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ABSTRACT 

The mixture distribution is defined as one of the most important ways to obtain new probability 
distributions in applied probability and several research areas. According to the previous reason, we have 
been looking for more flexible alternative to the lifetime data. Therefore, we introduced a new mixed 
distribution, namely the Mixture Generalized Gamma (MGG) distribution, which is obtained by mixing 
between generalized gamma distribution and length biased generalized gamma distribution is introduced. 
The MGG distribution is capable of modeling bathtub-shaped hazard rate, which contains special sub-
models, namely, the exponential, length biased exponential, generalized gamma, length biased gamma and 
length biased generalized gamma distributions. We present some useful properties of the MGG distribution 
such as mean, variance, skewness, kurtosis and hazard rate. Parameter estimations are also implemented 
using maximum likelihood method. The application of the MGG distribution is illustrated by real data set. 
The results demonstrate that MGG distribution can provide the fitted values more consistent and flexible 
framework than a number of distribution include important lifetime data; the generalized gamma, length 
biased generalized gamma and the three parameters Weibull distributions. 
 
Keywords: Generalized Gamma Distribution, Length Biased Generalized Gamma Distribution, Mixture 

Distribution, Hazard Rate, Life Time Data Analysis  

1. INTRODUCTION 

The family of the gamma distribution is very famous 
distribution in the literature for analyzing skewed data 
such as Resti et al. (2013). The Generalized Gamma 
(GG) distribution was introduced by Stacy (1962) and 
was included special sub-models such as the exponential, 
Weibull, gamma and Rayleigh distributions, among other 
distributions. The GG distribution is appropriated for 
modeling data with dissimilar types of hazard rate: In the 
figure of bathtub and unimodal. This typical is practical for 
estimating individual hazard rate and both relative hazards 
and relative times by Cox (2008). Its Probability Density 
Function (PDF) is given by Equation 1: 
 

( )
( )

( ) ( )λβ

g x = λx

Γ α

λx
e

β
αβ-1 - for x>0; ,b, 0α λ >   (1) 

Where: 
α and β = Shape parameters and  
λ = A scale parameter 
Γ (α) = The gamma function, defined by 

( ) a-1 -y

0
a y e dy

∞
Γ = ∫  

 
As well as the Cumulative Distribution Function 

(CDF) of GG distribution, denoted as G(x), can be 
expressed as follows Equation 2-4: 
 

( )
( )( )
( )

β
Γ α, λx

G x =1-
Γ α

 (2) 

 

where, ( ) a 1 y

b

a, b y e dy
∞

− −Γ = ∫ is the upper incomplete gamma 

function. 
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 Furthermore, some useful mathematical properties 
such as mean and the rth moment are given as follows: 
 

( )
( )

( )g

1
Γ α+

β
E X =

λΓ α

 (3) 

 
And: 

 

( ) ( )
( )

g

r
Γ α+

βr
E X =

r
λ Γ α

    r  1,  2,  3,  = …  (4) 

 
Recently, Ahmed et al. (2013a) presented a Length 

biased Generalized Gamma (LGG) distribution which 
obtained pdf as Equation 5: 
 

( ) ( ) ( )αβ - λx
L

λβ
g x = λx e for x  0;  , , 0

1
Γ α+

β

β

> α β λ >
 
 
 

  (5) 

 
By (5), it is simple to show that the cdf of LGG 

distribution is given by Equation 6: 
 

( )
( )β

L

1
Γ α+ , λx

β
G x =1-

1
Γ α+

β

 
 
 

 
 
 

 (6) 

 
From (5), we can provide some helpful mathematical 

properties; such as mean and the rth moment of the LGG 
distribution, respectively are given by Equation 7 and 8: 
 

( )L

2
Γ α+

β
E X =

1
λΓ α+

β

 
 
 
 
 
 

 (7) 

 
And: 

 

( )r
L

r

r+1
Γ α+

β
E X = r  1,  2,  3

1
λ Γ α+

β

 
 
  =
 
 
 

 (8) 

 
Moreover, the concept of length biased distribution 

found in various applications in lifetime area such as family 
history disease and survival events. The study of human 

families and wildlife populations were the subject of an 
article developed by Patil and Rao (1978). Patill et al. 
(1986) presented a list of the most common forms of the 
weight function useful in scientific and statistical 
literature as well as some basic theorems for weighted 
distributions and length biased as special case they 
arrived at the conclusion. For example, Nanuwong and 
Bodhisuwan (2014) presented the length biased Beta 
Pareto distribution. However, LGG distribution 
simultaneously provides great flexibility in modeling 
data in practice. One such class of distributions was 
generated from the logit of the two-component mixture 
model, which extends the original family of distributions 
with the length biased distributions, provide powerful 
and popular tools for generating flexible distributions 
with attractive statistical and probabilistic properties. 

The mixture distribution is defined as one of the 
most crucial ways to obtain new probability 
distributions in applied probability and several research 
areas. According to the former reason. We have been 
looking for a more flexible alternative to the 
Generalized Gamma (GG) distribution. Nadarajah and 
Gupta (2007) used the GG distribution with application to 
drought data. Then Cox et al. (2007) offered a parametric 
survival analysis and taxonomy of the GG distribution. 
Alkarni (2012) obtained a class of distributions generalizes 
several distributions with any proper continuous lifetime 
distribution by compounding truncated logarithmic 
distribution with decreasing hazard rate. Sattayatham and 
Talangtam (2012) found the infinite mixture Lognormal 
distributions for reducing the problem of the number of 
components and fitting of truncated and/or censored data. 
Recently, There are many researchers have applied in 
various field such as Mahesh et al. (2014) proposed a 
generalized regression neural network for the diagnosis of 
the hepatitis B virus diease and Biswas et al. (2014) used 
the networks of the present day communication systems, 
frequently flood or water logging, sudden failure of one or 
few nodes in generalized real time multigraphs. 

The purpose of this study is to investigate the 
properties of a new mixture generalized gamma 
distribution, which was obtained by mixing the GG 
distribution with the LGG distribution and is more 
flexible in fitting lifetime data. Section 2 introduces the 
Mixture Generalized Gamma (MGG) distribution and is 
concerned with mixture of the GG distribution with the 
LGG distribution. It contains as well-known lifetime 
special sub-models. Useful mathematical properties of 
the MGG distribution including the rth moment, mean, 
variance, skewness, kurtosis and hazard rate. In 
addition, section 3 the parameters of the MGG 
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distribution are estimated by Maximum Likelihood 
Estimation (MLE) and are presented the comparison 
analysis among the GG, LGG, MGG and the three 
parameters Weibull distributions based on real data set. 
Finally, conclusion is included in section 4. 

2. MATERIALS AND METHODS 

2.1. Mixture Generalized Gamma Distribution 

In this section we proposed a new mixture 
distribution to create extensively flexible distribution and 
considered some special cases. 

Definition 1 

Let g(x) and gL(x) are the pdf and length biased pdf 
of the random variable (r.v.) X respectively, where x > 0 
and 0≤p≤1 then the mixture length biased distribution of 
X produced by the mixture between g(x) and gL(x) in the 
form of pg (x)+(1-p)gL (x). 

Theorem 1 

Let X~MGG(α, β, λ, p). The pdf and cdf respectively 
are given by Equation 9: 
 

( ) ( )
( ) ( ) ( )αβ-1 - λx1-p λxp

f x = + λβ λx e
Γ α 1

Γ α+
β

β

 
 
 
  
  

  

 (9) 

 
For x > 0; α, β, λ > 0.; 0 ≤ p≤1 and Equation 10: 

 

( )
( )( )
( )

( ) ( )ββ
1

1-p Γ α+ , λxpΓ α, λx β
F x =1- -

Γ α 1
Γ α+

β

 
 
 
 
 
 

 (10) 

 
Proof 

If X is distributed as MGG distribution with α, β, λ 
and mixing p parameters and if its pdf, is obtain by 
replacement (1) and (5) in Definition 1, (9) called the 
two-component mixture distribution, can be followed as: 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

βαβ-1 - λx

β βαβ αβ-1- λx - λx

λβ
f x =p λx e + 1-p

Γ α

1-p λxλβ p
λx e = + λβ λx e

Γ α1 1
Γ α+ Γ α+

β β

 
 
  

   
   
   
      
      
      

 

Let F (x) is the cdf for a generalized class of 
distribution for defined by definition 2, is generated by 
applying to the MGG distribution Equation 11: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x

L

0

x x

L

0 0

L

F x = pg t + 1-p g t dt

        =p g t dt+ 1-p g t dt

        =pG x + 1-p G x

  ∫

∫ ∫  (11)  

 
By substitute (2) and (6) into (11), we then obtain: 

 

( ) ( )
( ) ( )

( )( )
( )

( ) ( )ββ

1
Γ α+ ,x

Γ α,x β
F x =p 1- + 1-p 1-

Γ α 1
Γ α+

β

1
1-p Γ α+ , λxpΓ α, λx β

        =1- -
Γ α 1

Γ α+
β

  
               

  

 
 
 
 
 
 

 

 
In Fig. 1, we present some graphs of MGG 

distribution, for different values of α, similarly in Fig. 2, 
for β. We consider some well-known special sub-models 
of the MGG distribution in the following corollaries. 

Corollary 1 

If p = 0 then the MGG distribution reduces to the LGG 
distribution with parameters α, β and λ is defined by 
Equation 12: 
 

 ( ) ( ) ( )βαβ - λxλβ
f x = λx e

1
Γ α+

β

 
 
 

 (12) 

 
Proof 

Substituting p = 0 into (9), we obtained (12) which is 
introduced by Ahmed et al. (2013b). 

Corollary 2 

If α = β = 1 and p = 0, then the MGG distribution 
deduces to length biased exponential distribution 
Ahmed et al. (2013a) and its pdf is given by: 
 

( ) 2 -λxf x =λ xe  
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Fig. 1. The pdf of MGG distribution for different values of α 
 

 
 

Fig. 2. The pdf of MGG distribution for different values of β 
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Proof 

Substituting α = β = 1 into (12) reduces to  
 

( ) 2 -λxf x =λ xe  
 
Corollary 3 

If β = 1 and p = 0 then the MGG distribution reduces 
to length biased gamma distribution which presented by 
Ahmed et al. (2013b) as follows: 
 

( ) ( )
α+1

α -λxλ
f x = x e

Γ α+1
 

 
Proof 

Replacing β = 1 in (12), we have: 
 

( ) ( )
α+1

α -λxλ
f x = x e

Γ α+1
 

 
Corollary 4 

If p = 1, then the MGG distribution derived to GG 
distribution and its pdf is defined by Stacy (1962) 
Equation 13: 
 

 ( ) ( ) ( ) ( )αβ-1 - λxλβ
f x = λx e

Γ α

β

 (13) 

 
Proof 

Replacing p = 1 in (9) may be expressed as (1). 

Corollary 5 

If α = β = 1 and p = 1, then the MGG distribution 
reduces to exponential distribution and its pdf can be 
written as: 
 

( ) -λxf x =λe  

 
Proof 

Replacing α = β = 1 in (13) we obtain: 
 

( ) -λxf x =λe  
 
2.2. Moments of the MGG Distribution 

In this section, we will consider the rth moment of 
r.v. X~MGG(α,β,λ,p). The MGG distribution presents 
various properties including: The rth moment, mean, 

variance, coefficient of kurtosis, coefficient of skewness 
and hazard rate are provided as follows: 

Definition 2 

Eg(X
r) and EL(X

r) are the rth moments of original 
distribution and length biased distribution of the r.v. X 
respectively. If 0≤p≤1, then the rth moments of the 
mixture distribution is define by: 
 

( ) ( ) ( ) ( )r r r
g LE X =pE X + 1-p E X

x  0,  r  1,2,3> =
 

 
Theorem 2 

Let X~MGG(α,β,λ,p), the rth moment of r.v. X is 
written Equation 14: 
 

( ) ( )

( )
r

r

r r+1
pΓ α+ 1-p Γ α+

β β1
E X = +

λ Γ α 1
Γ α+

β

    
    

    
  
  

  

 (14) 

 
where, x > 0, r = 1, 2, 3,… , 0≤p≤1. 

Proof 

If X~MGG (α,β,λ,p) from Definition 2, by substitute 
(4) and (8), then the rth moment is given by: 
 

( ) ( ) ( )

( )

( )

r
r

r

r

r r+1
Γ α+ Γ α+

β β
E X =p + 1-p

λ Γ α 1
λ Γ α+

β

r r+1
pΓ α+ 1-p Γ α+

β β1
          = +

λ Γ α 1
Γ α+

β

      
      
      

    
    

    

    
    

    
  
  

  

 

 
From (14), it is straightforward to mean, the second 

four moments and variance respectively as: 
 

( ) ( )

( )

( ) ( )

( )
2

2

1 2
pΓ α+ 1-p Γ α+

β β1
E X = +

λ Γ α 1
Γ α+

β

2 3
pΓ α+ 1-p Γ α+

β β1
E X = +

λ Γ α 1
Γ α+

β

    
    

    
  
  

  

    
    

    
  
  

  

 



S. Suksaengrakcharoen and W. Bodhisuwan / Journal of Mathematics and Statistics 10 (2): 211-220, 2014 

 
216 Science Publications

 

JMSS 

( ) ( )

( )

( ) ( )

( )

3
3

4
4

3 4
pΓ α+ 1-p Γ α+

β β1
E X = +

λ Γ α 1
Γ α+

β

4 5
pΓ α+ 1-p Γ α+

β β1
E X = +

λ Γ α 1
Γ α+

β

    
    

    
  
  

  

    
    

    
  
  
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( ) ( )

( )

( )

( )

2

2

2 3
pΓ α+ 1-p Γ α+

β β1
Var X = +

λ Γ α 1
Γ α+

β

1 2
pΓ α+ 1-p Γ α+

β β
                  - +

Γ α 1
Γ α+

β

    
    
            

    
    
              

 

 
We set: 

 

( )
( ) ( )

( )

1 i i+1
pΓ α+ Γ α+ + 1-p Γ α Γ α+

β β β
ω α,β,p,i =

1
Γ α Γ α+

β

     
     
     

 
 
 

 

 
Note that, ω (α,β,p,i) is defined when i  ∈ I+ and let, 

( ) ( )2W= ω α,β,p,2 -ω α,β,p,1 consequently, the coefficient 

of skewness (α3) in (15) and the coefficient of kurtosis 
(α4) in (16) can be written as Equation 15 and 16: 
 

( ) ( ) ( ) ( )
3

3

3

α =

ω α,β,p,3 -3ω α,β,p,2 ω α,β,p,1 +2ω α,β,p,1

W

  
 (15) 

 
( ) ( ) ( )

( ) ( ) ( )
4

2 4 4

α = ω α,β,p,4 -4ω α,β,p,3 ω α,β,p,1

      +6ω α,β,p,2 ω α,β,p,1 -3ω α,β,p,1 W





 (16) 

 
We illustrate activities of mean and variance in 

Table 1 that are increasing functions of α. Also, 
Table 2 show skewness in (15) and kurtosis in (16) 
for different values α and p are independent of 
parameter α. Moreover, we discover that both the 
skewness and kurtosis are increasing functions of p 
except are both decreasing functions of α. 

2.3. Hazard Rate 

Hazard rate (or failure rate) are expansively apply in 
several fields. For example; Wahyudi et al. (2011) 
offered the trivariate hazard rate function of trivariate 
liftime distribution. By definition, the hazard rate of a 
r.v. X with pdf f(x) and cdf F(x) can be written by: 

 

( ) ( )
( )

f x
h x =

1-F x
 

 
Using (9) and (10), the hazard rate of the MGG 

distribution may be expressed as Equation 17: 

 

( )

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

β

β

αβ-1 - λx

αβ-1 - λx

1-p λxp
+ λβ λx e

Γ α 1
Γ α+

β
h x =

1
Γ α+ ,x

pΓ α,x β
1- 1- - 1-p

Γ α 1
Γ α+

β

1
pΓ α+ + 1-p λxΓ α λβ λx e

β
        =

1 1
pΓ α,x Γ α+ + 1-p Γ α Γ α+ ,x

β β

 
 
 
  
  

  
  
  
  
 

  
    

  
  

  
   
   
   

 (17) 

 
When substituting different values of parameters in 

(17) then we get some hazard rate of the MGG 
distribution which it present in Fig. 3: 

• When p = 0 then the hazard rate of the MGG 
distribution reduces to the hazard rate of the LGG 
distribution 

• When p = 1 then the hazard rate of the MGG 
distribution deduces to the hazard rate of the GG 
distribution 

• When α = β = p = 1 then the hazard rate of the 
MGG distribution derived to the hazard rate of the 
exponential distribution 

2.4. Limit Behaviour 

The limit of pdf of MGG as x →∞ is 0 and the limit 
as x →1/λ is given by: 



S. Suksaengrakcharoen and W. Bodhisuwan / Journal of Mathematics and Statistics 10 (2): 211-220, 2014 

 
217 Science Publications

 

JMSS 

 
 

Fig. 3. Plot of the hazard rates of the MGG distribution for different values of parameters 
 
Table 1. Mean and variance of MGG distribution for various values of α, β, λ and p 
   p = 0.2  p = 0.5  p = 0.8 
   ---------------------------------- --------------------------------- --------------------------------- 
α β λ Mean Variance Mean Variance Mean Variance 
3 2 0.1 17.7666 24.3478 17.3354 24.4835 16.9042 24.2474 
  0.3 5.9222 2.7053 5.77850 2.7204 5.6347 2.6942 
  0.9 1.9741 0.3006 1.92620 0.3023 1.8782 0.2994 
 4 0.1 12.9785 3.5930 12.8914 3.6457 12.8043 3.6832 
  0.3 4.3262 0.3992 4.29710 0.4051 4.2681 0.4092 
  0.9 1.4421 0.0444 1.43240 0.0450 1.4227 0.0455 
 6 0.1 11.8225 1.3829 11.7861 1.4006 11.7496 1.4157 
  0.3 3.9408 0.1537 3.92870 0.1556 3.9165 0.1573 
    0.9 1.3136 0.0171 1.30960 0.0173 1.3055 0.0175 
5 2 0.1 22.7025 24.5948 22.3676 24.6885 22.0328 24.5578 
  0.3 7.5675 2.7328 7.45590 2.7432 7.3443 2.7286 
  0.9 2.5225 0.3036 2.48530 0.3048 2.4481 0.3032 
 4 0.1 14.8265 2.7915 14.7684 2.8160 14.7102 2.8338 
  0.3 4.9422 0.3102 4.92280 0.3129 4.9034 0.3149 
  0.9 1.6474 0.0345 1.64090 0.0348 1.6345 0.0350 
 6 0.1 12.9538 0.9717 12.9308 0.9790 12.9078 0.9852 
  0.3 4.3179 0.1080 4.31030 0.1088 4.3026 0.1095 
    0.9 1.4393 0.0120 1.43680 0.0121 1.4342 0.0122 
8 2 0.1 28.5527 24.7420 28.2877 24.8049 28.0227 24.7274 
  0.3 9.5176 2.7491 9.42920 2.7561 9.3409 2.7475 
  0.9 3.1725 0.3055 3.14310 0.3062 3.1136 0.3053 
 4 0.1 16.7276 2.2090 16.6873 2.2211 16.6469 2.2299 
  0.3 5.5759 0.2454 5.56240 0.2468 5.549 0.2478 
  0.9 1.8586 0.0273 1.85410 0.0274 1.8497 0.0275 
 6 0.1 14.0589 0.7047 14.0437 0.7079 14.0284 0.7107 
  0.3 4.6863 0.0783 4.68120 0.0787 4.6761 0.0790 

    0.9 1.5621 0.0087 1.56040 0.0087 1.5587 0.0088 
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Table 2. Skewness and kurtosis of MGG distribution for various values of α, β and p 
  p = 0.2  p = 0.5  p = 0.8 
  ------------------------------------- -------------------------------- --------------------------------- 
α β Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis 

3 1.0 1.0132 4.5298 1.0672 4.6800 1.1327 4.9082 
 1.5 0.5367 3.3260 0.5554 3.3444 0.5814 3.3833 
  2.0 0.2886 3.0143 0.2961 3.0131 0.3094 3.0190 
5 1.0 0.8236 4.0132 0.8522 4.0775 0.8845 4.1675 
 1.5 0.4277 3.2058 0.4368 3.2127 0.4494 3.2272 
  2.0 0.2241 3.0055 0.2274 3.0047 0.2335 3.0066 
8 1.0 0.6705 3.6725 0.6858 3.7004 0.7023 3.7375 
 1.5 0.3437 3.1324 0.3483 3.1351 0.3547 3.1409 
  2.0 0.1771 3.0022 0.1787 3.0019 0.1817 3.0025 
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It is straightforward to demonstrate the above from 

the pdf of MGG in (9) as: 
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3. RESULTS 

3.1. Parameters Estimation 

The estimation of parameters for the MGG 
distribution will be discussed via the MLE method 
procedure. The likelihood function of the MGG (α, β, λ, 
p) is given by:  
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From which we calculate approximately the log-

likelihood function Equation 18: 
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The first order conditions for finding the optimal 

values of the parameters were obtained by differentiating 
(18) with respect to α, β, λ and p we get the following 
differential Equation 19-22: 
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Table 3. Maximum likelihood estimates and K-S distances with their associated p-values for the four mixture distributions fitted to 
depressive condition data 

Distributions Maximum likelihood estimates K-S statistic p-value 

MGGD α̂ 11.8383= , β̂ 0.2832= ,  

 λ̂ 1.8115= , p̂ 0.7377=  0.0941 0.8484 

LGGD α̂ 0.5908= , β̂ 0.5758= ,  

 λ̂ 0.0008=  0.1041 0.7535 

GGD α̂ 0.9999= , β̂ 1.0025= ,  

 λ̂ 0.0001=  0.1505 0.3083 

Weibull α̂ 318= , β̂ 0.7032= ,  

 λ̂ 5127.8=  0.1660 0.2081 
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And: 
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These four derivative equations cannot be solved 

analytically, as they need to rely on Newton-Raphson: 
The Newton-Raphson method is a powerful technique 
for solving equations numerically. In practice α̂ , β̂ , λ̂  
and p̂ are the solution of the estimating equations 
obtained by differentiating the likelihood in terms of 
α,β,λ and p solving in (19)-(22) to zero. Therefore, 
α̂ , β̂ , λ̂  and p̂  can be obtained by solving the resulting 
equations simultaneously using a numerical procedure 
with the Newton-Raphson method. 

3.2. Applications of the MGG Distribution 

For one application of the MGG distribution, we 
used a real data set. This was the flood rates data from 
the Floyd River located in James, Iowa, USA for the 
years 1935-1973 from Akinsete et al. (2008). The 
maximum likelihood method provides parameters 
estimation. By comparing these fitting distribution in 
Table 3 based on the p-value of this comparison, the 
results have shown that the MGG distribution 

provided a better fit than the GG, LGG and the three 
parameters Weibull distributions. Since, Mahdi and 
Gupta (2013) presented the three parameters Weibull 
distribution obtained the pdf as: 
 

( )
1 x
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x
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ββ− −α − λ β − α = > α β λ > λ λ 
 

 
4. DISCUSSION 

The MGG distribution is significance of mixture 
distribution method which is a new family of GG 
distribution. In this study, the MGG distribution found 
that it provides a considerably better fit than the LGG 
and GG distributions which are some sub-models of the 
MGG distribution. Indicating that MGG distribution 
makes the approach moderately useful for lifetime data. 
Based on p-values of the MGG distribution is better than 
LGG, GG and three parameters Weibull distributions. As 
well as, the research by Kamaruzzaman et al. (2012) fit 
the two component mixture normal distribution by using 
data sets on logarithmic stock returns of Bursa, Malaysia 
indices better than a normal distribution. Furthemore, 
Cordeiro et al. (2012) suggested the Kumaraswamy 
generalized half-normal distribution using the flood rates 
data of the Floyd River, located in James, Iowa, USA 
provides a better fit than sub-models of it. In addition, 
Faton and Llukan 2014 generalize the Pareto distribution 
can be used quite effectively to provide better fits than 
the Pareto distribution. 

5. CONCLUSION 

This study offers the MGG distribution which is 
obtained by mixing GG distribution with LGG 
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distribution. We showed that the LGG, GG, Gamma, 
length biased exponential and exponential distributions 
are sub-models of this new mixed distribution. We have 
derived several properties of the MGG distribution 
which includes mean, variance, skewness, kurtosis and 
hazard rate. Additionally, parameters estimation are also 
implemented using MLE method and the usefulness of 
this distribution is illustrated by real data set. Based on 
p-values of goodness of fit test, we found that the MGG 
distribution provides highest p-values when we 
compared with LGG, GG and three parameters Weibull 
distributions as shown in Table 3. According to the 
classical statistics, the MGG distribution is the best fit 
for these data. In conclusion, it is believed that the MGG 
distribution may attract wider application in real lifetime 
data from diverse disciplines. In the future research we 
should be considered in parameter estimation using 
Bayesian or other approaches. 
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