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ABSTRACT

In this study, we find the two solutions of a systef two dimensional stochastic Fredholm integral
equations contains two gamma processes with diffaralues of the two parameters (the first conttbés
rate of jump arrivals and the second inversely misithe jump size of this arrivals) in two cased aqual

in the third that is to introduce two correspondifrgbability Density Functions (PDF’s) and to dersome
statistical properties (auto-covariance and spkedammsity functions) depending upon the maximum
variance of each p.d.f with respect to the thremsaTo indicate which of the three cases giveiglaeht
correlation, the correlation coefficients betweay pair of p.d.f's related to every case are calimd. The
solutions of the system of equations are foundHgy Adomian Decomposition Method (ADM), they are
considered as a rapidly converging and geometidite series. It is shown that, the highest etation
coefficient between any pair of p.d.f's is when ffmwameters of the two gamma processes are eqoaéto
This study is interesting as a main goal by conmgjiriwo fields of mathematics, integral equationd an
probability theory that is by using the analyticalutions of a system of two dimensional stochastic
Fredholm integral equations.

Keywords. System of Two Dimensional Stochastic FredholmdraeEquations, Gamma Process, Adomin
Decomposition Method

1. INTRODUCTION For combining the integral equations as an impbrta

branch of mathematics with some statistical priggrt

Many researchers interested as a final goal eitheour goal in this study is not only interesting inet

by studying the existence and uniqueness of thesolutions of the supposing a system of two-dimeraio
solution of one or more dimensional integral equadi  stochastic Fredholm integral equations but we cunat
(Balachandrast al., 2005; Miltonet al., 1972) or to find  ourselves in the derivation of some statisticapprties of
by using different methods of the modified quadmtu the solutions like probability density, covarianead
the_n_umerical sqlutions of this kind of equat_iomssome spectral density functions depending upon the masim
definite closed interval to study a comparison B&W  \5riances of the probability density functions dfe t

the numerical solutions and their exact solutiddada ; ; ; -
) ; C ' . resulting stochastic two solutions of the systemictvh
2007; AL-Sadany, 2008). While Vahidi and Mokhtari found by the Adomian decomposition method.

(2008) use the Adomian decomposition method to
compare this method with the classical successive] 1. Preliminary

method for solving system of linear Fredholm intgr ]

equations and Biazar and Rangbar (2007) studied the ~The gamma proce$¥w, v, 1, 1) is a Lev'y process
comparison between Newton's method and AdomianWhose marginal distribution at the time t>0 is angsa

decomposition method for solving special Fredholm gigyiption with mean” and varianceX , i.e.Equation 1:
integral equations. A A2
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(A)" ) Now, to find_ the stochas_ti_c solutions of the

rn W' e w00 system (4), Adomian decomposition method should be
used which briefly depends on the following steps
Equation 5-7 (Vahidi and Mokhtari, 2008):

F(w,y,A t)=

where, the parameteF controls the rate of jump
arrivals (shape parameter) and the scaling pararhete

inversely controls the jump size (scale parameter) w,0)=r,(W, v, A t):(?\1)Vlt Wit

(Vladimir and Dimitrina, 2009). Moreover, the gamma 7Y (v

rocess has the following properties: vat

P I o Ugo (W, 1) = rz(Wa Yor A, t) = (r)\(zy)it) w2 2gha )
2

e I'(w,y,\,1)=0
o Forany 0<tl <t2<...<tn<o; T(W,y, A t)-T'(w, N,
Y, A t)...T(w, v, A, t)-I'(w, vy, A t.) are Uo(s, )= rl(W, Voo AL t) )T gt ghs

independent increments (D)
A RO S EEE LI TR VLI B
Now, we consider the following two dimensional And:
system of stochastic Fredholm integral Equation 2:
w W= (W, v A § ¢ Uy a0 = [ 56" [Uy, (5,8 Uy, (5,01
o ) 0
[2 ety s, = @ W)= [ 56" [y, 6.0y, (50K ()
0

where, -k (w, s, t), i, j = 1, 2 are known stochastic
kernels defined by t>0,3S, S is a compact metric and Where, m=0,1,2...

having respectively the supposing formulas Equadion That is to get the following two stochastic sabut

Equation 8:
ky(w,s,t)= s€" |k (w,s,tF s& , j=1 3)

uy (W, 1) = Uy (W, t)+ Z Uy, (W, 1)
-U; (s, 1), j = 1,2 are scalar functions defined #,ts>0. n=

By SUbStitUting (1)’ (3) into (2)' we get Equatm'):n U1(W,t) = Uy (W,t)"’i Uy, (w,1) (8)
n=1
vt © . . . i |
ul(w’t):%wﬂt_leﬂlw +J s [y (s,tr i (s,t)ds So, for the first iteration (m = 0), by (6) ang:(7
Vil !
T oo AT g s, M) pora s
Yot o = wt 1 gl 1S Vo) g 14
uz(w,t):%wvz—ze—xzw+J'Sémz [ u Gk (4) U, (w,t) J;Se % e r(y,t) e ]
2 o0
| U, (W, 1) = [ s€™ &vﬂ gt gy A2 g1 200 1ds
Remark (1) ' 0 (va) I (y,t)
_ A vt M(v.t+1 A\ \Z r t+1
In this study three cases for the parameters.)( UM(W,t)=eW‘f( ) (+D, A,) (v t+ )]

l()\l)‘llHl' r(Vlt) ()\Z)Y21+1' r(yzt)
w2 ) T(vt+D) | (4,)? Ty t+D)

should be considered:

U, (w,t)=¢€ — 1 ]
e y>hov = 1,0 = 0.5y,50y, = 15,1 * N e I ()
o <Ay = 050 = Lyo<holy, =12, =15
* NTMEy=Ah=1 or Equation 9:
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Uy, (w,t)=te™ Vi Ve

1 2

Yi, Y
Uy, (w,ty= te™ Q1+ e 9
)= 1€ o) ©

and for the second iteration (m = 1), by (7) a@ (

1 2 1 2

U, ,(W,t)= jseW‘ [tes‘% Y. )+ tes? }\l Yz )]d

or Equation 10:

_ Y —wt
ND=C+=
Uy (W, t) ()\1 N,
w2
U, ,(w,t)= (%11 +)\7 " (10)

and by repeating iterations for m = 2,3,..
(10), we get:

- and agd®),

1 = Bl
Zuln(wt) o )ewztt%r
1 2 k=0
1 —)e“”‘z £+1

2w 0= G+ 508" 3t

o t2+ i i .
where, Zt(?J)k is a geometric series converges for
k=0

t>1.30, hence Equation 11:

2 1 £ -

;uln (w,t)= ()\71 j)[ﬂ]e

S P e 11
2 Uz (W)= (1 Y )i e (11)

Finally, by substituting (5) and (11) into (8) whi
represents the two stochastic solutions of (4)gate
Equation 12:

)" v v L 3 o
L= t)W % [W]

_( w2 2g? 1 3 _‘Mz 12
(1) F(y,t) s STl )\ (t +1) (12)

where, w>021.30y;,4>0,i = 1,2
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Moreover, the stochastic solutions (12) can be
considered as a stochastic solutions over the viater
O<w<1 for some+1.30.

1.2. Statistical Properties of the Stochastic
Solutions

In order to derive the statistical propertieshe two
stochastic solutions (12) over the interval&1, t1.30,
it must be that each of them is a probability dgnsi
function (p.d.f) of (W,t). So, we multiply them
respectively by A and B and equate their integoglene
that is to find A and B which make each stochastic
solution is a p.d.f., i.e., we write:

Jl' By (w,t)dws

0

1
jAul(w,t)dw =1,
0

We start by the first integral:
( 1) vt 1 AW W- y2 P
[r(vt>fw A Wk

()‘1) ypt-1
[r( t)jwl A-AW +

)jeW‘dw] 1

(Alw) —ydw +
2!

VZ t
Fo g D o

v1t+n 1

[ ()\:L)ylt Jl,i(

F(vit) 5=

y2 -
X g b o

[()‘1)\/lt S (_)\1)n
I (y,t) smon!(y,t +n)

+

3‘4{_ e'
+
ALA, (t +1) "t A

So:

1

yl y2)( t'Q- e ))
n'(\/1t+n) 7\1 -(+1)

T S (A
Fovd &

While, the second integral gives the followinguel
of B:

1

(yl y2)(t3(1 e’)
onl(y,t+n) A, - (P +1)

T " 5 O

F(Yot) 5= )

JMSS
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Hence,
probability density functions of (W,t) that is when

aw.1) = (13a)
(r)\(lleytl;wyltl e (yl y2)( (t2+1))e_W[

S Ty e

@, (w,t) =

(FA(\;ytz) W (yf Xz)(ﬁ)_mz (13b)
()\z)vmi (=2)" Vl VZ)( £-e° ))

A= r1(\/zt+”) )\1 -(t+1)

For both
O<w<1,21.30y>0;>0,i = 1,2.

1.3. First and Second M eans
First Mean:

E,, (W, t)= Jl' we (w, t)]dw
E,, (W, 1)= Jl‘ wl@, (w, t)]ldw

We start by the first mean of,@,t):

E,, (W, t):
Lo
Il g™

AT A VLY
row Snem T A @y

(?\1W)2

e (S e o

t‘d-e")
- (+1)

)

W' (1= A, w) + - )dw

(A
P00y Vs y Yoy
O e (t2+1))fwe
M)™ 5 (A
F(yt) =iyt +n)
t'-e)
t*—(t2+1)

(e VZ)( )

or Equation 14:
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Equation 13a and 13b

the two stochastic solutions (12) are E, (w,t)=

A" i (A"

Yi, Yo t(l (t+1)e"
r(ylt)nZOn!(y1t+n+l))+()\l+ A )>

- (t*+1)

Yt _ (14)
(rhl) (=A)" +(\/1+v2)( t (1 i )
(i) azoni(yit+n) A - (t°+1)
While, the first mean of @w, t):
E,, (W, t)=
i ()\2) Yzl‘l “Apw Yi, Y2 t5 —WI2
[y G SR
Yot
(I_)\Z) ( )\2) +( )(t (1 5 ))
(Y.t) Ao ni(y,t +n) >\1 -(t°+1)

Or Equation 15:

E,, (W, )=
A Vit -A n
( 1) z ( 1)

y+(a s Yy (LD )

Fy) Senl(yt+n+1)" A, A, th- (t°+1)
0% (A, v, vz)(t(l ety (1)
F(y,t) sni(y,t+n) A, (tz +1)

Second Mean:
1
E, (W?,1)= j w?[p (w, t)]dw

E,, (W, 1) = j W[, (w, t)dw

It is easy to derive the second means ¢fwd),
@,(w,t) as pervious, they will be Equation 16:

B, (W.1)=

W' G tR-(+2t+ 2"

Fiy) Zniiyt +n+2) & ’( t-E+D) b e
MW (A L v, Vet

I\ an(y +n)+()\ ", )(r‘ (t2+1))

While Equation 17:

EEP)Z\(\)@ t°)°: A" y. t(2—(t'+ 22+ 2)e’
o) Zyaene2) Ty )(W3 (17)
P S )
JMSS
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1.4. Variancesand Maximum Variances 1.5. Autcovariance Function

Calculations of the variances of the probability For any s>t,s-t =, the autocovariance functionth(
density functions (p.d.f's) (13.a), (13.b) by th@rfiula of the independent p.d.f functiopéw, t) andg(w, t+1) is
varg (W, t) = B (WAt)-[Eg(w, t)]° for the three cases an even function depends on the differetite= |s-t| =

(Remark (2.1)) whetr1.30 are tabulated ifiable 1 and |t-s| and can be found as follows (Basu, 2003):

2. It is noted that, the variances in both tablessiowly

decreasing to tends to zero when t is relativeiyda ht)= E(w.t) (w,t+ ) -E(w.) § (w,# 1)
Whereas the maximum variances obtained from = ( w2 )+ E, (w, 1) (w,t+ 1)) - Ep( W 9 -

both presiding tables are presented respectivelthén

first, second and third rows Fable 3. Ey(w.1) Ew(W 1)

Furthermore, the probability density functions ¢(W , ) w, 1) E, (w, t+ t)_Ev( W ) -
(13a) and (13b) with respect to the three casesaRem e X ot
(2.1) can be rewritten respectively as follows: o( W) B, (W )

=E, (w2, 1)+ E,(w,1) (B, (w,t+ )~ F(w,))-

o vy = 1,0 = 059,00y, = 1.5%, = 1 Equation 18a Eq,(w,t) E,(w,t+ 1)
=E,(w? (W) E, (w,t+ )= (E( w,})’—
@ (w,1.30)= 0.01028%® @+ 1.776186"" (18a) oW )+ (w9 E, ()
E, (W, 1) B, (W, t+ 1)
where, t = 1.30, ®w<1 Equation 18b: Or:
@,(W,1.95)= 0.19705%% @'+ 0.376238 (18b) h(©=E,(w1) = (B (w.§ } = var( w.) (19)
where,1>0,0cw<1.
where, t = 1.95, w<1 Equation 18c: So, byTable 3 and Equation (19) either wheg(w,
t), t = 1.30 orgy(w,t), t = 1.95,2.0, the auto-covariance
* 71<hiy1 = 050 = Lyo<hply, = 1R, =15 functions for them with respect to the three cases
(Remark 2.1) are presentedTiable 4.
where, t = 1.30, 9nv<1 Equation 18d: The spectral density functions (s.d,f) @ffv, t) is an
even function represents the average power in ttié p
@ (W,2.0)= 0.59100W&>" + 0.42030% (18d) @(w, t) at the angular frequency @2nrm, nOI* and can be

found by Khinchin's formula as follows (Emanuel 6P9:

where, t = 2.0, @w<1
f(@0)=— j h(t)e™®dra
e y1=MA =v,=Ak, =1 Equation 18e:

h(r) j (cosOrt - sindt )d

@ (w,1.30)= 0.04350W® &'+ 1.74570€° (18e)
where, t=1.30, ®w<1 Equation 18f: and fort = s—t>0:
s-t
@, (w,2.0)= 0.56080We"" + 1.81280% (18f) f(@B) -h@ .[ cosBrt - sindt )d
T

0

where, t = 2.0, fw<1. Or Equation 20:

Figure 1-3 represent the graphs of three pairs of _h@ sins= 1) ,_q- 20
p.d.fs @(w, t), @ (W, t). f(qe) =" 0<p<2m nl f (20)
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Table 1. Variances ofp,(w,t)

"{1>)\.1: Y1 = 1,7\,1 =05 ’Y1<7\,1: Y1 = 0.5,7\,1 =1
t Yo>hoi v2 =150 =1 Yo<hoy2 = 1,0, =15 Yi=M=y=h1
1.30 0.07683 0.07696 0.07689
1.40 0.07620 0.07633 0.07658
1.50 0.07549 0.07551 0.07633
1.60 0.07468 0.07472 0.07607
1.70 0.07377 0.07402 0.07577
1.80 0.07276 0.07340 0.07539
1.90 0.07166 0.07285 0.07491
2.00 0.07049 0.07236 0.07430
2.10 0.06924 0.07193 0.07356
2.20 0.06793 0.07154 0.07269
2.30 0.06658 0.07117 0.07169
2.40 0.06520 0.07082 0.07056
2.50 0.06379 0.07048 0.06931
1000 0.000001 0.000001 0.000001
Table 2. Variances ofp,(w,t)
'Y1>7\,1: Y1 = 1,)\.1 =0.5 'Y1<7\,1: Y1 = 0.5,7\,1 =1
t Yool v2 =150 =1 Yooy =1,2,=15 Y1=M=y2=h1
1.30 0.21423 0.21009 0.21209
1.35 0.23192 0.22072 0.22609
1.45 0.26342 0.23964 0.25095
1.55 0.28935 0.25529 0.27157
1.65 0.30928 0.26752 0.28780
1.75 0.32308 0.27631 0.29957
1.85 0.33089 0.28184 0.30698
1.95 0.33313 0.28438 0.31033
2.00 0.32968 0.28466 0.31061
2.15 0.32376 0.28218 0.30665
2.25 0.31387 0.27835 0.30074
2.35 0.30167 0.27329 0.29286
2.45 0.28798 0.26738 0.28357
2.55 0.27349 0.26092 0.27331
1000 0.000002 0.000002 0.000002
Table 3. Presents the maximum variances from both Tabled12an
’Yl>7\'1: Y1 = 1,7\,1 =05 'Y]_<7\,1: Y1 = 0.5,7\,1 =1
pdf 1 'Yz>7\,2: Y2 = 1.5,7\,2: 1 'Y2<7\,2: Y2 = 1,7\,2: 1.5 'Y1:7\,1:’Yz:7\,2 1
o(w,t) 1.30 0.07683 0.07696 0.07689
@(W,t) 1.95 0.33313 - -
2.0 - 0.28466 0.31061

Table 4. Presents the Auto-covariance Functiong(@f,t) andg(w,t+1)

Y>ALyi=1,A =05 Yi>A1y1=05A,=1
t Vo>A o= 15A,=1 Vo> Vo =1, A, =15 Vi=Ai =V =A,=1
1.30 0.07683 0.07696 0.07689
1.95 0.33313 -
2.00 -—-- 0.28466 0.31061
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Fig. 1. The graphs ofy(w,1.30),(W,1.95), Gw<1, wheny;>A;iy1 = Ly; = 0.5;y,>0 v = 1.5, =1
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Fig. 3. The graphs ofy(w,1.30)(,(w,2.0), &w<1, wheny; =A =y, =A, =1

So, byTable 4 and Equation (20) either whem(w, (g, 0) = 232060 SIS 28) g5y (219
1), t = 1.30 orgy(w, t), t = 1.95, 2.0, the s.d.f's of them n ®
with respect to the three cases (Remark 2.1) can

respectively be written as follows: Figure 4-6 represent the graphs of three pairs (f

(1,0), T (@,8)) corresponding to the three cases

o yi>A Vi= 1A=0.5;y,>A5: v, = 1.5),= 1 Equation (Remark 2.1) and s = 10 just be chosen to complete

21a and 21b: the figures.
@) _0.07683 sin((s 1.36) | o (21a) 1.7. Correlation Coefficients

m ® By the known Peason’s correlation coefficient

(g 0) = 2313 8N 1.99) ;o o0 (21b) formula for dependent random variables X, Y:

' m ] ' -

_E(X,Y) —E(X)E(Y)

e ViAVi= 0.57; = 1;yo<A, o = 1), = 1.5 Equation PXY =7 Narovar(y)

21c and 21d:
and since each pair of any two p.d.fig(w, t),
f(g,0) = 207696 sin(E 1.38) o g o (21c) @(w,1)((18.a) to (18.f)) with respect to the threases
" o (Remark 2.1) are dependent. By writing:

0.28466_sin((s 2.
He8)=———0 ((e P.0<0s2n (21d) E(X,Y) = Expectation of the product afi(w, t) by
e . _ (W, t)
* Y1=A1=Y>=A; =1 Equation 21e and 21f: E(X)E(Y) = Product of expectation gf(w, t) by gx(w, 1)
Var(X) = Maximum variance of(w, t)
f(q,0) = 2:07686SIN(E 136) g o (21e) Var(Y) = Maximum variance of,(w,t)

m €]
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Fig. 4. The graphs df(@, 6),f (¢, 6) , 0<0<2r, =10 wheny, >A,:y, =LA, =0.5;y,>A, y,= 1.5\ ,= !

Fig. 5. The graphs of (@, 0),f(@,,6) , 0<©<2r, =10 wheny, <A,:y,=05A,=1y,<A,y,= I\ ,= 1.f
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Fig. 6. The graphs df(@, 6),f (¢, 6) , 0<0<2rn, =10 wheny, =A, =y, =A,=1

Then:

Yy > )\1: Y1 = 1)\1 = 05, y2>)\2: Y2 = 15)\2 =1
Equation 22a:

0.18077- (0.39535)(0.25522)
PoL@, = 20.49256
/(0.07683)(0.33313)

(22a)

i Vl<)\l: i 05)\1 = 1§V2<)\23 Y2 = 1)\2 =15 Equation
22b

0.0763- (0.39202)(0.2386) i

= =0.4523¢ 22b
Poue, |/(0.07696)(0.28466) (22b)
* V1 =A1=V>=A,=1Equation 22c
00" 0.16964-(0.39514)(0.16725) - (220)

/(0.07689)(0.31061)

2. CONCLUSION

With respect to the three considering cases, the

variances of the resulting p.d.f's are slowly desieg to

tending to zero when the times t is relatively &rg
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Furthermore, the calculations of the correlation
coefficients between any two p.d.f ‘s having diéer
maximum variances with different times indicatet ttee
best of the three cases is when the parametef9 (n
both gamma processes are same and equal to one.

As a recommendation, it is possible to use the
numerically or analytically solutions for any kinas
integral equations to study some statistical prigeiof
those solutions that is firstly by deriving the [fsd For
that, we suggest to consider other cases of theesadf
the parameters of the gamma processes differ by the
cases which studied in this article.
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