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ABSTRACT

The Kolmogorov’s system of axioms can be extengdeeincompass the imaginary set of numbers and this
by adding to the original five axioms an additiothiee axioms. Hence, any experiment can thus be
executed in what is now the complex set C (RealRsetith real probability + Imaginary set M with
imaginary probability). The objective here is toakate the complex probabilities by considering
supplementary new imaginary dimensions to the ewenurring in the “real” laboratory. Whatever the
probability distribution of the input random variabn R is, the corresponding probability in theoléhset

C is always one, so the outcome of the random @xpet in C can be predicted totally. The resulicates

that chance and luck in R is replaced now by tdéérminism in C. This new complex probability mbde
will be applied to the concepts of degradation tmedRemaining Useful Lifetime (RUL), thus to theld of
prognostic based on reliability. Therefore, an epkenof Young modulus will be applied and the First
Order Reliability Method (FORM) analysis will beagsfor this purpose.

Keywords: Complex Probability, Prognostic, Degradation, Remmgj Useful Lifetime, Young Modulus,
First Order Reliability Method (FORM), Failure Paddility

1. INTRODUCTION complete and perfect degree of knowledge in C = R+M
(Pc = 1). In fact, in order to have a certain pcédn of
Abou Jaoudet al. (2010); Abou Jaoude (2013a; 2013b; any event it is necessary to work in the compleixense
2005; 2007; 2012); Bell (1992); Benton (1996); Baur  C in which the chaotic factor is quantified and tsatted
(1986); Chan Man Fong al. (1997); Cheney and Kincaid from the Degree of Our Knowledge to lead to a
(2004); Dacunha-Castelle (1996); Dalmedico Da#taa,  Probability in C equal to one (P& DOK-Chf = 1).
(1992); Dalmedico Dahan and Peiffer (1986); Ekeland ThuS, the study in the complex universe results in
(1991); Feller (1968); Finnept al. (2004); Gentle 'eplacing the phenomena that used to be randomtip R
(2003); Gerald and Wheatley (1999): Gleick (1997) deterministic and totally predictable ones in C.
and ’Greene (2000) firstly tﬁe Extended This hypothesis is verified in a previous stud_y and
Kolmogorov's Axioms (EKA for s'hort) paradigm can paper by the mean of many examples encompassihg bot

. . . discrete and continuous distributions.
be illustrated by the following figuré={g. 1). From the Extended Kolmogorov's Axioms (EKA),

In engineering systems, the remaining useful ifeti  \ye can deduce that if we add to an event probypbiit
prediction is related deeply to many factors thatthe real set R the imaginary part M (like the lifee
generally have a chaotic behavior which decreases t variables) then we can predict the exact probgbdit
degree of our knowledge of the system. the remaining lifetime with certainty in C (Pc = 1)

As the Degree of Our Knowledge (DOK for short) in We can apply this idea to prognostic analysis tghou
the real universe R is unfortunately incompletee th the degradation evolution of a system. As a maifer
extension to the complex universe C includes thefact, prognostic analysis consists in the predictb the
contributions of both the real universe R and theremaining useful lifetime of a system at any instgn
imaginary universe M. Consequently, this will resala and during the system functioning.
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= =
Input: Real set R YRR Output: Complex set C
5 original - ﬂ 8 Kolmogorov’s axioms
kolmogorov’s Add_ imaginary set M -
axioms (Hidden variables) Complex numberZ = P+P,,
T Complex Probabiiity Pe=1
[ Real probability P, ] P.*=DOK - Chf

Imaginary probability P, .
—IChf=2iP P
— DOK = |Z]

Chance and luck Total determinism

Fig. 1. EKA paradigm

MChf=10
DOK =1
* D@ P.=1 Po=1
L
1
MChf = 0
0 <DOK < 1 o -
0<P,<1 Pci(t,) = DOK(t,) — Chf(t,)
Pe=1 = DOK(t,) + MChf(t,)
MChf=0
DOK =1
PI’ = 0 PC = 1 J
t
0 to tx = Lifetime

Fig. 2. EKA and the prognostic of degradation

Let us consider a degradation trajectory D(t) of a  If to = ty (point L) then the RUL (§ = ty-ty = 0 and
system where a specific instagis studied. The instant the failure probability is one (B 1).
to means here the time or age that can be measwsed al  If not (i.e., 0<¢<ty) (point K), the probability of the
by the cycle number N. occurrence of this instant and the prediction pbdiga
Referring to the figure above-ig. 2), the previous of RUL are both less than one (not certain) duado-
statement means that at the system ggbd prognostic  zero chaotic factors. The degree of our knowledy@K
study must give the prediction of the failure imstg,. for short) is consequently less than 1. Thus, piyépg
Therefore, the RUL predicted here at instanist the here the EKA method, we can determine the system

following interval: RUL(f) = ty-to. RUL with certainty in C = R + M where Pc = 1 always

In fact, at the beginningq(t 0) (point J), the failure Furthermore, we need in our current study the
probability R= 0 and the chaotic factor in our prediction absolute value of the chaotic factor that will give the
is zero (Chf = 0). Therefore, RUL& 0) = § - ty = ty. magnitude of the chaotic and random effects on the
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studied system. This new term will
accordingly MChf or Magnitude of the Chaotic Factor
Hence, we can deduce the following:

MChf(t,) = |Chf(t,) = 0 and

PC ()= DOK(t, )~ Chf(t,)=

DOK(t,) +|Chf(t,)

since - 0.5 Chfg ¥ O

= DOK(t,)+ MChf(t,))=1, O 0< t,< t,

= 0< MChf(t,)< 0.5 where 0.5 DOK(t ¥

Moreover, we can define two complementary events

E andE with their respective probabilities:
P (B)= pandB, 7(E;: G 1

Then Ry, (E) in terms of the instang ts given by: Ry,
(E) = B = Pop (t<tg) = F(t) where F is the cumulative
probability distribution function of the random iatle t.
Since:

Prob(E)+ l:Eob (E): J
Therefore:

Prob (E): 1- Fr)ob (E): r P:

1- Prob (tS to): Prob (t> to)

Let us define the two particular instantg:=t O
assumed as the initial time of functioning (rawtesta
corresponding to D = = 0 and ¢ = the failure instant
(wear out state) corresponding to the degradatienlD

The boundary conditions are.

For { = 0 then D = I (initial damage that may be
zero or not) and:

F(t,)=P

rob (tS 0): e

For =ty then D =1 and Rft= F(&) = Pop (tsty) = 1.

Also F(b) is a non-decreasing function that varies
between 0 and 1. In fact, E)(fis a cumulative function
(Fig. 3). In addition, since RUL{} = ty - ty and &te<ty
then RUL(t) is a non-increasing remaining useful
lifetime function Fig. 4).

Referring toFig. 5 below, we can infer the following.

The complex probability Zgf = B(ty) + Pn(to) = P(ty)
+i[1-P(to)].

The square of the norm of g)is:
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()" = DOK(t,) = 1+ 2iR(t) R( 1)
=1-2R(t)[1- R §)]
=1-2R(t) + 2P(4)

The Chaotic Factor and the Magnitude of the Chaotic
Factor are:

Chf(ty) = -2R(to)[1-P,(to)] = -2P(to)+2P(to) is null when
P(to) = R(0) = O (point J) or when ) = R(ty) = 1
(point L) and MChf(§) = |Chf(b)| = 2R(to)[1-P(to)] =
2P(to) -2P(to) is null when Rto) = P(0) = 0 (point J) or
when R(t) = B(ty) = 1 (point L)

At any instant ¢ (point K), the probability expressed
in the complex set C is:

Pc(b) = R(to) + Pu(to)/i = Pi(to) + [1-R(to)] = 1 always

Hence, the prediction of RULJt of the system
degradation in C is permanently certain.

2. APPLICATION OF EXTENDED
KOLMOGOROV'S AXIOMS (EKA) TO
DEGRADATION PROGNOSTIC BASED

ON RELIABILITY

2.1. Review of Reliability Theory (Greene, 2004;
Guillen, 1995; Gullberg, 1997; Kuhn, 1996;
Liu, 2001; Mandelbrot, 1997; Montgomery
and Runger, 2005; Miller, 2005; Orluc and
Poirier, 2005; Poincaré, 1968; Prigogine and
Stengers, 1992; Prigogine, 1997; Christian
and Casella, 2005; Srinivasan and Mehata,
1978; Stewart, 1996; 2002; Van Kampen,
2007; Walpole, 2002; Warusfel and
Ducrocq, 2004; Weinberg, 1992)

The reliability is the probabilistic evaluation aflimit
state of performance on a domain of basic variabtes
other words, it is obtained by the computationhef failure
probability toward a criterion or a limit state.

2.1.1. Methodology

< ldentify the limit states that govern the lifetimé¢
the structure

« ldentify the basic parameters intervening in thatli
state

* Deduce their probability density functions

e Compute the failure probability that expresses the
risk when the limit states are not satisfied

JMSS
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A
F(1)
1 ——————————————————————
F(t{)) = Pr: Prob(t = tO)
1
>
0 Ty In
Fig. 3. Occurrence probability
RUL (t)
A
&(0) "
RUL (13
RUL (ty) =0
t
0 tg tN o
Fig. 4. RUL prognostic model
A
D)
L
1
1-P,=P_ /i =P (t=ty)
D (to)
Pr = Prob(tgto} K
J
0 to ty = Lifetime
“ A o

Fig. 5. Degradation prognostic model
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Two types of methods exist: The Monte Carlo « Transforming of basic random variables into
simulation and the approximate method First Order standard normal variables N(0,1)
Reliability Method (FORM). The Monte Carlo ¢ Transforming the limit state from the original spac
simulation method is based on a large number of to the standard normal space
simulations and we must use N simulations when wee Search of the MPFP point by replacing the limit

want to evaluate a probability of order of 4%, state surface by its tangent hyper-plane at theesam
The approximate method FORM is an iterative point

procedure that allows to calculate an index ofatslity e Calculate the indeg and the probability of failure

(denoted3). P

The indexp is the distance between the origin and the
limit state function G(t) in a standard space. Onee
have calculate@® we can deduce the failure probability =~ The transformation from the basic state to the
P, = d(-). normalized state i_s implicit in the algorithm. Th&eps

In FORM approximation the real (usually nonlinear) &re the followingig. 6):

limit state is replaced by its tangent plane apecHic Let the limit state equation be: g(z)
point called the Most Probable Failure Point (MPFP)

2.1.3. Description of the Algorithm

This point is the closest point on G(t) to the rig where, z = 71,72,73,.....zn is the random vectorhef t

The limit state G(t) divides the space into two limit state, therefore.
regions:

g 1) Initialization of the coordinates of MPFP. Thean
e First region where G(t) > 0 called safe region value of each variable is a good choice:
* And the second region where G&)0 called failure .
region Z = HyHyppe e Hzn

2.1.2. Work Plan 2) Calculate the following parameters: (m is the

] . number of the iteration).
We choose, in a general case, N random variables, The value of the limit state at MPFP:

correlated and of any density functions, as wellaas
nonlinear limit state function. This method is thsm o =9(2".....%)
the following iterative algorithm:

A Xl
_HE®)
, | VH (X®)|
o* f‘
|
S | l'l XD
o X* _
P | o™
— XW
—— =
(X®  q® o) \ \
T HX=0

Fig. 6. The First Order Reliability Method (FORM)
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The gradient at MPFP is assumed to be:

m a m
g = (2. 8)

We have:
G(ty) = RUL(t)) =ty — t,

Where:

The equivalent normal standard deviation and meanG(t,) = The limit state of lifetime.

value of non-normal variables:

on - OO @)
fzi(zim)
W' =z"-0"0 _1( E (4’“))

3) Calculate the intermediate parameters:
2"=3Le"

My = Zg;mpﬁm

o1 =Sl (o)
4) Calculate:

The directive cosine:

The reliability index:

A Y
O.m

The new coordinates of MPFP:
2" =" +aB"g"
5) Verify the convergence criterion;

|z"*-2"|< tol and[p™*-B"| < tol

6) Repeat the steps from 2 till 5 until convergence
7) Calculate the failure probability:

PI=0 ()

2.2. Application of FORM to Prognostic

In this part, we study the extended Kolmogorov
axioms in the context of reliability by defining lanit
state G that describes the lifetime margin of tystesn.
For each value of an instany tve determine its
corresponding probability of survival or of the
Remaining Useful Lifetime (RUL).
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tN = The fixed lifetime of the system which follows
a normal distribution N(0.000§ ; 1)

to = An arbitrary instant that varies from 0 {pand
which  follows a normal distribution
N {to; 0.1><to)

When RUL (§) is zero or negative then we have a
case of ¢ = ty that means that we have a system failure
that cannot live until the instang. tin the other case
where § < ty, the system can live above the instgrand
we have a case of success.

The probability:

R (to) = Pop{G(to) = 0} = P, {RUL(t ) < 0}

is computed by the FORM (First Order Reliability
Method) procedure that uses a reliability in@ex

B = dYP, ()] where P () is the cumulative
probability and® is the normal cumulative distribution
function. Hencesp™ is the inverse ob and R (t)) = ® (-B).

In the extended Kolmogorov's axioms, the real part
of probability is taken here Rty)). As we make the
instant § vary between 0 andyt then R (t) varies
between 0 and IF(g. 7).

Knowing that we takeytand §; as two normal random
variables where the value of torresponds to nearly
5798 number of cycles (critical value: )N After a
reliability calculation using a Matlab program, we
deduce a value of,Rty) for each value of instand. tFor
this set of P () we have computed and ploted the
extended Kolmogorov's parameters and components
Chf(ty), MChf(ty), DOK(ty), Pc(b), Pu(to)/i.

Therefore, we get the following figurdsig. 8 and 9.

A P,0)

) U
Pr(tO)

172

i J

0 ty tx

Fig. 7. Probability of failure
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---- MChf: Magnitude of the Chaotic factor
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---- DOK: Degree of Our Knowledge

---- Pm/i: Complementary Probability

Fig. 9.DOK, MChf and Pc as functions of the probabilityfaifure
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We note from the figure that the DOK is maximum 2.3. Example: Application to Young Modulus

(DOK = 1) when absolute value of Chf which is MChf . .
. o MChf = 0) (points J & L), that means We consider once again thg Young modulus example
is minimum ( ! previously treated in the first paper on extended

when the magnitude of the chaotic factor (MCh) yqsimogorov's axioms and “Complex Probability Theory”.
decreases our certain knowledge (DOK) increases. |et E be the Young modulus in a material bar

Afterward, MChf starts to increase during the domain Fig. 12) and we assume that it follows a Normal
functioning due to the environment and intrinsic Gaussian distribution.

conditions thus leading to a decrease in DOK uhgly The limit state considered here for FORM analysis is:
both reach 0.5 atgt= 1500 (point K). The real
probability P and the complementary probability,/P G(Eo) = RUL(E)) = En - B

will intersect with DOK also at the point (15005D.
(point K). With the increase of,tthe Chf and MChf
return to zero and the DOK returns to 1 where veehe
total damage (D = 1) and hence the total certaloria

When RUL (k) is zero or negative then we have the
case of = Ey that means that we have a system failure
that cannot live until & In the other case wherg<dEy, the
system can live above Bnd we have a case of success.

(P, = 1) of the system (point L). At this last poitiet The real Probability of failure is given by:
failure here is definite, Ry) = 1 and RUL() =ty - &y

= 0 with Pc(t) = 1, so the logical explanation of the P(E) = P,{G(E)s 0= P, {RUL(E,)< 0}
value DOK =1 follows. =P, {E,<E,}

We note that the point K is not at the middle of DOK
since the probability of failure distribution evaluated by The reliability index3 = - d™(P)).
FORM is not symmetric. In the extended Kolmogorov's axioms, the real part
Furthermore, at each instagt the remaining useful of probability is taken here & (Ey). As we make the £
lifetime RUL(ty) is certainly predicted in the complex set vary between 0 andy=then R (E) varies between 0 and

C with Pc maintained as equal to one through continuousl (Fig. 13.
compensation between DOK and Chf. This Let E be the mean value of E and is taken to be

compensation is from instat+ 0 where D@ = 0 until equal to 29575 Kasi. Latg be the standard deviation of E
the failure instantgwhere D(t) = 1. and is equal to 1507 Ksi. Let the coefficient of variation
c 1507

2.2.1. The Cube of Probability Components becy=—= =2 e 00509551981 0.0%.

In the following figure, we represent the extended  Take B=E =29575 Ksi.
Kolmogorov's probability components. And Ryi in a We can compute from the statistical tables that:
three dimensional graph in terms of t and of each other , ,
(Fig. 10. Propl -0 <E< 29575 Ksi] = 0.5 and, B[ 29575 Ksi<E<

It is important to mention that if we rescale the time +o0] = 0.5.
axis to an interval [0,1] so the minimal value of DOK is As well B E < 0] L 0.

at the instantt, = 1500
5798

=0.2587 where N = 5798 cycles Note that:

corresponds toyt This last important point is clearly u" )

shown in this cube and in the following one. (U,) = J'lexp[_”] du=p, [ y
From the cube below, we can notice that the N2n 2

probability Pc in the complex set C = R + M is obtained

at each instang fas the sum of Rand Ry/i and is always

equal to one. E-E

2.2.2. The Cube of Probability Parameters =

In the following figure, we represent the extended In the real domain R we have:
Kolmogorov’'s probability parameters DOK and Chf in
a three.dimensional graph in terms of t and of each dF=fE(u).du=i eXIE_uZ] m
other Fig. 11). NS

Where:

2

////4 Science Publications 317 JMSS



Abdo Abou Jaoude / Journal of Mathematics and Sitedi9 (4): 310-324, 2013

6000 "]
swo ‘H_‘..‘....-‘.:..‘
4000 -

3000 4 %

2000 | ..
1500 g
1000 4o

05l :

---- Pr; Real Probability
-— Pm/i: Complementary probability
- Pr: Real Probability

Fig. 10.The probabilities Pand Ryi in terms of t and of each other

Chf

=== DOK: Degree of our Knowledge
=== DOK: Degree of our knowledge
== DOK: Degree of our knowledge
- Relation between Chf and DOK

—-- Chf: Chaotic factor

Fig. 11.DOK and Chfin terms of t and of each other
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we have:

1Z,[" = Pr? + (Pm, /if = PE+ (& Py
=1+2Pg (Ps- 1F + 2Rr (& Rr);

This implies that:

1=|z,|" +2Pf (- Py)

¢ F =|z,[ - 2.2.Pg.(1- Py)
=|z,[* - 2.i.Pg.Pm

=P+ (Pm, /if - 2.i.P§ .Prg
= (P, + Pmy, /if = P¢ = Pg=

Fig. 12.The Young modulus E in a material domain

A P(D)

We note that:
Pr(ED) |

1/2
Z, =P+ Pm,= Jf(u)du+ |j f (udu= 0.5 % 0.

Eo

m‘!

We have also:

Fig. 13.Probability of failure

And: PG? = (PE+ Pm /iﬁz(:i +Z° J :U ] - -

de jiex - du and the chaotic factor is:
27'[ 2
Ey 400
E-E L . _
— | |dE=1 Chf,=2.i.Pp.Pm= 2k | x Kk
J.NIZTEGE { (GE }} 0 _-[o EJ;

Now: :_ZXT ’{1_? J

P, [~ < E< 29575F F(29575)

=Py, = 277571 exp{—l(E_ 2957'ﬂ dE Hhere
2, 21.1507 2\ 1507 ) |
- 05 ~ |Eg » —», hencePp =0
Chf, =0 if
The correspondent probability in the imaginary Eo —» +», hencePp =1
domain M is:

Pm, = i(1- P )= iR, [E> 29575k [ ¥ F(2957p Moreover, the Magnitude of the chaotic factor is:

_ T’ 1 o _7( E 2957? d4E _
'29575\/51507 2 1507 ) MChf, =\2.|.P5.Prq,\ =
=i E oo E E ) E
=x0.5 2_ixJ. xixj :—2xj x[l—I ]:ZXI x(l—J. ]
If we compute the norm of the complex number: - B e e e -
Zy =P +Pmy Where:
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DOK + MChf=05+05=1=Rc
Ey - -, hencePr =0
MChf, =0 if

Conversely, if we assume that:
Ey, - 4+, hencePr =1

Chf,=0 = MChf,= 0= |2]= 1= Fj+ (Pmp M=
Therefore, we say that: If Chf, = —% = MChf, =%3 E,=Eand|Z] =%
Pr=0 E - -
= 2Py (1- Py = 0= or = or
Pp=1 |E - +o

P¢? =|z|* - 2..py .Pmg=Degree of our knowledge-
Chaotic factor = 1

and if Chf = 0= |Zf> = 1 in other words, if the
chaotic factor is zero, then the degree of our knowledge If E, increases to become=4000 then botf [2nd
is 1 or 100%. Chf; increase and MChflecreases.

In addition, we say that: Therefore we can infer that:

Pc’ =Degree of our knowledge + Magnitude of the lim (Chf,)=0, lim (MChf,)=0and Iim(\ 4‘2)=1
Chaotic factor = 1. Foe Foe oo

and if MChf = 0= |Z] = 1, in other words, if the Where:
magnitude of the chaotic factor is zero, then the degree '
of our knowledge is 1 or 100%. )

Numerically, we write: PG’ =|Z| - Chf,

= DOK, - Chf

| Z[* + MChg
DOK, + MChf, = 1,

|Z,f = (05§ + (0.5]= 0.2 0.25 05

—|Z,]=0.70710%> Chf# 0, Notice tha%s J24

for every E in the real set R.
Hence: We note from the figure below that the DOK is
maximum (DOK = 1) when absolute value of Chf which
is MChf is minimum (MChf = 0) (points J & L), that
means when the magnitude of the chaotic factor (MChf)
decreases, our certain knowledge (DOK) increases.
And: Afterward, MChf starts to increase during the
functioning due to the environment and intrinsic
. 1 conditions thus leading to a decrease in DOK until they
MChf, =|Chf,| =|-0.§ = 0.5,Notice that & MCht< 5 both reach 0.5 at E= 29575 (point K). The real
probability R and the complementary probability/P
Consequently, we can say that. wiII-intersect. with DQK also at the point (29575, 0.5)
The degree of our knowledge DOK=Z= 0.5, the (point K). With the increase ofgethe Chf and MChf
chaotic factor Chf =-0.5 and the magnitude of the return to zero and the DOK returns to 1 where we rgach
chaotic factor MChf= 0.5. total damage (D = 1) and hence the total certain failure
What is interesting here is thus we have quantified (Pr = 1) of the system (point L). At this last point the
both the degree of our knowledge and the chaotic factoffailure here is definite, fEy) = 1 and RUL(R) = Ey-Ex
of the event as well as the correspondent magnitude of O with Pc(k) = 1, so the logical explanation of the

Chf, = 0.5- 1= - 0.5,Notice that—% < Cpk

the chaotic factor. value DOK = 1 followsig. 14 and 15.
Notice that: We note that the point K is not at the middle of DOK
since the probability of failure distribution evaluated by
DOK-Chf=0.5—-(-0.5)=0.5+0.5=1=fc FORM is not symmetric.
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Chf. Pr. DOK, Pmvi and PC

06 i

Young modulus E %10%

---- Chf: Chaotic factor
---- Pr: Real Probability
---- DOK: Degree of Our Knowledge
---- Pm/i; Complementary Probability

Fig. 14.DOK, Chf and Pc as functions of the probabilityfafure

MChT. Pr. DOK, Pmi and PC

i : : i
0 2 29575 4 6 8 10 12
Young modulus E <10%

-0.2

- MChf: Magnitude of the Chaotic factor
--—- Pr: Real Probability

---- DOK: Degree of Our Knowledge

- Pm/i; Complementary Probability

Fig. 15.DOK, MChf and Pc as functions of the probabilityfaifure
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Young modulus E

Chr

---- Chf: Chaotic factor

---- Pr: Real probability

---- DOK: Degree of our knowledge
---- Pny/i: Complementary probability

Fig. 16.The probabilities Pand R/i in terms of E and of each other

Young modulus E

---- DOK: Degree of our knowledge
---- DOK: Degree of our knowledge
---- Relation between Chf and DOK
---- Chf: Chaotic factor

Fig. 17.DOK and Chf in terms of E and of each other
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Furthermore, at eachhBhe remaining useful lifetime
RUL(Ey) is certainly predicted in the complex set C with

deterministic and certain in C = R + M and thiseaft
adding to R the contributions of M and hence after

Pc maintained as equal to one through a continuougubtracting the chaotic factor from the degree of o

compensation between DOK and Chf. This
compensation is from gg= 0 where D(g) = 0 until
failure at i, where D(k) = 1.

2.3.1. The Cube of Probability Components

In the figure above, we represent the extended
Kolmogorov’'s probability components, Bnd R/i in a

knowledge. Moreover, for each value of an instant t
or B, | have determined their corresponding
probability of survival or of the remaining useful
lifetime RUL(ty) =ty - to or RUL(E) = Ey-Eo. In other
words, at each instang br E, RUL(t) or RUL(EK)

are certainly predicted in the complex set C with P
maintained as equal to one through a continuous
compensation between DOK and Chf. This

three dimensional graph in terms of E and of each Othercompensation is from instang £ 0 where D() = 0

(Fig. 16).

It is important to mention that if we rescale the E axis
to an interval [0,1] so the minimal value of DOK isla t
_ 29575
114317
114317 corresponds toyEThis last important point is
clearly shown in this cube and in the following one.

From the cube above, we can notice that the
probability Pc in complex set C = R + M is obtained at
each value fas the sum of Pand R/i and is always
equal to one.

2.3.2. The Cube of Probability Parameters

In the figure above, we represent the extended
Kolmogorov's probability parameters DOK and Chf in a

instant where E,

=0.2587 knowing that E =

_until the failure instant \t where D(t)=1 and this

compensation is also fromgE 0 where D(B) = 0
until failure at i where D(K)=1. Furthermore, using
all these graphs illustrated throughout the whole
paper, we can visualize and quantify both the sygste
chaos (Chf and MChf) and the system certain
knowledge (DOK and Pc). Additionally, an application
to Young modulus was successfully done here. Tis i
certainly very interesting and fruitful and showsce
again the benefits of extending Kolmogorov's axioms
and thus the originality and usefulness of this fiiedd

in mathematics that can be called verily: “The Ctenp
Probability and Statistics Paradigm”.
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