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ABSTRACT 

Extreme rainfalls often occur everywhere just in a moment, very difficult to be anticipated and produce very 
detrimental impact to the environment and human society. Floods and landslides are influenced by high 
variability of extreme rainfalls, especially in the watershed area for floods and the hills as well as mountains 
for landslides, such as in Malang Residence, East Java, Indonesia as a case study in this study. The 
prediction tools for determining location and time of the next extreme rainfalls event will occur are 
required. The behavior of extreme rainfalls measured on one or several stations rain gauge could be 
approximated by Generalized Pareto (GP) Distribution. The prediction tools must be able to identify and 
characterize parameters of the GP Distribution such as shape and scale parameters over the entire area. 
Shape parameter of GP distribution has associated with characteristics of extreme rainfalls distributions. To 
identify characteristics of shape parameter on each station and their similarity, an algorithm to make a 
partition of shape parameters into several spatial clusters and investigate the type of distribution was 
proposed. In order to determine threshold value, mean residual life plot and stability of modified scale and 
shape parameters at a range of thresholds were used, Maximum Likelihood method was utilized to estimate 
parameter value and k-means method combined by Silhouette values to make the cluster of extreme 
rainfalls distribution. By using rainfalls data on twenty eight different stations rain gauge, the results 
showed that the proposed algorithm well performed and extreme rainfalls were heterogeneous with three 
type of GP distribution. In general, shape parameter values were negative and positive except on nine 
stations which were close to zero and were well partitioned by six clusters. 
 
Keywords: Extreme Rainfalls, Generalized Pareto Distribution, Shape Parameter, k-Means Algorithm, 

Silhouette Value 

1. INTRODUCTION 

Extreme rainfalls often occur everywhere just in a 
moment, very difficult to be anticipated and produce 

very detrimental impact to the environment and 
human society. The amount of negative impacts of 
floods and landslides caused by extreme rainfalls 
requires expert forecasting tool in local-scale 
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precipitation in order to anticipate or mitigate losses 
that may occur (Bermudez and Kotz, 2010; Buishand et al., 
2008; Muller et al., 2009). Several researches in last 
decade years have been conducted their research on 
characterizing and modeling the large-scale temporal 
(annual and seasonal) of extreme rainfalls. They use 
variety of statistical methods for analyzing extreme 
rainfalls data, such as linear regression analysis, non-
stationary frequency analysis (Tramblay et al., 2013), 
Bayesian approach, time series analysis (Tularam and 
Ilahee, 2010) and semi-parametric and parametric method 
(AghaKouchak and Nasrollahi, 2010), Peak over threshold 
method using GP distribution (Li et al., 2005). 

Numerous studies have published. Commonly they 
use probability density function to describe the 
frequency distribution of extreme rainfalls. Among the 
conclusions were obtained, generally employing the GP 
distribution (AghaKouchak and Nasrollahi, 2010;  
Diebolt et al., 2008; Fawcett and Walshaw, 2007; Li et al., 
2005) that can describe well the annual extreme rainfalls 
in some dependent locations (Coles, 2001). However, the 
GP distribution well performed only in homogeneous 
locations of observations. 

Extreme rainfalls were defined by the magnitude of 
rainfalls which greater than a certain threshold value 
(AghaKouchak and Nasrollahi, 2010; Behrens et al., 
2004; Li et al., 2005). These extreme rainfalls were 
might caused the volume of river water abundance and 
rapid soil saturation point will be fast achieved. These 
conditions make rivers and ground into a dangerous and 
vulnerable to floods and landslides. 

In Malang residence, East Java, Indonesia, where the 
average rainfalls are relatively high at each year and its 
geographical conditions of the hilly produce fertile soil 
for farming and agriculture. This area is famous for its 
abundant agricultural products which attracts tourism. 
However, conditions of vulnerability to floods and 
landslides are also a serious threat. Hilly areas with cliffs 
that are cheated by high rainfalls and watershed conditions 
were often experienced deposition, contributing 
significantly to the occurrence of floods or landslides. 

In order to anticipate possible losses caused by floods 
and landslides, the first step should be done is by 
developing tools or methods of predicting extreme rainfalls 
locally. First of all, identification and characterization of 
extreme rainfalls distribution, especially their hidden spatial 
patterns over the entire area, are required. 

Hidden spatial patterns of extreme rainfalls are 
important to explore behavior of extreme rainfalls in the 
area of observations. If there are more than one pattern in 
such area of investigation (heterogeneous area), then the 

identification and characterization of extreme rainfalls 
distribution procedure to find homogeneous sub-areas 
with their own spatial pattern or characteristic are 
needed. These homogeneous sub-areas would help 
practitioner easy to use statistical tools appropriated with 
pattern/characteristic of each sub-area as well as to 
provide more robust estimator of GP distribution.  

In this research, we identify rainfalls extreme 
distribution for each station rain gauge. Furthermore, this 
study will emphasize dissimilarity of distribution 
especially shape parameter of distribution which 
representative the quantity of extreme rainfalls. 
Parameters with dissimilarity values will be put in to 
different cluster and the others in same cluster. 

We use twenty eight stations rain gauge measurement 
at different locations and daily observations for ten 
years. Extreme rainfalls data are determined based on an 
adequate threshold values on each station. These extreme 
rainfalls on each station are fitted to GP distribution. Due 
to different variability of rainfalls in each station, shape 
parameter values of GP distribution would be vary and 
could be clustered. Using k-means algorithm coupled 
with silhouette values, the most representative number of 
clusters representing the heterogeneous of shape 
parameters and the characteristic of shape parameters on 
each cluster could be established. The proposed method 
has two advantages. First, the distribution of rainfalls 
data based on the location of the observation can be 
modeled without considering extreme data in other years 
because of the independence between extreme rainfalls 
in each year. Second, this method is parametric because 
it is based on the hypothesis that distribution of extreme 
rainfalls data is GP Distribution. 

Heterogeneous area of observation often found in the 
real data. The prior analysis of such area is required to 
employ many statistics methods further especially 
partition over the entire area become some sub areas or 
clusters with homogeneous characteristics. The proposed 
method will identify well and could capture the 
characteristics of heterogeneous extreme rainfalls 
through different characteristics on each cluster that arise 
in the area of observations. 

2. MATERIALS AND METHODS 

2.1. Data Sets  

Extreme rainfalls data were measured at twenty eight 
different locations in the Malang Residences. These 
locations have different heights from sea level. Rainfalls 
data were measured daily and extreme rainfalls were 
determined by selecting threshold value. The number of 
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5479 data was used in this research which was measured 
during 1996 to 2010. The data therefore would be 
identified and characterized their distribution. 

The description of the data set which is provided in 
Table 1 shows that skewness values greater than zero on 
each station. It leads to asymmetric distribution. The 
assumption of Gaussian distribution, therefore, is not 
appropriate. 

2.2. Probability Density Function 

In order to construct a forecasting tool, identification 
and characterization of rainfalls distribution are needed. 
Identification and characterization distribution can be 
done by probability plot, quantile plot, return level plot 
and density plot. 

The sample distribution of extreme rainfalls can 
classify different cluster by identifying their shape 
parameter. There are many kind of shape parameter 
which suitable with the sample data and then a 
classification algorithm is used on selected samples to 
obtain the cluster distribution of extreme rainfalls. 
Variability of shape parameter in each cluster can be 
treated as random variable distribution. 

2.3. Generalized Pareto Distribution 

GP distribution is a right skewed distribution and 
has three parameters, called shape parameter (ξ), 
location parameter (µ) and scale parameter (σ). Shape 
parameter represents the tail index that could be 
positive, zero, or negative. 

Let X be a random variable, which follow GP 
distribution which has Cumulative Distribution Function 

(Bermudez and Kotz, 2010): 
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The range is µ≤x<∞, if ξ≤0 and µ≤x≤ µ+ σ/ξ, if ξ>0. 

Where the distribution has a finite upper bound values, 
µ+σ/ξ. 

The probability distribution function can be derived 
from Equation 1 as follows: 
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 (2) 

Based on threshold value which is obtained from 
mean residual life plot and stability parameters plot on 
each station, therefore we can estimate ξ and σ values 
in Equation 2. Maximum Likelihood Estimation 
(MLE) method was choosen to estimate ξ and σ due to 
the number of observations of rainfalls in Malang 
residence are large enough. MLE would be efficient, 
if the sample size is large (Hosking and Wallis, 1987; 
Li et al., 2005). Suppose that y is a corrected x by 
threshold value (µ), the logarithm natural likelihood 
would be: 
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where, yi = xi-µ, known as excess. 

The characteristics of family of GP can be 
explained as follows: if ξ<0 then the GP distributions 
has a point until the end that is known as short-tailed, 
especially when ξ = -1, GP behave as uniform 
distribution. While, if ξ = 0, GP behave as exponential 
distribution. On the other hand if ξ>0 GP distribution 
known as Pareto distribution classified as heavy-tailed 
distribution. Different of ξ would represent heavy-
tailness of GP adaptively to the data, which applicable 
for rainfalls modeling. It means that extreme rainfalls 
can be captured by heavy-tailness of GP distributions. 

The mean and variance of the GP distributions 
respectively given as: 
 

( )E x ; 1
1

σ= ξ > −
+ ξ

 (4) 

 
And: 
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( ) ( )
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 (5) 

 
In Equation 4 and 5, expectation and variance are 

not stable since depend on ξ and σ values. In contrast, 
GP distribution is stable on threshold. This property 
will guarantees that if the observational data follow 
GP distribution, then the data of which exceeds the 
threshold, are still GP distributed (Jockovic, 2012). 
Excess values (yi) in Equation 3, therefore, would be 
GP distributed as well (Falk and Guillou, 2008). 
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Table 1. Description of daily rainfalls at 28 stations rain gauge, 
in Malang residence 

Stations\statistics Mean Variance Skewness Kurtosis 
Bantur 5,153 262,007 6,05 60,69 
Blimbing 5,829 194,141 4,00 24,41 
Bululawang 5,596 178,414 3,92 22,07 
Dampit 5,500 218,801 4,55 30,18 
Dau 4,730 145,895 3,89 18,51 
Jabung 5,931 174,817 3,44 16,93 
Jombok 7,275 267,080 3,93 22,87 
Kantor CD 6,256 257,044 4,75 36,93 
Karang suko 4,987 169,861 4,22 26,53 
Kedungkandang 5,638 181,485 3,94 22,95 
Kedungrejo 5,829 163,577 3,77 23,33 
Ngaglik 4,411 116,799 3,98 22,06 
Ngajum 5,731 196,941 3,86 19,39 
Ngantang 9,102  386,717 3,54 17,94 
Ngujung 4,653 122,430 3,62 17,05 
Penarukan 5,894  216,747 4,69 35,12 
Pendem 4,713 138,048  3,71 16,58 
Pohgajih 6,189 200,063 3,86 22,45 
Poncokusumo 6,788 173,194 2,66 10,26 
Pujon 6,044 177,691 3,67 21,14 
Sekar 7,716 256,563 3,15 12,67 
Sumber pucung 4,654 141,936 4,29 27,06 
Tajinan 5,710 186,611 3,37 13,87 
Temas 4,483  111,964 3,60 16,84 
Tinjumoyo 4,887 136,951 3,70 19,25 
Tlekung 4,174 115,521 4,00 20,50 
Tumpukrenteng 5,888 219,137 3,83 18,03 
Turen 5,897 217,237 4,16 23,98 

 
2.4. The Proposed Algorithm 

In this research, we offer an algorithm to identify and 
characterize the distribution of extreme rainfalls over the 
entire observation area, given rainfalls data. The algorithm 
has three main stages that perform sequentially, that are 
threshold selection, fitting GP distribution and then 
partitioning the shape parameter of GP. 

In the threshold selection stage, we use mean 
residual life plot as well as stability of modified scale 
and shape parameters across a range of different 
thresholds to determine the threshold value. An 
adequate threshold would distinguish rainfalls as 
extreme or not. Extreme rainfalls are rainfalls with its 
quantity greater than threshold value. 

Furthermore, in the fitting distribution stage, the 
extreme rainfalls data would be fitted by GP distribution 
(Mackay et al., 2011). In this stage the ability to identify 
ξ parameter in each location is most important. The more 
vary and extreme rainfalls with high quantity, the higher 
ξ value that represent heavy tail GP distribution. 

Finally, in the end stage, collection of ξ values 
from different locations which were obtained in the 
second stages has to be partitioned in to several 
clusters according to their own characteristics. 
Moreover, k-means method coupled with silhouette 
algorithm will be employed to identify the most 
appropriate number of clusters. 

The k-means method, will classify ξ values into k 
clusters. Dissimilarity of ξ values, represented as 
distance among ξ values, will be used to put its ξ 
values into different clusters. The closer among ξ 
values, the more similar the ξ values which tend to put 
into the same partition. The k-means algorithm is run 
iteratively to minimizes the sum of distances among 
its ξ to cluster centroid. It has to be done for all 
clusters. The smaller of total sums of distances, the 
better partition would be found. 

One crucial step in k-means is to determine how 
many clusters which fit to the ξ data. Silhouette 
algorithm which has ability to determine the number of 
clusters precisely would be used here to overcome the 
crucial step above. It is due to Silhouette algorithm 
employ such measurement other than total sums of 
distances which more sensitive to the characteristics of 
members of clusters. The Silhouette algorithm, S(i), is 
defined by Equation 6 as: 
 

( ) ( )( )
( ) ( )( )

min b i,: ,2 - a(i)
S i =

max(a i , min b i,: )
 (6) 

 
where, a(i) is the average distance from i-th member to 
others member in one cluster and b(i, k) is the average 
distance from the i-th member to members in another 
cluster k. Range of silhouette values lay between -1 to 
+1. If distances both win member of clusters to other 
clusters is close to +1 then they are categorize distinctly. 
On the other hand, it could not be distinctly categorized 
when their distances is close to zero. Meanwhile, if 
silhouette values close to -1, then there is probably 
assigned to the wrong clusters. 

The silhouette plot of S(i) value describes similarity 
inter cluster and dissimilarity between clusters visually. 
The plot represented by collected of bars, provides 
information about how well-separated the resulting of k-
means algorithm. If most of bars plot in each cluster 
close to one, then it shows that its clusters are well-
separated. Otherwise, members of its clusters are not 
separated distinctly when bars plot close to zero. There 
are probably wrong assigned, on the other hand, when 
bars plot close to -1. 
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The proposed algorithm is described as follows: 
 
• Collect daily rainfalls data on each station 
• Select the threshold value of serial rainfalls data 

based on Mean residual life plot and stability of 
parameters plot. 

• Identify which rainfalls that greather than threshold 
value, categorize all extreme rainfalls on each 
station and construct as an extreme rainfalls series 

• Fit GP distribution to the extreme rainfalls series by 
estimating ξ and σ parameters using maximum 
likelihood method on each station 

• Determine certain number of cluster and partition ξ 
values into those clusters using k-means method 
coupled with silhouette algorithm 

• Calculate mean silhouette values of optimal clusters 
and the total sums of distances 

• Repeat step 5 and step 6 for different number of 
clusters to find optimal number of cluster based on 
maximum mean silhouette values of optimal clusters 
and the total sums of distances. Otherwise, use 
silhouette when total sums of distances fail to 
characterize the optimal number of clusters 

• Characterize the distribution of each cluster by 
investigating the shape of GP distribution (bounded 
tail, light tail, or heavy tail) 

 
3. RESULTS 

We perform maximum likelihood method to fit 
data with GP distribution on each station rain gauge. 
Especially, in estimating ξ and σ parameters, the 
threshold value is choosen based on mean residual life 
plot and stability of parameters plot. Nelder-mead 
method was used to calculate maximum likelihood 
estimator iteratively to reach maximum values of the 
likelihood function. Moreover, the diagnostic plots 
consist of probability plot, quantile plot, return level 
plot and density plot were employed to asses 
efficiency or quality of MLE (Table 2). 

Generally, plots on each data series at twenty eight 
stations rain gauge illustrate that model which was 
obtained by MLE fitted the data well. Example of 
diagnostic plots at Jabung station as shown in Fig. 1 
and Fig. 2. In Fig. 1a, probability plot consist of 
model of GP distribution in the vertical axes and 
extreme rainfall data in horizontal axes, the plot 
showed that model and data tend to be putted into 
linear line, the similar result was obtained for quantile 

plot in Fig. 1b. Return level plot in Fig. 2a display 
return level on vertical axes and return period on 
horizontal axes, for negative shape parameter value, 
return level plot would be convex, return level plot 
would be linear when shape parameter values close to 
zero and concave for positive shape parameter values. 
Shape parameter value at Jabung station is 0.045 
(close to zero) and the return level plot is linear. 
Density plot in Fig. 2b consist of density model (blue 
line) and histogram of data, represent compatibility 
between model and histogram of data. 

The results show that all shape parameters on each 
station were convergen and vary on each station in range 
of (-0.237, 0.174). Normality test for shape parameter 
values were performed using Kolmogorov-Smirnov test. 
The result showed that distribution of shape parameter 
values can be fitted by Gaussian distribution (P-value 
>0.150). The k-means algorithm coupled with silhouette 
values, therefore, can be employed for clasifying shape 
parameter values. 

Table 3 showed total sums of distances and mean 
silhouette values for two to ten number of clusters. The 
total sums of distances decreased, while the number of 
clusters increased and maximum mean silhouette value 
was found for six number of clusters. 

Based on the number of clusters which was obtained 
by silhouette values in Table 3, then we investigate 
members of clusters. Members on each cluster in Malang 
Residence therefore, can be determined using k-means 
algorithm. The results are shown in Table 4. All stations 
were divided into six different clusters which indicate 
heterogeneous characteristics of extreme rainfalls 
distribution. In general, extreme rainfalls distribution in 
Malang residence has negative and positive shape 
parameter values, except on nine stations in the fifth 
cluster which are close to zero. 

Figure 3 showed the results obtained by Silhouette plots 
for ξ values in six clusters. As it can be observed, most of 
the silhouette values are greater than 0.6, although there are 
two members with low silhouette values. 

The detail of spatial characteristics in Malang 
residence on each cluster is described as follows. 

Cluster 1 

The first cluster consists of Sumber pucung, Pujon, 
Kedungkandang, Pendem and Ngaglik stations. All of 
the shape parameter values on each member of cluster 
are negative. 
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 (a) (b) 
 

Fig. 1. Diagnostic plots at Jabung station consist of: (a) robability plot, (b). Quantile plot 
 

 
 (a) (b) 
 

Fig. 2. Diagnostic plots at Jabung station consist of: (a) Return level plot, (b) Density plot 
 
Table 2. The results of parameters estimation by MLE method 
Stations ξ σ 
Bantur 0.174 25.070 
Blimbing 0.007 16.425 
Bululawang 0.027 19.386 
Dampit 0.014 25.565 
Dau -0.237 20.971 
Jabung 0.045 17.145 
Jombok 0.101 22.042 
Kantor dinas 0.132 24.184 
Karang suko 0.020 20.601 
Kedungkandang -0.104 27.198 
Kedungrejo 0.169 17.856 
Ngaglik -0.094 18.604 
Ngajum -0.011 21.475 
Ngantang 0.004 27.557 
Ngujung -0.200 22.903 
Penarukan 0.107 23.569 
Pendem -0.117 17.951 
Pohgajih 0.099 18.269 
Poncokusumo 0.133 11.460 
Pujon -0.076 20.510 
Sekar -0.218 37.591 
Sumber pucung -0.063 19.119 
Tajinan 0.144 15.036 
Temas 0.021 15.387 
Tinjumoyo -0.211 19.205 
Tlekung 0.104 17.566 
Tumpukrenteng -0.166 20.946 
Turen -0.012 24.075 

Table 3. Total sums of distances and Silhouette mean values 
Number of  Total sums Mean 
Cluster of distances Silhouette Values 
2 1.616 0.5552 
3 0.874 0.6116 
4 0.505 0.7189 
5 0.385 0.6870 
6 0.324 0.7409 
7 0.298 0.6450 
8 0.241 0.6235 
9 0.217 0.6235 
10 0.185 0.6514 
 
Cluster 2 

Tumpukrenteng, Sekar, Tinjumoyo, Ngujung and 
Dau stations which are grouped in the second cluster, 
have negative shape parameter same with cluster one, 
but shape parameter values in this cluster less than shape 
parameter values in cluster one. Characteristics of 
extreme rainfalls of the second cluster are same with 
characteristis of the first cluster. 

Cluster 3 

Members of the third cluster which are Tlekung, 
Pohgajih, Penarukan and Jombok, have positive shape 
parameter values around 0.1, thus they have heavy tail 
characteristics. 
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Table 4. The results of k-means algorithm 
 Number of  -----------------------------------------------Stations member---------------------------------------------- 
Cluster Members ----------------------------------(Stations name and shape parameter values)--------------------------- 
1 5 Sumberpucung (-0.063) Pendem (-0.117) 
  Pujon (-0.076) Ngaglik (-0.094) 
  Kedungkandang (-0.104) 
2 5 Tumpukrenteng (-0.166) Ngujung (-0.200) 
  Sekar (-0.218) Dau (-0.237) 
  Tinjumoyo (-0.211) 
3 4 Tlekung (0.104) Penarukan (0.107) 
  Pohgajih (0.099) Jombok (0.101) 
4 3 Tajinan (0.144) Kantor CD (0.132) 
  Poncokusumo (0.133) 
5 9 Turen (-0.012) Karangsuko (0.020) 
  Temas (0.021) Jabung (0.045) 
  Blimbing (0.007) Dampit (0.014) 
  Ngantang (0.004) Bululawang (0.027) 
  Ngajum (-0.011) 
6 2 Kedungrejo (0.169) Bantur (0.174) 
 

 
 
Fig. 3. Silhouette plots for six clusters 
 
Cluster 4 

Tajinan, Poncokusumo and Kantor CD are 
members of the fourth cluster. Although, shape 
parameter values in this cluster close to shape 
parameter values in third cluster but, its values are 
greater than shape parameter values of cluster three. 
However, their characteristics are similar. 

Cluster 5 

The fifth cluster was characterized by negative and 
positive shape parameter values which are close to zero. 

Turen, Temas, Blimbing, Ngantang, Ngajum, 
Karangsuko, Jabung, Dampit and Bululawang stations 
are members of the fifth cluster. 

Cluster 6 

Cluster sixth was identified by positive shape 
parameter value. Shape parameter values in this cluster 
are the greatest of all parameter values over entire area of 
observation. The characteristic of cluster sixth are similar 
with the third and the fourth clusters. 

4. DISCUSSION 

Identification and characterization of extreme 
rainfalls proposed in this study, is similar with regional 
frequency analysis by Yang et al. (2010) especially in 
the identification of homogeneous regions step by 
clustering analysis. This clustering procedure is used to 
utilize full advantage of information in different data 
series within homogeneous clusters, in order to obtain 
more robust estimator. Yang et al. (2010) employed 
average linkage method and ward’s method to identify 
homogeneous regions. Those both methods, however, 
tend to bias toward globular cluster. To cluster shape 
parameter values of extreme rainfalls distribution in 
Malang residence, this study use k-means algorithm 
coupled with silhouette values. The advantages of k-
means algorithm is computationally faster and can 
produce tighter clusters. After running average linkage 
and ward’s method compare to k-means algorithm on 
six clusters, the results showed that on each cluster, 
variance of average linkage or ward’s method were 
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greater than variance of k-means algorithm and total of 
variance of average linkage or ward’s method = 9×10−3, 
while k-means algorithm = 2×10−3. It means that k-
means algorithm produced tighter clusters than average 
linkage or ward’s method. 

This paper have succeded to clasify homogeneous 
characteristics clusters of extreme rainfalls distribution in 
Malang Residence, Indonesia, through a clustering 
algorithm of shape parameter of GP distribution. The 
proposed algorithm can be used to make partition of 
heterogeneous area of observations into some sub-areas 
with homogeneous characteristic. These findings are 
important to employ many statistical tools appropriate 
with their own characteristic. 

Parameters estimation using MLE method have been 
used by some researchers. For example, Ahmed et al. 
(2010) employed MLE for parameters of weibull 
distribution, Al-Athari (2011) estimate parameters of 
double pareto by MLE, using MLE to estimate 
parameters of Logistic regression. Meanwhile, 
parameters estimation of GP distribution using MLE, have 
been used by Chaouche and Bacro (2006); Husler et al. 
(2011); Li et al. (2005); Mackay et al. (2011) and Zhao 
(2010). 

The quality of MLE for the extreme rainfalls 
distribution in Malang residence, were measured by 
diagnostic plots. Fig. 1 and 2 displayed model and data 
of extreme rainfall at Jabung station. In Fig. 1a and 1b, 
model and data were putted into linear line. It showed 
that model are fitted with data. Figure 2a showed that 
return level line is linear, it is appropriate with shape 
parameter estimator which close to zero. In Fig. 2b, 
model showed concistency with the histogram. Based on 
these plots, model fits data well at Jabung station. The 
similar results were obtained on other stations. 

Table 2 shows the estimate values were obtained by 
MLE method. It can be seen that the shape parameter 
values were vary on each station, their values were less 
than 0.5 which are valid for using maximum likelihood 
method (Bermudez and Kotz, 2010; Castillo and Daoudi, 
2009) and their values were greater than -0.5 which are 
concistency, asymptotic efficiency and asymptotic 
normality (Zhao, 2010). It also indicates that extreme 
rainfalls are heterogeneous in Malang Residence. Thus, 
it was recommended to make a partition over the entire 
area based on shape parameter values. 

Furthermore, we only focus on the characteristics of 
shape parameters of extreme rainfalls distribution, while 
scale parameter cannot describe the extreme rainfalls 
characteristics. Shape parameter values which are greater 

than zero show that the distribution does not have upper 
bound. Negative shape parameter value denotes that the 
distribution has an upper bound, it can be interpreted that 
the magnitude of extreme rainfalls never beyond upper 
bound. The distribution is unbounded if shape parameter 
values is zero (Coles, 2001). According to the results in 
Table 2, we performed k-means algorithm and using two 
criteria that are silhouette values and total sums of 
distances for drawing an inference. 

Mean silhouette values as shown in Table 3 suggests 
that ξ values can be classified into three to ten clusters 
since silhouette mean values greater than 0.6. The greater 
mean silhouette values, the more similar members of 
inter clusters and the higher dissimilar among clusters. 
The maximum mean average silhouette value is 0.7409. 
We conclude that the characteristics of extreme rainfalls 
over the entire area can be partitioned in six clusters. 

In General, characteristics of extreme rainfalls in 
Malang residence are heterogeneous and follow three 
type of GP distribution. These are short tail, light tail and 
heavy tail distributions. 

Sumber Pucung, Pujon, Kedungkandang, Pendem, 
Ngaglik, Tumpukrenteng, Sekar, Tinjumoyo, Ngujung 
and Dau stations have short-tailed distribution, since 
ξ<0. It can be interpreted that extreme rainfalls are 
frequently occurred in these stations and never exceed an 
upper bound value. Shape parameter values at Turen, 
Temas, Blimbing, Ngantang, Ngajum, Karangsuko, 
Jabung, Dampit and Bululawang are close to zero. It 
means that distribution of extreme rainfalls in these 
stations can be approximately by exponential 
distribution, since ξ≈0. The tail of this distribution is 
decreased exponentially and known as light tail 
distribution. The characteristics of extreme rainfalls with 
light tail distribution can be interpreted as rare event but 
could be appeared in very high quantity. Tlekung, 
Pohgajih, Penarukan, Jombok Tajinan, Poncokusumo, 
Kantor CD, Kedungrejo and Bantur, have similar 
characteristic. The distribution of extreme rainfalls in 
this cluster have heavy tail since ξ>0. It can be 
approximately as t distribution. In other words, extreme 
rainfalls frequently occurred and the quantity of the 
extreme rainfalls does not have upper bound. 

The homogeneous clusters are important for a 
practicioner to select estimation method among several 
existing estimation approaches which are available. 
Information about small or large sample size and heavy 
or light tail of underlying distributions in addition, are 
required as prior analysis for practicioner with solve 
Bermudez and Kotz (2010) problem statement. 
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5. CONCLUSION 

In this study, we proposed an algorithm to identify 
and characterize extreme rainfalls distribution over the 
whole area of observation. Implementation of the 
algorithm using extreme rainfalls data in Malang 
residence showed good performance. It looks perfectly 
differentiated among similar extreme rainfalls into a 
cluster and others dissimilar extreme rainfalls into 
different clusters as well as it could distinguish 
characteristics on each cluster. The results show that 
extreme rainfalls in Malang residence were well 
partitioned by six clusters and follow three type of GP 
distribution. Almost all stations rain gauge have negative 
and positive shape parameter values known as GP 
distribution with short and heavy tail, except on nine 
stations with light tail distribution. 

The extreme rainfalls represented by GP distribution 
with short tail were found in cluster one and cluster two. 
It means that there are extreme rainfalls with an upper 
bound value. While, the light tail one has unbounded tail, 
that means the extreme rainfalls are rarely happen, as 
found in cluster fifth. It could be inferred that with small 
probability the very high quantity rainfalls would 
happen. Stations in cluster third and cluster fourth are 
representing GP distribution with positive shape 
parameter value. The distribution of extreme rainfalls has 
heavy or unbounded tail. It could be interpreted that 
there are extreme rainfalls with frequently occurred and 
could achieve high quantity. 
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