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ABSTRACT  

The Kolmogorov’s system of axioms can be extended to encompass the imaginary set of numbers and this 
by adding to the original five axioms an additional three axioms. Hence, any experiment can thus be 
executed in what is now the complex set C (Real set R with real probability + Imaginary set M with 
imaginary probability). The objective here is to evaluate the complex probabilities by considering 
supplementary new imaginary dimensions to the event occurring in the “real” laboratory. Whatever the 
probability distribution of the input random variable in R is, the corresponding probability in the whole set 
C is always one, so the outcome of the random experiment in C can be predicted totally. The result indicates 
that chance and luck in R is replaced now by total determinism in C. This new complex probability model 
will be applied to the concepts of degradation and the Remaining Useful Lifetime (RUL), thus to the field of 
prognostic based on reliability. Therefore, an example of Young modulus will be applied and the First 
Order Reliability Method (FORM) analysis will be used for this purpose. 
 
Keywords: Complex Probability, Prognostic, Degradation, Remaining Useful Lifetime, Young Modulus, 

First Order Reliability Method (FORM), Failure Probability 

1. INTRODUCTION 

Abou Jaoude et al. (2010); Abou Jaoude (2013a; 2013b; 
2005; 2007; 2012); Bell (1992); Benton (1996); Boursin 
(1986); Chan Man Fong et al. (1997); Cheney and Kincaid 
(2004); Dacunha-Castelle (1996); Dalmedico Dahan et al. 
(1992); Dalmedico Dahan and Peiffer (1986); Ekeland 
(1991); Feller (1968); Finney et al. (2004); Gentle 
(2003); Gerald and Wheatley (1999); Gleick (1997) 
and Greene (2000) firstly, the Extended 
Kolmogorov’s Axioms (EKA for short) paradigm can 
be illustrated by the following figure (Fig. 1). 

In engineering systems, the remaining useful lifetime 
prediction is related deeply to many factors that 
generally have a chaotic behavior which decreases the 
degree of our knowledge of the system.  

As the Degree of Our Knowledge (DOK for short) in 
the real universe R is unfortunately incomplete, the 
extension to the complex universe C includes the 
contributions of both the real universe R and the 
imaginary universe M. Consequently, this will result in a 

complete and perfect degree of knowledge in C = R+M 
(Pc = 1). In fact, in order to have a certain prediction of 
any event it is necessary to work in the complex universe 
C in which the chaotic factor is quantified and subtracted 
from the Degree of Our Knowledge to lead to a 
probability in C equal to one (Pc2 = DOK-Chf = 1). 
Thus, the study in the complex universe results in 
replacing the phenomena that used to be random in R by 
deterministic and totally predictable ones in C.  

This hypothesis is verified in a previous study and 
paper by the mean of many examples encompassing both 
discrete and continuous distributions.  

From the Extended Kolmogorov’s Axioms (EKA), 
we can deduce that if we add to an event probability in 
the real set R the imaginary part M (like the lifetime 
variables) then we can predict the exact probability of 
the remaining lifetime with certainty in C (Pc = 1). 

We can apply this idea to prognostic analysis through 
the degradation evolution of a system. As a matter of 
fact, prognostic analysis consists in the prediction of the 
remaining useful lifetime of a system at any instant t0 
and during the system functioning.  
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Fig. 1. EKA paradigm 

 

 
 

Fig. 2. EKA and the prognostic of degradation 
 

Let us consider a degradation trajectory D(t) of a 
system where a specific instant t0 is studied. The instant 
t0 means here the time or age that can be measured also 
by the cycle number N.  

Referring to the figure above (Fig. 2), the previous 
statement means that at the system age t0, the prognostic 
study must give the prediction of the failure instant tN. 
Therefore, the RUL predicted here at instant t0 is the 
following interval: RUL(t0) = tN-t0.   

In fact, at the beginning (t0 = 0) (point J), the failure 
probability Pr = 0 and the chaotic factor in our prediction 
is zero (Chf = 0). Therefore, RUL(t0 = 0) = tN - t0 = tN. 

If t0 = tN (point L) then the RUL (tN) = tN-tN = 0 and 
the failure probability is one (Pr = 1). 

If not (i.e., 0<t0<tN) (point K), the probability of the 
occurrence of this instant and the prediction probability 
of RUL are both less than one (not certain) due to non-
zero chaotic factors. The degree of our knowledge (DOK 
for short) is consequently less than 1. Thus, by applying 
here the EKA method, we can determine the system 
RUL with certainty in C = R + M where Pc = 1 always. 

Furthermore, we need in our current study the 
absolute value of the chaotic factor that will give us the 
magnitude of the chaotic and random effects on the 
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studied system. This new term will be denoted 
accordingly MChf or Magnitude of the Chaotic Factor. 
Hence, we can deduce the following: 
 

0 0

2
0 0 0

0 0

0

0 0 0 N

0 0

MChf(t )  Chf(t ) 0 and

Pc (t ) DOK(t ) Chf(t )

DOK(t ) Chf(t )

since  0.5 Chf(t ) 0 

 DOK(t ) MChf(t ) 1,   0 t t

0 MChf(t ) 0.5 where 0.5 DOK(t ) 1

= ≥

= − =
+

− ≤ ≤
= + = ∀ ≤ ≤
⇔ ≤ ≤ ≤ ≤

 

 
Moreover, we can define two complementary events 

E and E  with their respective probabilities: 
 

rob robP (E) p and P (E) q 1 p= = = −  

 
Then Prob (E) in terms of the instant t0 is given by: Prob 

(E) = Pr = Prob (t≤t0) = F(t0) where F is the cumulative 
probability distribution function of the random variable t.  
Since: 
 

rob robP (E) P (E) 1+ =  
 
Therefore:  
 

rob rob r

rob 0 rob 0

P (E) 1 P (E) 1 P

1 P (t t ) P (t t )

= − = − =
− ≤ = >

 

 
Let us define the two particular instants: t0 = 0 

assumed as the initial time of functioning (raw state) 
corresponding to D = D0 = 0 and tN = the failure instant 
(wear out state) corresponding to the degradation D = 1. 

The boundary conditions are. 
For t0 = 0 then D = D0 (initial damage that may be 

zero or not) and: 
 

0 robF(t ) P (t 0) 0= ≤ =  

 
For t0 = tN then D = 1 and F(t0) = F(tN) = Prob (t≤tN) = 1. 
Also F(t0) is a non-decreasing function that varies 

between 0 and 1. In fact, F(t0) is a cumulative function 
(Fig. 3). In addition, since RUL(t0) = tN - t0 and 0≤t0≤tN 
then RUL(t0) is a non-increasing remaining useful 
lifetime function (Fig. 4). 

Referring to Fig. 5 below, we can infer the following. 
The complex probability Z(t0) = Pr(t0) + Pm(t0) = Pr(t0) 

+ i[1-Pr(t0)]. 
The square of the norm of Z(t0) is: 

( ) ( ) ( )
( ) ( )
( ) ( )

2

0 0 r 0 m 0

r 0 r 0

2
r 0 r 0

Z(t )  DOK t   1  2iP t P t

 1  2P t 1  P t

 1  2P t   2P t

= = +

= −  −  

= − +
 

 The Chaotic Factor and the Magnitude of the Chaotic 
Factor are: 
 
Chf(t0) = -2Pr(t0)[1-Pr(t0)] = -2Pr(t0)+2Pr

2(t0) is null when 
Pr(t0) = Pr(0) = 0 (point J) or when Pr(t0) = Pr(tN) = 1 
(point L) and MChf(t0) = |Chf(t0)| = 2Pr(t0)[1-Pr(t0)] = 
2Pr(t0) -2Pr

2(t0) is null when Pr(t0) = Pr(0) = 0 (point J) or 
when Pr(t0) = Pr(tN) = 1 (point L) 
 

At any instant t0 (point K), the probability expressed 
in the complex set C is: 
 

Pc(t0) = Pr(t0) + Pm(t0)/i = Pr(t0) + [1-Pr(t0)] = 1 always 
 

Hence, the prediction of RUL(t0) of the system 
degradation in C is permanently certain. 

2. APPLICATION OF EXTENDED 
KOLMOGOROV’S AXIOMS (EKA) TO 
DEGRADATION PROGNOSTIC BASED 

ON RELIABILITY 

2.1. Review of Reliability Theory (Greene, 2004; 
Guillen, 1995; Gullberg, 1997; Kuhn, 1996; 
Liu, 2001; Mandelbrot, 1997; Montgomery 
and Runger, 2005; Mũller, 2005; Orluc and 
Poirier, 2005; Poincaré, 1968; Prigogine and 
Stengers, 1992; Prigogine, 1997; Christian 
and Casella, 2005; Srinivasan and Mehata, 
1978; Stewart, 1996; 2002; Van Kampen, 
2007; Walpole, 2002; Warusfel and 
Ducrocq, 2004; Weinberg, 1992) 

The reliability is the probabilistic evaluation of a limit 
state of performance on a domain of basic variables. In 
other words, it is obtained by the computation of the failure 
probability toward a criterion or a limit state. 

2.1.1. Methodology 

• Identify the limit states that govern the lifetime of 
the structure 

• Identify the basic parameters intervening in the limit 
state 

• Deduce their probability density functions 
• Compute the failure probability that expresses the 

risk when the limit states are not satisfied 
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Fig. 3. Occurrence probability 
 

 
 

Fig. 4. RUL prognostic model 
 

 
 

Fig. 5. Degradation prognostic model 
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Two types of methods exist: The Monte Carlo 
simulation and the approximate method First Order 
Reliability Method (FORM). The Monte Carlo 
simulation method is based on a large number of 
simulations and we must use N simulations when we 
want to evaluate a probability of order of 10 -(N+4).  

The approximate method FORM is an iterative 
procedure that allows to calculate an index of reliability 
(denoted β).  

The index β is the distance between the origin and the 
limit state function G(t) in a standard space. Once we 
have calculated β we can deduce the failure probability 
Pr = Φ(-β). 

In FORM approximation the real (usually nonlinear) 
limit state is replaced by its tangent plane at a specific 
point called the Most Probable Failure Point (MPFP). 
This point is the closest point on G(t) to the origin. 

The limit state G(t) divides the space into two 
regions: 

• First region where G(t) > 0 called safe region 
• And the second region where G(t) ≤ 0 called failure 

region  

2.1.2. Work Plan 

We choose, in a general case, N random variables, 
correlated and of any density functions, as well as a 
nonlinear limit state function. This method is based on 
the following iterative algorithm: 

• Transforming of basic random variables into 
standard normal variables N(0,1) 

• Transforming the limit state from the original space 
to the standard normal space 

• Search of the MPFP point by replacing the limit 
state surface by its tangent hyper-plane at the same 
point 

• Calculate the index β and the probability of failure 
Pf 

2.1.3. Description of the Algorithm 

The transformation from the basic state to the 
normalized state is implicit in the algorithm. The steps 
are the following (Fig. 6): 
 
Let the limit state equation be: g(z) 
 
where, z = z1,z2,z3,…..zn is the random vector of the 
limit state, therefore. 
 
1) Initialization of the coordinates of MPFP. The mean 

value of each variable is a good choice: 
 

1
z1 z2 znZ , ,... ...,= µ µ µ  

 
2) Calculate the following parameters: (m is the 

number of the iteration). 
The value of the limit state at MPFP: 

 
( )m m m

0 1 2g g z ,....,z=  

 

 
 

Fig. 6. The First Order Reliability Method (FORM) 



Abdo Abou Jaoude / Journal of Mathematics and Statistics 9 (4): 310-324, 2013 

 
315 Science Publications

 
JMSS 

The gradient at MPFP is assumed to be: 
 

( )m m m
i 1 2

g
g z ,...,z

zi

∂=
∂

 

 
The equivalent normal standard deviation and mean 

value of non-normal variables: 
 

( )( )

1 m
m zi i
i m

zi i

m m m 1 m
i i i zi i

( (F (z ))

f (z )

z F z

−

−

ϕ ∅σ =

µ = − σ ∅
 

 
3) Calculate the intermediate parameters:  
 

( ) ( )

nm 'm m
i ii 1

n
m ' m m
z i i

i 1

n 2 2m 'm m
z i i

i 1

z g z

g

g

=

=

=

=

µ = µ

σ = σ

∑

∑

∑

 

 
4) Calculate:  
      The directive cosine:    
 

' m m
i i

i m
z

g σα = −
σ

 

 
The reliability index:  

 
m m m

m 0 z
m
z

z g− − µβ = −
σ

 

 
The new coordinates of MPFP:     

 
m M m m m
i i i iz = µ + α β σ  

 
5) Verify the convergence criterion: 
 

m 1 m m 1 mz z to l and to l+ +− ≤ β − β ≤  
 
6) Repeat the steps from 2 till 5 until convergence. 
7) Calculate the failure probability:   
 

Pf ( )= ∅ −β  

2.2. Application of FORM to Prognostic 

In this part, we study the extended Kolmogorov 
axioms in the context of reliability by defining a limit 
state G that describes the lifetime margin of the system. 
For each value of an instant t0 we determine its 
corresponding probability of survival or of the 
Remaining Useful Lifetime (RUL). 

We have: 
 

0 0 N 0G(t ) RUL(t ) t t= = −  
 
Where: 
G(t0) = The limit state of lifetime. 
tN = The fixed lifetime of the system which follows 

a normal distribution N(0.0006Nt ; 1) 

t0 = An arbitrary instant that varies from 0 to tN and 
which follows a normal distribution 

N ( )00 t1.0;t ×  
 

When RUL (t0) 
is zero or negative then we have a 

case of t0 ≥ tN that means that we have a system failure 
that cannot live until the instant t0. In the other case 
where t0 < tN, the system can live above the instant t0 and 
we have a case of success. 

The probability:  
 

0}){RUL(tP0}){G(tP)(tP 0rob0rob0r ≤=≤=  
 

is computed by the FORM (First Order Reliability 
Method) procedure that uses a reliability index β.  

β = -Φ-1[Pr (t0)] where Pr (t0) is the cumulative 
probability and Φ is the normal cumulative distribution 
function. Hence, Φ-1 is the inverse of Φ and Pr (t0) = Φ (-β). 

In the extended Kolmogorov’s axioms, the real part 
of probability is taken here Pr (t0). As we make the 
instant t0 vary between 0 and tN, then Pr (t0) varies 
between 0 and 1 (Fig. 7).  

Knowing that we take t0 and tN as two normal random 
variables where the value of tN corresponds to nearly 
5798 number of cycles (critical value: Nc). After a 
reliability calculation using a Matlab program, we 
deduce a value of Pr (t0) for each value of instant t0. For 
this set of Pr (t0) we have computed and ploted the 
extended Kolmogorov’s parameters and components 
Chf(t0), MChf(t0), DOK(t0), Pc(t0), Pm(t0)/i.  

Therefore, we get the following figures (Fig. 8 and 9). 
 

 
 
Fig. 7. Probability of failure 
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Fig. 8. DOK, Chf and Pc as functions of the probability of failure 
 

 
 

Fig. 9. DOK, MChf and Pc as functions of the probability of failure 
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We note from the figure that the DOK is maximum 
(DOK = 1) when absolute value of Chf which is MChf 
is minimum (MChf = 0) (points J & L), that means 
when the magnitude of the chaotic factor (MChf) 
decreases our certain knowledge (DOK) increases. 
Afterward, MChf starts to increase during the 
functioning due to the environment and intrinsic 
conditions thus leading to a decrease in DOK until they 
both reach 0.5 at t0 = 1500 (point K). The real 
probability Pr and the complementary probability Pm/i 
will intersect with DOK also at the point (1500, 0.5) 
(point K). With the increase of t0, the Chf and MChf 
return to zero and the DOK returns to 1 where we reach 
total damage (D = 1) and hence the total certain failure 
(Pr = 1) of the system (point L). At this last point the 
failure here is definite, Pr(tN) = 1 and RUL(tN) = tN - tN 
= 0 with Pc(tN) = 1, so the logical explanation of the 
value DOK = 1 follows. 

We note that the point K is not at the middle of DOK 
since the probability of failure distribution evaluated by 
FORM is not symmetric.  

Furthermore, at each instant t0, the remaining useful 
lifetime RUL(t0) is certainly predicted in the complex set 
C with Pc maintained as equal to one through continuous 
compensation between DOK and Chf. This 
compensation is from instant t0 = 0 where D(t0) = 0 until 
the failure instant tN where D(tN) = 1.  

2.2.1. The Cube of Probability Components 

In the following figure, we represent the extended 
Kolmogorov’s probability components Pr and Pm/i in a 
three dimensional graph in terms of t and of each other 
(Fig. 10). 

It is important to mention that if we rescale the time 
axis to an interval [0,1] so the minimal value of DOK is 

at the instant 0

1500
t 0.2587

5798
= =  where N = 5798 cycles 

corresponds to tN. This last important point is clearly 
shown in this cube and in the following one. 

From the cube below, we can notice that the 
probability Pc in the complex set C = R + M is obtained 
at each instant t0 as the sum of Pr and Pm/i and is always 
equal to one. 

2.2.2. The Cube of Probability Parameters  

In the following figure, we represent the extended 
Kolmogorov’s probability parameters DOK and Chf in 
a three dimensional graph in terms of t and of each 
other (Fig. 11). 

2.3. Example: Application to Young Modulus 

We consider once again the Young modulus example 
previously treated in the first paper on extended 
kolmogorov’s axioms and “Complex Probability Theory”. 

 Let E be the Young modulus in a material bar 
domain (Fig. 12) and we assume that it follows a Normal 
Gaussian distribution.  

The limit state considered here for FORM analysis is:  
 

G(E0) = RUL(E0) = EN - E0 
 

When RUL (E0) is zero or negative then we have the 
case of E0 ≥ EN that means that we have a system failure 
that cannot live until E0. In the other case where E0<EN, the 
system can live above E0 and we have a case of success. 

The real Probability of failure is given by: 
 

( )r 0 rob 0 rob 0

rob N 0

P E  P {G(E ) 0} P {RUL(E ) 0}

P {E E }

= ≤ = ≤
= ≤

 

 
The reliability index β = - Φ-1(Pr). 
In the extended Kolmogorov’s axioms, the real part 

of probability is taken here as Pr (E0). As we make the E0 
vary between 0 and EN, then Pr (E0) varies between 0 and 
1 (Fig. 13).  

Let E  be the mean value of E and is taken to be 
equal to 29575 Ksi. Let σE be the standard deviation of E 
and is equal to 1507 Ksi. Let the coefficient of variation 

be Eσ 1507
c.v 0.050955198 0.051

E 29575
= = = ≅ . 

Take E0= E =29575 Ksi. 
We can compute from the statistical tables that: 

 
Prob[ -∞ <E≤  29575 Ksi] = 0.5 and Prob[ 29575 Ksi ≤E< 
+∞] = 0.5.  
 

As well Prob[ E ≤  0] ≅ 0. 

Note that: 
 

ou 2

0 rob 0

1 u
Φ(u ) exp .du = P [u u ]

22π−∞

 −= ≤ 
 

∫  

 
Where: 
 

E

E E
u

σ

−=  

 
In the real domain R we have:  

 
2

E

1 u
dF f (u).du exp .du

22π

 −= =  
 
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Fig. 10. The probabilities Pr and Pm/i in terms of t and of each other 
 

 
 

Fig. 11. DOK and Chf in terms of t and of each other 
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Fig. 12. The Young modulus E in a material domain 
 

 
 
Fig. 13. Probability of failure 
 
And: 
 

2

2

EE

1 u
dF exp du

22π

1 1 E E
exp dE 1

2 σ2πσ

+∞ +∞

−∞ −∞

+∞

−∞

 −=  
 

  −
 = − = 
   

∫ ∫

∫  

 
Now: 
 

rob

229575

0

P [ E 29575] F(29575)

1 1 E 29575
Pr exp .dE

2 15072π.1507

 0.5

−∞

−∞ < ≤ =

 − = = −  
   

=

∫  

 
The correspondent probability in the imaginary 

domain M is: 
 

[ ]0 0 rob

2

29575

Pm i(1 Pr ) i.P [E 29575] i. 1 F(29575)

1 1 E 29575
 i. exp .dE

2 15072π1507

 i 0.5

+∞

= − = > = −

 − = −  
   

= ×

∫
 

 
If we compute the norm of the complex number: 

 

000 PmPrZ +=  

we have: 
 

2 2 2 2 2
0 0 0 0 0

0 0 0 0

Z Pr (Pm /i) Pr (1 Pr )

1 2Pr (Pr 1) 1 2Pr (1 Pr );

= + = + −
= + − = − −

 

 
This implies that: 

 
2

0 0 0

2 2
0 0 0

2

0 0 0

2 2
0 0 0 0

2 2
0 0 0 0

1 Z 2Pr (1 Pr )

Z 2.i .Pr .(1 Pr )

Z 2.i.Pr .Pm

Pr (Pm /i) 2.i.Pr .Pm

(Pr Pm /i) Pc Pc 1

= + −

= − −

= −

= + −

= + = ⇒ =

 

 
 We note that: 
 

0

0

E

0 0 0 E E

E

Z Pr Pm f (u)du i f (u)du 0.5 i 0.5
+∞

−∞

= + = + = + ×∫ ∫  

 
We have also: 

 
0

0

2 2E
2 2 2

0 0 0

E

Pc (Pr Pm /i) 1 1
+∞ +∞

−∞ −∞

   
= + =  +  = = =      

∫ ∫ ∫  

 
and the chaotic factor is: 
 

0

0

0 0

E

0 0 0

E

E E

Chf 2.i.Pr .Pm 2.i i

2 1

+∞

−∞

−∞ −∞

= = × × ×

 
= − × × −  

 

∫ ∫

∫ ∫

 

 
Where: 
 

0Chf0 =  if 








=+∞→

=−∞→

1Prhence,E

0Prhence,E

00

00
 

 
Moreover, the Magnitude of the chaotic factor is: 

 

0 0 0 0 0

0

0 0 0

E E E E E

E

MChf 2.i.Pr .Pm

2.i i 2 1 2 1
+∞

−∞ −∞ −∞ −∞ −∞

= =

   
× × × = − × × − = × × −      

   
∫ ∫ ∫ ∫ ∫ ∫

 

 
Where: 
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0MChf0 =  if 








=+∞→

=−∞→

1Prhence,E

0Prhence,E

00

00
 

 
Therefore, we say that: 

 
22

0 0 0 0Pc Z 2.i.Pr .Pm= − = Degree of our knowledge-

Chaotic factor = 1 
 

and if Chf0 = 0⇒ |Z0|
2 = 1 in other words, if the 

chaotic factor is zero, then the degree of our knowledge 
is 1 or 100%. 

In addition, we say that: 
 
2

0Pc = Degree of our knowledge + Magnitude of the 

Chaotic factor = 1. 
and if MChf0 = 0⇒ |Z0|

2 = 1, in other words, if the 
magnitude of the chaotic factor is zero, then the degree 
of our knowledge is 1 or 100%. 

Numerically, we write: 
 

2 2 2
0

2
0 0 0

|Z | (0.5) (0.5) 0.25 0.25 0.5

1
|Z | 0.707107 Chf 0, Notice that |Z | 1

2

= + = + =

⇒ = ⇒ ≠ ≤ ≤
 

 
Hence: 
 

0 0

1
Chf 0.5 1 0.5,Notice that Chf 0

2
= − = − − ≤ ≤  

 
And: 
 

0 0 0

1
MChf Chf 0.5 0.5,Notice that 0 MChf

2
= = − = ≤ ≤  

 
Consequently, we can say that. 
The degree of our knowledge DOK= |Z0|

2 = 0.5, the 
chaotic factor Chf0 =-0.5 and the magnitude of the 
chaotic factor MChf0 = 0.5. 

What is interesting here is thus we have quantified 
both the degree of our knowledge and the chaotic factor 
of the event as well as the correspondent magnitude of 
the chaotic factor. 

Notice that:   
 

DOK-Chf = 0.5 –(-0.5) = 0.5 + 0.5 = 1 = Pc0 

DOK + MChf = 0.5 + 0.5 =1 = Pc0 
 
Conversely, if we assume that:  
 

2 2 2
0 0 0 0 0

2
0 0 0 0

0 0

0 0

0 0

Chf 0  MChf 0 |Z | 1 Pr (Pm /i) 1

1 1 1
If Chf  MChf E E and |Z |

2 2 2

Pr 0 E

2Pr (1 Pr ) 0 or or

Pr 1 E

= ⇒ = ⇒ = ⇒ + =

= − ⇒ = ⇒ = =

 = → −∞
 

⇒ − = ⇒ ⇒ 
 = → +∞

 

 
If E0 increases to become=4000 then both |Z0|

2 and 
Chf0 increase and MChf0 decreases. 

Therefore we can infer that: 
 

( )
0 0 0

2

0 0 0
E E E
lim (Chf ) 0, lim (MChf ) 0and lim Z 1

→+∞ →+∞ →+∞
= = =  

 
Where:  
 

22
0 0 0

0 0

2

0 0

0 0

Pc Z Chf

          DOK Chf

          Z MChf

          DOK MChf 1,

= −
= −

= +
= + =

 

 
for every E0 in the real set R. 

We note from the figure below that the DOK is 
maximum (DOK = 1) when absolute value of Chf which 
is MChf is minimum (MChf = 0) (points J & L), that 
means when the magnitude of the chaotic factor (MChf) 
decreases, our certain knowledge (DOK) increases. 
Afterward, MChf starts to increase during the 
functioning due to the environment and intrinsic 
conditions thus leading to a decrease in DOK until they 
both reach 0.5 at E0 = 29575 (point K). The real 
probability Pr and the complementary probability Pm/i 
will intersect with DOK also at the point (29575, 0.5) 
(point K). With the increase of E0, the Chf and MChf 
return to zero and the DOK returns to 1 where we reach 
total damage (D = 1) and hence the total certain failure 
(Pr = 1) of the system (point L). At this last point the 
failure here is definite, Pr(EN) = 1 and RUL(EN) = EN-EN 
= 0 with Pc(EN) = 1, so the logical explanation of the 
value DOK = 1 follows (Fig. 14 and 15). 

We note that the point K is not at the middle of DOK 
since the probability of failure distribution evaluated by 
FORM is not symmetric.  



Abdo Abou Jaoude / Journal of Mathematics and Statistics 9 (4): 310-324, 2013 

 
321 Science Publications

 
JMSS 

 
 

Fig. 14. DOK, Chf and Pc as functions of the probability of failure 
 

 
 

Fig. 15. DOK, MChf and Pc as functions of the probability of failure 
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Fig. 16. The probabilities Pr and Pm/i in terms of E and of each other 
 

 
 

Fig. 17. DOK and Chf in terms of E and of each other 
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Furthermore, at each E0, the remaining useful lifetime 
RUL(E0) is certainly predicted in the complex set C with 
Pc maintained as equal to one through a continuous 
compensation between DOK and Chf. This 
compensation is from E0 = 0 where D(E0) = 0 until 
failure at EN where D(EN) = 1.  

2.3.1. The Cube of Probability Components 

In the figure above, we represent the extended 
Kolmogorov’s probability components Pr and Pm/i in a 
three dimensional graph in terms of E and of each other 
(Fig. 16). 

It is important to mention that if we rescale the E axis 
to an interval [0,1] so the minimal value of DOK is at the 

instant where 0

29575
E 0.2587

114317
= =  knowing that E = 

114317 corresponds to EN. This last important point is 
clearly shown in this cube and in the following one. 

From the cube above, we can notice that the 
probability Pc in complex set C = R + M is obtained at 
each value E0 as the sum of Pr and Pm/i and is always 
equal to one. 

2.3.2. The Cube of Probability Parameters 

In the figure above, we represent the extended 
Kolmogorov’s probability parameters DOK and Chf in a 
three dimensional graph in terms of E and of each other 
(Fig. 17). 

3. CONCLUSION 

In this study I applied the theory of Extended 
Kolmogorov Axioms to Prognostic based on Reliability. 
I used for this purpose the very well known First Order 
Reliability Method or FORM analysis for short. 
Consequently, I established a tight link between the new 
theory and degradation or the remaining useful lifetime 
and reliability. Hence, I developed the theory of 
“Complex Probability” beyond the scope of the 
previous three papers on this topic. As it was proved 
and illustrated, when the degradation index is 0 or 1 
and correspondingly the RUL is tN or 0 then the 
Degree of Our Knowledge (DOK) is one and the 
chaotic factor (Chf and MChf) is 0 since the state of 
the system is totally known. During the process of 
degradation (0<D<1) we have: 0.5<DOK <1, -0.5<Chf 
<0 and 0<MChf <0.5. Notice that during the whole 
process of degradation we have Pc = DOK - Chf = 
DOK + MChf = 1, that means that the phenomenon 
which seems to be random and stochastic in R is now 

deterministic and certain in C = R + M and this after 
adding to R the contributions of M and hence after 
subtracting the chaotic factor from the degree of our 
knowledge. Moreover, for each value of an instant t0 
or E0, I have determined their corresponding 
probability of survival or of the remaining useful 
lifetime RUL(t0) = tN - t0 or RUL(E0) = EN-E0. In other 
words, at each instant t0 or E0, RUL(t0) or RUL(E0) 
are certainly predicted in the complex set C with Pc 
maintained as equal to one through a continuous 
compensation between DOK and Chf. This 
compensation is from instant t0 = 0 where D(t0) = 0 
until the failure instant tN where D(tN)=1 and this 
compensation is also from E0 = 0 where D(E0) = 0 
until failure at EN where D(EN)=1.  Furthermore, using 
all these graphs illustrated throughout the whole 
paper, we can visualize and quantify both the system 
chaos (Chf and MChf) and the system certain 
knowledge (DOK and Pc). Additionally, an application 
to Young modulus was successfully done here. This is 
certainly very interesting and fruitful and shows once 
again the benefits of extending Kolmogorov’s axioms 
and thus the originality and usefulness of this new field 
in mathematics that can be called verily: “The Complex 
Probability and Statistics Paradigm”. 
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