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ABSTRACT

In this note, a simple approximation for the maximilikelihood estimates of infection and removal
parameters used in the Susceptible-Infectious-Retho{SIR) epidemic model is presented. This
approximation can be applied when the numbers sfequtible and infected individuals are observablg o

at discrete points in time. Since, in such casedpsed form of the likelihood function is geneyalbo
complicated to obtain, the proposed approximatiathomd represents an important advance. Simulation
results show that the method yields approximatiqonge close to the maximum likelihood estimates
obtained under continuous observation.

Keywords Approximate Maximum Likelihood, Discrete Samplingh®me, Infection and Removal Rate,
Reproduction Number, Susceptible-Infectious-Remdweidiemic Model

1. INTRODUCTION scheme in which two adjacent observation time goint
have the same distance, Kendall (1949) and Keiding
Over the last century, mathematical modeling of (1974) explored the maximum likelihood estimation o
epidemiological phenomena has been used tothe birth rate for the Yule process. _S_|m|larly, totinear
understand, predict and control the spread of titfes growth l_3|rth ano_l de_ath process, Keiding (1975) e
diseases. Almost all mathematical models of disease® Maximum likelihood estimate for the ~so-called

start from the same basic premise: that the poipulat Malt_husian. parameter. quther, McN.eiI and Weiss'()9
can be subdivided into a set of distinct classes provided diffusion approximation estimates of thensof

according to individual relations to the given @ise. In birth and death rates and the Malthusian parameter.

. ) X X For the discrete sampling scheme (not necessarily
the widely studied Susceptible-Infectious-Removed | _. T - -
(SIR) model, individuals can be classified as (1) using the equidistant constraint), several studiage

. . . : . investigated the approximation of maximum likelidoo
susceptible to a disease, (2). infected by it ar)da_(mer estimates for the infection rate of the simple s&stic
removed from the population or rendered immun

) : i €. epidemic model (Hill and Severo, 1969; Kryscio, 297
When all instances of infection and removal arecolesd Choi and Severo, 1988). Of al. (1991) presented
over a given time interval, the likelihood of SIBtienates  gpproximations of the maximum likelihood estimate f
for infection and removal can be maximized, as shbw  the birth rate in a class of birth processes. Gramid Yu
Becker and Britton (1999); however, when observatio (2010) studied several problems with maximum

occur only at discrete points in time, maximumli®@od  |ikelihood estimation in the immigration-death pess.
is difficult to achieve, since no closed-form exgsien for  Chen and Hyrien (2011) considered quasi- and pseudo
the likelihood function can be obtained. likelihood estimation for a class of continuouseim

The SIR model can be regarded as a simple birth ananulti-type Markov branching processes. Crawferdil.
death process in which being born is equivalent to(2011) suggested estimation of parameters using e
becoming infected. For the birth and death procass, algorithm for a class of birth-death processes when
number of studies have focused on the problem ofprocess is observed only at two time points (the
generating estimates based on observations atetiscr beginning and the end of a given time interval) tigk
time points. Under the equidistant discrete sargplin not consider the SIR model.
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Under the SIR model,
techniques (Tanner and Wong,
applied directly because of the difficulties in aising
conditional expectations of the numbers of subjétts
each of the three classes. To avoid such diffieslti

data augmentation respectively, with n-80 and a+b-H0. The corresponding
1987) cannot belikelihood function is the product of transitioropabilities,

which, in this case, are quite entangled; thuspjpears
impossible to find explicit expressions for the imaxm
likelihood estimates d¥ andy based on D.

Cauchemez and Ferguson (2008) approximated the Following Ohet al. (1991), simple approximations of

SIR model with a diffusion process, but their apgto
assumed a large population size and would not bk
for data collected in small communities or housas$ol
Following Oh e al. (1991), a simple method of
approximating maximum likelihood estimates for BkR

the maximum likelihood estimates are presented that
provide straightforwardly calculated initial valuis an
iterative procedure, yet achieve good accuracy and
precision so long as the observation times.t, are
sufficiently close together, such that, &, y) do not

model under continuous observation over a givere tim vary significantly between successive pairs.

interval is presented. Unlike Cauchemez and Ferguso

(2008), a large population size is not assumedplso
method should apply well to data from small comriesgi

To derive the approximations, it is first assumieat t
the process is observed continuously over the ftiad
interval (0,T], i.e., all infection and removal &% that

This note is organized as follows. The SIR model is haye occurred until T are observed. Furthermorés it

presented in Section 2, along with description loé t
methods of approximation. Section 3 considers nigader
examples and provides simulation results. The Beation
includes a discussion and concluding remarks.

1.1. Approximation

Let X(t), Y(t) and R(t) denote, respectively, the
number of susceptible, infected and immune or resdov
individuals at time =0 of the SIR epidemic model with
infection paramete3 and removal parameter in a
closed population of size N, that is, a Markoviaogess
with infinitesimal transition probabilities:

P{X(t+h)=x,Y(t+h) =y, | X(t)=xY(t) =}

(B/N)xyh+o(h), (% %)= (x=1,y+ 1),

_wh+o(h), (% %)=y 1),
1-[@/N)xy+yy|h+o(h), (% .%)=(xYy),
o(h), otherwise

forx =n, n-1,....,0 and y = 1,2.where X()+Y(t)+R(t) =
N, X(0) = n, Y(0) a>0, R(0) = 0 and N = n+a. It is
assumed that there are no latent periods and ticat @an
individual is infected, (s) he becomes infectidDaly two

of the random variables are independent. Consider t
problem of estimating, y and R = B/y when the process
is observed only at a discrete set of time poifts;
to<ti<...<tc = T, where T is a fixed time point. The
discrete sampling scheme gives data in the form:

D={(teXuYd =(0,n,a), (L, %,¥% ).

e 1)
(te, X, ¥e) = (T,n— b,a+ b- d)}

where, x and y are the observed numbers of susceptible

and infectious cases at timeréspectively and b and d are
the number of infections and removals
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in (0,T],

39

assumed that r infection or removal “events” have
occurred and & = 1,...,r+1) is the time between the (j-
1)th and jth events; then,;,Z.,Z.,; are independent,
exponentially distributed random variables with
respective rate parameters. From this continuous
sampling scheme, we have data of the form\M(4 =
(z1VD), ..o (ZVY) = (Z,V) and Z>T-(z+...42) = Z4y If

r=1 and z>T if r = 0, where y= 1 or 0 depending on
whether infection or removal occurred gt z.+z for j =
1,...,r, respectively. The corresponding log likebikdo
function becomes equal, wheilt

log/(B,y) U blogB + dlogy—B g, -~V $ (2)
Where:
r r+1 r+1
b=Xv.d=r-bs, =N £ ¥.7.5 2, % 2
=1 =1 j=1
and for j = 0,1,....,r,x; and y; are the numbers of

susceptibles and infections at timg z.+z, respectively,
with z5 = 0. By differentiating Equation 2 with respecfto
andy, we can obtain the maximum likelihood estimates of
3 andy under continuous observation:

5 b . _d
== Yo T (3)
Sxy %

=)

Corresponding to the results of Becker and Britton
(1999), R can be estimated by:

(4)

When the process is observed only at a discréte se
of time points and the sample is in the form oftbe
likelihood function is:

Re. =B. /9.,
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L@By) = ﬁl(&vl XY, X Yr) (5)

Where:

l(val xi,yi,xi+1'yi+1)
= P{X(t) = X, Y(t) = Yoy [X(E) =%, Y (1) = v}

the probability generating function for which isvgn
in Daley and Gani (1999). Note,
obtaining the maximum likelihood estimatesfoandy

using Equation 5 seems infeasible. Under the discre

S ) +X5Ya) - [ Xy, have

B, - B. -V -V andR, - R, , respectively.

we

1.2. Numerical Examples and Monte Carlo
Experiments

Table 1 shows the behavior of approximations for the
SIR process whep = 0.2 and 0.15y=0.1, n=180,a=20

however, that and T = 100. Ten simulation results are reporigd, for 8

= 0.2 and five forf = 0.15. For example, in the first
realization generated usifig= 0.2, there are 39 susceptibles

sampling scheme D, b and d are known but not theirgng zerg infected at the last observation tirge67.44,

respective denominatorgysand s in Equation 3. g

and s have been approximated using the method of

Choi and Severo (1988) and @hal. (1991). In those
studies, only one parameter (infection or birtreydtad

to be estimated, whereas two parameters have to b
notational

estimated simultaneously here. For

convenience,,§ and s are denoted by:

Sxv :zikzlul and ¢ :Z:(Zl v

Where:
U =N x(@y(dt and ¥ =[" y(t)di
g tig

fori=1,....k. As U and V are not known under this
sampling scheme, their trapezoidal approximatidnt (

D(Xiyi+Xiayi1)(2/N) and  (ktia)(yi+yi1)/2, respectively,

are employed. These approximations yield the esbiraa
B, and¥y,, as follows:

[?, _ 2bN ©6)
Z(ti =t Y X% 4Yia)
9, & )

Z(ti —t )Y +Yia)

As is the case under continuous observatign¢d®
be estimated by:

|iok = ﬁk 19, (8)
The expressions3,, §, and R, provide simple

approximations foi, , ., and R,. , respectively. When

k - o in such a way that-t.; - 0 for all ki<k so that

Zik:l(ti “L)Y +Yig) - J.Otk y(t)dt and
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when no infected individuals remained. As a regbiltre
are 141 infections and 161 removals from the béuggnaf
the observation up togTand thus up to T. AfteroJ when
g1e epidemic is over, there are no more changehen
Aumber of susceptibles and infected. In each edaliz,
discrete observations are obtained under the atpidi
sampling scheme with k = 14, so thattix7.14 for i =
1,...,14. The length of each interval is therefore
approximately 7. Values of {¥),...,(%XJ) are then
chosen to correspond to the given sampling scheme
yielding data in the form of D given in EquationFbr each

simulation, we obtain values d_,y. and R,, using
Equation 3 and 4 an@, .y, and R,, using Equation 6, 7
and 8 with k = 14, as shown Trable 1. Whenf3 = 0.2, the
relative percentage errors g8f when compared witlg_

are less than or equal to 2.6%, the relative pé¢agen
errors of §, when compared withy, are less than or

equal to 3.0% and the relative percentage errorgpf
when compared withR,, are less than or equal to 2.2%.

When 3 = 0.15, these values are 4.0, 4.8 and 0.8%,
respectively. The preceding observation was coraibd

by simulation of 10,000 replications of the SIRdgpnic
process for each combination[df 0.2 and 0.15/= 0.1,

T =100, a = 20 and n = 180. The value for T isseimoto

be close to 2x(yjlog(a+n), two times the average
duration for a major outbreak of the epidemic whenwo
(Bailey, 1975). Furthermore, whef,,j, and R, Wwere
computed for each realization in each combinatibe,
means and standard deviations for the 10000 absolut
deviations of the approximation for each of k = 28, 50
andeo were also calculated, as showrTiable 2. For T =
100, the values of k = 14, 25, 50 arndcorrespond to 7,
3.5, 2 and 1 days, respectively. These findings
demonstrate the accuracy and precision of our
approximations for the SIR process.
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Table 1. Values of the last observation timg, ‘ﬁm,vm,liom ,Bk Ve ,T?Ok and errors for 10 realizations of the SIR epidefoi3 = 0.2

and 015,y = 0.1, T = 100, n = 180, a = 20. In each real@atidiscrete observations are obtained under thalistant
sampling scheme with k = 14, about one week

B T XT) Y(T) B R, B, fo Ry eB) @) eR.)
.2 67.44 39 0 0. 220 0.107 2.045 0.223 0.108.072 0.018 0.005 0.013
100 26 1 0.204 0.100 2.032 0.200 0.098 2.048.016 0.024 0.008
100 29 1 0.210 0.101 2.067 0.210 0.103 2.046.003 0.013 0.011
88.37 32 0 0.197 0.097 2.045 0.192 0.094 22.050.026 0.030 0.004
74.75 42 0 0.198 0.100 1.982 0.199 0.102  81.930.001 0.023 0.022
.15 81.62 66 0 0.145 0.097 1.488 0.150 0.102 .476L 0.040 0.048 0.008
77.79 98 0 0.150 0.120 1.251 0.153 0.123 11.240.018 0.026 0.008
100 52 2 0.153 0.093 1.643 0.158 0.095 1.668.030 0.018 0.012
91.38 90 0 0.130 0.101 1.295 0.130 0.101  51.290.001 0.001 0.001
100 107 1 0.109 0.095 1.155 0.111 0.095 1.168.012 0.005 0.007

o) =IB. B 1B.4%)=F.~% V. ¢€R) IR-"R /R

Table2. Means and standard deviatjons in pftrenthesis of @kv\?k and F}Ok for k = 13, 22 and 83, respectively, can be
10000 absolute deviations d3,.y, and Ry, from  eygjyated. The length of the last time interval of
B..9. and R, , respectively, for SIR witt = 0.2 observation varies according to the remainder ef88
and 0.15y = 0.1, T = 100, n = 180 and a = 20 and k = days recorded. Thus, for k = 13, 22 and 83, thgttenof

14, 25 and 50 under the equidistant sampling scheme the last time interval are 5, 2 and 1, respectivblgte
B that the estimates f@ are quite close for all values of d

[3 k Bk Vk ROk _ ;
=7,4 and 1, as are the estimatesyfand R.
.20 14 0.004 0.002 0.018
(0.003) (0.002) (0.015)
25 0.002 0.001 0.010 2. CONCLUSION
(0.002) (0.001) (0.008)
50 0.001 0.001 0.005 In practical application, we must typically estimat
(0.001) (0.000) (0.004) the infection and removal rates for the SIR modwelar
.15 14 0.003 0.002 0.008 conditions of discrete-time observations. In thigen a
(0.002) (0.002) (0.007)  very simple technique to approximate the maximum
25 0.002 0.001 0.005 likelihood estimates of infection and removal rates
(0.001) (0. 001) (0.004)  thys the reproduction number for continuously obser
20 0.001 0.001 0.002 data, was proposed and used.
(0.001) (0.001) (0.002)

It is shown that as the number of time points of
observation is increased, so that all adjacentdigat
closer, the approximations converged on the maximum

Table 3. Estimates of, y and R using smallpox data

k By Vi Rox likelihood estimates obtained from continuous
13 0.1642 0.1346 1.2199 oObservation. In the simulation results showrTable 2,

22 0.1610 0.1324 12160 the means and standard deviations of the absolute
83(w) 0.1633 0.1343 1.2159 deviations decreased as the number of observation t

points increased. In simulations and for the Ak#bak

Table 3 shows the estimates 8f y and R using a  Smallpox data, the estimates of Cauchemez and $emgu
widely studied dataset from a smallpox epidemic in (2008), which must assume a large population siaee
Abakaliki, Nigeria (Bailey, 1975). There are 83 Igai Not been compared to those of the proposed teatiniqu
observations, which, for practical purposes, can be This technique might also apply to more complicated
reregarded as continuous. Based on this data, th&ettings, including situations in which only thenther
discretely observed data for time intervals d 4 and 1 of infections can be observed at each time inteaval
can be obtained and the corresponding values fothe number of initial susceptibles remains unknown.
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