9165 0.1573
0.9 1.3136 0.0171 1.30960 0.0173 1.3055 0.0175
5 2 0.1 22.7025 24.5948 22.3676 24.6885 22.0328 5578.
0.3 7.5675 2.7328 7.45590 2.7432 7.3443 2.7286
0.9 2.5225 0.3036 2.48530 0.3048 2.4481 0.3032
4 0.1 14.8265 2.7915 14.7684 2.8160 14.7102 2.8338
0.3 4.9422 0.3102 4.92280 0.3129 4.9034 0.3149
0.9 1.6474 0.0345 1.64090 0.0348 1.6345 0.0350
6 0.1 12.9538 0.9717 12.9308 0.9790 12.9078 0.9852
0.3 4.3179 0.1080 4.31030 0.1088 4.3026 0.1095
0.9 1.4393 0.0120 1.43680 0.0121 1.4342 0.0122
8 2 0.1 28.5527 24,7420 28.2877 24.8049 28.0227 7224.
0.3 9.5176 2.7491 9.42920 2.7561 9.3409 2.7475
0.9 3.1725 0.3055 3.14310 0.3062 3.1136 0.3053
4 0.1 16.7276 2.2090 16.6873 2.2211 16.6469 2.2299
0.3 5.5759 0.2454 5.56240 0.2468 5.549 0.2478
0.9 1.8586 0.0273 1.85410 0.0274 1.8497 0.0275
6 0.1 14.0589 0.7047 14.0437 0.7079 14.0284 0.7107
0.3 4.6863 0.0783 4.68120 0.0787 4.6761 0.0790
0.9 1.5621 0.0087 1.56040 0.0087 1.5587 0.0088
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Table 2. Skewness and kurtosis of MGG distribution for @as values oé, § and p

p=02 p=0.5 p=0.8
a B Skewness Kurtosis Skewness Kurtosis Skewness #sirto
3 1.0 1.0132 4.5298 1.0672 4.6800 1.1327 4.9082
15 0.5367 3.3260 0.5554 3.3444 0.5814 3.3833
2.0 0.2886 3.0143 0.2961 3.0131 0.3094 3.0190
5 1.0 0.8236 4.0132 0.8522 4.0775 0.8845 4.1675
15 0.4277 3.2058 0.4368 3.2127 0.4494 3.2272
2.0 0.2241 3.0055 0.2274 3.0047 0.2335 3.0066
8 1.0 0.6705 3.6725 0.6858 3.7004 0.7023 3.7375
15 0.3437 3.1324 0.3483 3.1351 0.3547 3.1409
2.0 0.1771 3.0022 0.1787 3.0019 0.1817 3.0025
AB - p=0 0)
n 1-p)Ax; a1 (o )P
el o+— L(x;0)= P4 LA (ax, )P e ™)
[ ﬁ] CO= T ( 1} )
I o+—
p
- _lp, (1p) |2 _ _
'X'ET (x) = F(a)+ Nle 0<p<1 From which we calculate approximately the log-
A F(Wﬁ} likelihood function Equation 18:
A ,p=1 logL () = nlog(AB)+(ap-1)> log(rx;)-1">" x!
ef(a) i=1 i=1

It is straightforward to demonstrate the above from
the pdf of MGG in (9) as:

. 5 P (1'p)>\.x op-1 (M)ﬁ
lein}f (x)-l:rﬂnﬁ1 F(a)+ ( lj AB(Ax)" e
I'a+—
p
p (P

3.RESULTS

3.1. Parameters Estimation

The estimation of parameters for the MGG
distribution will be discussed via the MLE method
procedure. The likelihood function of the MGG, @, A,

p) is given by:

////4 Science Publications 218

(18)
p

The first order conditions for finding the optimal
values of the parameters were obtained by diffeating
(18) with respect ta, B, A and p we get the following
differential Equation 19-22:

NgE

=1

SuogL(0)= log(ix,)
= r(a)r[m;J{pr(w;}’r(l-p)lxir(“)}
a%'og"(e):%é log(1 )-x[‘“é(x,log %)
n (1-p)kxiF(a)F’[a+;] (20)
> (1-p)xxir(a)r(a+;}w(ng

JMSS



S. Suksaengrakcharoen and W. Bodhisuwan / Joufiéihematics and Statistics 10 (2): 211-220, 2014

Table3. Maximum likelihood estimates and K-S distances \liteir associated p-values for the four mixtureritigtions fitted to

depressive condition data

Distributions Maximum likelihood estimates K-S sdtit p-value
MGGD 4 =11.8382, p=0.2832,

A =18115, p=0.7377 0.0941 0.8484
LGGD 4 =0.5908, p=0.5758,

A =0.0008 0.1041 0.7535
GGD 4=0.999¢, p=10025,

A =0.0001 0.1505 0.3083
Weibull 4 =318, p=0.7032,

A =5127.8 0.1660 0.2081

> log % $17Y x!

n
i=1 i=1

?
alogL(6)=£+(aB-1)

5 (1-p)>ir(a)F[°‘+;) “
= prz[a+ﬁJ+(1-P)xxir(“)

And:

aiplogL(eFi F[“*é]“ir(a) 22

= (p)axr (a)+pr[a+;]

provided a better fit than the GG, LGG and the ¢hre
parameters Weibull distributions. Since, Mahdi and
Gupta (2013) presented the three parameters Weibull
distribution obtained the pdf as:

fu (%)

_E(x—a

p-1 _(ﬂf
= e'* forx>0:aBA>0
B2 BA

4. DISCUSSION

The MGG distribution is significance of mixture
distribution method which is a new family of GG
distribution. In this study, the MGG distributioound
that it provides a considerably better fit than thHeG

These four derivative equations cannot be solveg@nd GG distributions which are some sub-modelsef t

analytically, as they need to rely on Newton-Raphso

MGG distribution. Indicating that MGG distribution

The Newton-Raphson method is a powerful techniquemakes the approach moderately useful for lifetiragad

for solving equations numerically. In practide, B , i
and pare the solution of the estimating equations
obtained by differentiating the likelihood in ternas
o,,A and p solving in (19)-(22) to zero. Therefore,
&,p,A and p can be obtained by solving the resulting

equations simultaneously using a numerical proeedur
with the Newton-Raphson method.

3.2. Applications of the MGG Distribution

For one application of the MGG distribution, we
used a real data set. This was the flood ratesfdata
the Floyd River located in James, lowa, USA for the
years 1935-1973 from Akinsetet al. (2008). The
maximum likelihood method provides parameters
estimation. By comparing these fitting distributiom

Table 3 based on the p-value of this comparison, the

results have shown that the MGG distribution

////4 Science Publications
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Based on p-values of the MGG distribution is betttan
LGG, GG and three parameters Weibull distributidss.
well as, the research by Kamaruzzaneaal. (2012) fit
the two component mixture normal distribution byngs
data sets on logarithmic stock returns of Bursalaytia
indices better than a normal distribution. Furthesno
Cordeiro et al. (2012) suggested the Kumaraswamy
generalized half-normal distribution using the flomtes
data of the Floyd River, located in James, lowaAUS
provides a better fit than sub-models of it. In itdd,
Faton and Llukan 2014 generalize the Pareto digtab
can be used quite effectively to provide bettes fitan
the Pareto distribution.

5. CONCLUSION

This study offers the MGG distribution which is
obtained by mixing GG distribution with LGG

JMSS
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distribution. We showed that the LGG, GG, Gamma, Cox, C., H. Chu, M.F. Schneider and A. Munoz, 2007.

length biased exponential and exponential distidimst Parametric survival analysis and taxonomy of
are sub-models of this new mixed distribution. Viééh hazard functions for the generalized gamma
derived several properties of the MGG distribution distribution. Stat. Med., 26: 4352-4374. DOI:
which includes mean, variance, skewness, kurtasis a 10.1002/sim.2836

hazard rate. Additionally, parameters estimaticnaso Cordeiro, G.M., R.R. Pescim and E.M.M. Ortega, 2012
implemented using MLE method and the usefulness of The kumaraswamy generalized half-normal distriloutio
this distribution is illustrated by real data sBased on for skewed positive data. J. Data Sci., 10: 195-22.
p-values of goodness of fit test, we found thatM@G Mahdi, T. and A.K. Gupta, 2013. A generalizatiorthod
distribution provides highest p-values when we gamma distribution. J. Data Sci., 11: 403-414.
compared with LGG, GG and three parameters WeibullMahesh, C., E. Kannan and M.S. Saravanan, 2014.

distributions as shown ifable 3. According to the Generalized regression neural network based expert
classical statistics, the MGG distribution is thestfit system for hepatitis b diagnosis. J. Comput. 36,
for these data. In conclusion, it is believed thatMGG 563-569. DOI:10.3844/jcssp.2014.563.569
distribution may attract wider application in rdifétime Nadarajah, S. and A.K. Gupta, 2007. A generalized
data from diverse disciplines. In the future reskawre gamma distribution with application to drought data
should be considered in parameter estimation using  Mathem. Comput. Simulation, 74: 1-7. DOI:
Bayesian or other approaches. 10.1016/j.matcom.2006.04.004
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