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ABSTRACT

The five basic axioms of Kolmogorov define the g@bitity in the real set R and do not take into édesation
the imaginary part which takes place in the commex C, a problem that we are facing in applied
mathematics. Whatever the probability distributioh the random variable in R is, the corresponding
probability in the whole set C equals always to,®mwthe outcome of the random experiment in Chean
predicted totally. This is the consequence of #w that the probability in C is got by subtractthg chaotic
factor from the degree of our knowledge of the eystin this study, | will evaluate the complex rand
vectors and their resultant that represents thdendistribution and system in the complex spackv@ll also
define imaginary and complex expectations and meéa and | will prove the law of large numbers gshe
concept of the resultant complex vector. In fafteraextending Kolmogorov's system of axioms, thewn
axioms encompass the imaginary set of numbershésdyt adding to the original five axioms of Kolnawgv

an additional three axioms. Hence, the conceptoofiptex random vector becomes clear, evident and it
follows directly from the new axioms added. Thisule will be elaborated throughout this study usiiggrete
probability distributions. Moreover, any experimexecuted in the complex set C is the sum of tabset R
and the imaginary set M. Therefore, the whole poditya distribution of random variables can be reggnted
totally by the resultant complex random vector attis used subsequently to prove the very well kntaw

of large numbers. In addition to my previous fjgaper, this second one elaborates the new fiél@ahplex
Statistics” that considers random variables indbmplex set C. Thus, the law of large humbers wdhiat
this complex extension is successful and fruitful.

Keywords: Kolmogorov's Axioms, Random Variables, Real and d¢mary Sets, Complex Set,
Probability Norm, Degree of Knowledge, Chaotic BactBernoulli Experiment, Complex
Random Vectors, Law of Large Numbers, Complex Etqieam, Complex Variance

|.INTRODUCTION supplementary new imaginary dimensions to the event
occurring in the “real” laboratory, the Kolmogorsv’
Abou Jaoudeet al. (2010); Abou Jaoude (2005; system of axioms can be extended to encompass the
2007); Balibar (1980); Bell (1992); Benton (1996); imaginary set of numbers. This can be done by aidin
Dalmedico Dahanet al. (1992); Ekeland (1991); the original five axioms of Kolmogorov a
Feller (1968); Gleick (1997); Hoffmann (1975) and complementary three axioms. Thus, any experimemt ca
Kuhn (1996) by defining the concept of probability hence be executed in the complex set C which isuhe
using only five basic axioms, Kolmogorov was workin  of the real set R represented by a real probalaility the
in the set of real numbers and was not considdatieg imaginary set M represented by the imaginary
imaginary part that takes place in the set of cempl probability. No matter what the probability distiiion
numbers. This is in fact a problem that occurs emyn  of the random variable in R is, the corresponding
applications in mathematics and physics. By comige  probability in the whole set C is always equal tweo
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Therefore, the outcome of the random experimentnon-determinism. Consequently, the study of this
occurring now in C is completely predictable. class of phenomena in C is of great usefulnessesinc
Consequently, chance and luck in R are replacedtay  we will be able to predict with certainty the outce
determinism in C. Actually the probability in C is of experiments conducted. In fact, the study ireRdis
evaluated by subtracting the chaotic factor frore th to non-predictability and uncertainty. Therefore,
degree of our knowledge of the system. This shavi®t i stead of placing ourselves in R, we place oueselv
_essential and leads always to a probability equatmne in C then study the phenomena, because in C the
in the complex set. contributions of M are considered and therefore a
Formally, th_e thrge supplementary  and deterministic study of the phenomena becomes
complementary axioms are: possible. Conversely, by considering the contrituti
+ Let P, = i(1-P) be the probability of an associated of the hidden forces, we place ourselves in C and b
event in M (the imaginary part) to the event A in R ignoring them we restrict our study to non-

(the real part). It follows that,P P./i = 1 where = deterministic phenomena in R.

-1 (the imaginary number) I will describe in this study a powerful tool based
*  We construct the complex number z =HP, = B, + on the concept of complex random vectors which is a

i(1-P,) having anorm\z\zz P+ (P /i vector representing the real and the imaginary

. Let Pc denote the probability of an event in the probabilities of an outcome, defined in the added

universe C where C = R + M. We say that Pc is theaxioms by the term z =P+ Py. Then express the
probability of an event A in R with its associated resultant complex random vector as the vector which

event in M such thatP@ = (P+ P /if = |A- 2iPp is the sum of all th(_e cpmplex raqdom vectors in the
complex space. | will illustrate this methodology b
considering a Bernoulli distribution, then a digere
We can clearly see that the system of axioms défine distribution with N random variables as a general
by Kolmogorov could be hence expanded to take intocase. Afterward, | will prove the very well knowaw

and is always equal to 1

consideration the set M of imaginary probabilitis of large numbers using this new powerful concept.

By defining the chaotic factor ‘Chf’ as being eqtml
2iPP,, and the degree of our knowled{@# as being 2. THE RESULTANT COMPLEX
equal toP?+ (P, /i}, it follows that: P&€= Degree of our RANDOM VECTOR Of A BERNOULLI
knowledge-chaotic factor = 1, therefore Pc = 1.sThi DISTRIBUTION
means that if we succeed to eliminate the chaotic
factor in an experiment, the outcome probabilityl wi Boursin (1986); Dacunha-Castelle (1996); Dalmedico
always be equal to one. One consequence of thdahan and Peiffer (1986); Gullberg (1997); Montgnme
results above is that: Kp[’<1 and -1/ZChf<0. and Runger (2005); Poincaré (1968) and Walpole 2200

Moreover, according to an experimenter tossing afirst, let us define the complex random vectors and
coin in R, it is a game of luck: the experimenter their resultant by considering the following gerera
doesn’t know the output. He will assign to each Bernoulli distribution:
outcome a probability Fand will say that the output is

not deterministic. But in the universe C =R + My, a X X1 X2

observer will be able to predict the outcome of the P; P.=p P2=q

game since he takes into consideration the P Pn=i(1-p)=iq Pm2=i(1-0)=ip
contributions of M, so we write: Be= (B + Py/i)>’= gz 2,=P,+Py 2,=Py+Pyro

|z]* -2iPPs. So in C, all the hidden variables are
known and this leads to a deterministic experimentWhere:

executed in an eight dimensional universe (foul rea x; and % = The outcomes of the first and second
and four imaginary; where three for space and amne f random variables respectively
time in R and three for space and one for time M M P,and R = The real probabilities of ;xand x
Hence Pc is always equal to 1. respectively

In fact, the addition of new dimensions to our P,;and B, = The imaginary probabilities of,and %

experiment resulted to the abolition of ignorancel a respectively
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We have:

And:

P

m

2

i

=Rut Rp= g+ ip= i(E p) ip

2
=1

=i —ip +ip =i =i(2 -1) =i(N -1)

where, N is the number of random variables which is
equal to 2 for this Bernoulli distribution.

The complex random vector corresponding to the
random variable xis:

z1=R+Py=p+i(l-p)=p+iq

The complex random vector corresponding to the
random variable xis:

Z,=R,+ Ry= ot i(I- qF o if

The resultant complex random vector is defined as
follows:

Z=z,+2,= (p+ ig)* (a+ ip)
=(p+Q)+i(p+g)=1+i =1+ i(2-1)= B i(N-1)

2 2
=D P+
=

R
=1

]

The probability in the complex space C which
corresponds to the complex random vectgs P¢ and

is computed as follows:

|z f= R+ R, /if= g+ d
Chf, =-2P,R, /i= -2pq

rl1 'ml

=P =|z1- Chf

=p’+q°+2pg= (p+ qf= i=:
=Pg=1

This is coherent with the new complementary axioms
defined for the extended Kolmogorov's system.
Similarly, Pg corresponding to,as:
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|z, f= B+ (B, /if= d+ P
Chf, =-2P,P, /i= -2qp

r2 'm2
=PZ=|z f- Chf

=g’ +p*+20qp= (q+ pf= i=:
=Pc =1

The probability in the complex space C which
corresponds to the resultant complex random vetter
1+iis Pc and is computed as follows:

|Z|2:[ R /ﬂz

2

2R

=

)2

j=1

2

Chf:—ZZZ:P,j R, li==2M)F - 2
==

letS=|Zf- Chi= ¢ 2= 4 S 2

3P8=%: |zF’\IZChf:'|sz_NL?1

3Pc:§:§=1

where, 8 is an intermediary quantity used in our
computation of Pc.

Pc is the probability corresponding to the resultan
complex random vector Z in the universe C = R+M and
is also equal to 1. In fact, Z represents bgtard z that
means the whole distribution of random variableshiz
complex space C and its probability Pc is comptted
the same way as Pand Pe.

By analogy with the case of one random variagle

where:Pc = |zf- Chf with (\= 1, then for the vector:

12F _ Chf

Z: PC= N

(N2 1)

where the degree of knowledge is equall—@i and its

relative chaotic factor gl\%f .

Notice, if N = 1 in the above formula, then:

ﬁ_ Chf_Ef_ Chf _

P(?:N2 N1

|zt - chi= PE

N2 12

Which is coherent with the calculations alreadyealon
To illustrate the concept of the resultant complex
random vector Z, | will use the following grapkig. 1).
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A , . .
Imaginary Dimension
Pm i

Z=1+i

iq

ip

14 : .
Real Dimension
P;

O p q

Fig. 1. The resultant complex random vector Z;#z in the complex space C

3. GENERALIZATION: THE Z“:ij: P 4P+t P = iqt g+ + ig
RESULTANT COMPLEX RANDOM =
VECTOR Z OF A DISCRETE =i(1-p) +i(21-py) + ... +i(1-py)
DISTRIBUTION =iN =i(p, +p, +---+py) =iN —i(1) =iN-i =i(N-1)

Chan Man Fongt al. (1997); Greene (2000; 2004) The complex random vector corresponding to the
’ ! ’ random variable Xs z = By + Py = py + i(1-p) = p. + i

and Warusfel and Ducrocq (2004) let us generalize The complex random vector corresponding to the
what has been found above for a Bernoulli distiitut  angom variable xis 2 = Po+Pro = po+i(1-ps) = p+ids
by considering the general discrete probability and so on

distribution of N random variables with the resulta The complex random vector corresponding to the
complex random vector Z: random variable is:
ZN:RN+PrnN: R+ i(l_ R )= R+ iQI
Xj Xq X5 XN
- - _ The resultant complex random vector is defined as
F)rj Pr1 - pl I:’rz - p2 I:’rN - pN . P
_ _ _ follows:
P Pml = I(l_pl) Pm2 = |(1-p2) I:)mN = I(l_pN)
m =iq, =id, =idy 2+t 2y

:(p1+iq1)+ (p2+ iq2)+---+ (pN+ qu)
We have: =P Pt P i(F g+t Oy)
=1+i(l-p)+i(l-p)+...+i(l-py)

y :1+iN—i(p1+p2+...+pN)
ZPrJ:FﬁJr B+...+ R= p+ p+...+ p= =1+ iN-i(1)

=1

M

Iy

:1+i(N—1):iR.+

j
=1

R

And:
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Pc corresponding to,as: 4. EXAMPLE OF A DISCRETE RANDOM
DISTRIBUTION
|z f=FB+ (B, /if= g+ ¢
Czrl]f :—12P P 1/i=—2§q 1 Guillen (1995); Mandelbrot (1997) and Srinivasan
Ii ~ rlfm_l Chic B4 4 2 and Mehata (1978) as an example, let us consider th
=P =Iz f= B+ d+ 2pg following discrete random distribution with fourngom

=(p+g)y=r=1 variables that means we have in this case N = 4:
=Pg=1
X; X, X, Xg X,
Pc corresponding to,zs: 1 1 1 1
P, = = = =
" 4 4 6 3
|z, f= B+ (B, /if= B+ ¢’ i(l_zj i(l_zj i[l_éj i 1_1)
Chf,=-2P,R, /i=-2p,q P 4 4 6 3
mij . . . .
=>Pg=|z {- Chf= p’+ ¢+ 2pg . =3 =2 =2
4 4 6 3
=(p,+q,)=F=1
=Pc=1
We have:
andsoon... .. .. .
Pgy corresponding toyzis: va “P+P+ P+ P:1+}+,1+,1:
T rl 2 r3 4
= 4 4 6 3
lzy f= R+ (B /if= £+ ¢~
Chf, =—2P, P, /i=-2p, g And:
=Pq =13 f-Chf= p*+ q*+ 2p g
_ 2 _ 12 _ _ < _ _3i 3, 5 2i
=(py*+qy )y =r=1=>Pg=1 Zij_Enl+ P,+ P+ P="+—+—+—
& 4 4 6 3

=3i=(4-1Di=(N-21i
Pc is the corresponding probability to the resultan 1=(4-1)i=( )i

complex random vector Z = 1+ i (N-1) and is eqoal t ) )
where, N is the number of random variables.
The complex random vector corresponding tdsx

v ’ 1.3
|Z|2:(2Fr’1] +(z B /ﬂ Z)=Ft By=—+—.
j=L =L 4 4
=12+ (N=1) = 1+ (N- 1Y The complex random vector corresponding 1dsx
QU 2,2yt By g+
Chf=-2>"P> P /i==2(1)(N- I - 2(N- 1 4 4
e The complex random vector corresponding 3dsx
Let S =|zf- Chf= & (N- 1§+ 2(N- 1) 1 5i
2 Z, =Ryt By=—+—.
=1+ N°+1- 2N+ 2N- 2= N= S= N 6 6
2 & |zf-chf_ |Z4 chf The complex random vector corresponding fdsx
Pc=—=—"F _— = - .
N? N? NZ  N? 2,=P, + F3M=}+%-

The resultant complex random vector is:

4 4 4
ZZZl+Zz+23+24=sz:z '3*2 R=%3
e e =1

= Pcz%z%: 1=The corresponding probability of

the resultant complex random vector Z = 1 + i(N#1gt
represents the whole distribution of random vasdabih
the complex space C. Pc, corresponding to,7s:
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9 _10
=B+ (P, /if=—+2 =10

Chf, =-2P,P,, /i= - {EJ( 3] =8
a)\a)" 16

10 6 _16
PC = Chf=—+—==—>=
=Pq =131~ Chi= 16 16 16
=Pg=1
Pc, corresponding to,zs:
_10
=B+ (P, [if=—+—==—
|z, f=F, F= 6t 16" 16

chf,=-2p,p, /i=-2+ || 3]=25
a)la)” 16

lO 6 _16_
=Pg=|z f- Chi=

1616 16
=Pc=1

Pg corresponding toszs:

1,25_26
= L lij=—+22=2
|23F F= 36 36 36

Chf,=—2R,P, /i=- {1)[§j:;u)
6)l6) 36

26, 10_ 36_
=P¢=|z {- Ch{=

36 36 36

Pg corresponding to,as:

1
|Z4F=Fr%1 llf_g
Chf,=-2P,P, /|_—z{
S,
9

=PG=|z f- Chi=

Pc corresponding to Z = 1+ (N-1)i = 1+3i is:

|z|2:[24: P”.jz+[i R; /ﬂzz i+ 3= 1

=1

cm:-zi z R, /i=-2()(3F - 6

= =1
2SZ:|ZF—Chf: 10+ 6= 162 & ¢
|ZF-Chf_ |Z] _ Chf
N2 NZ  N?

2Pc,2——
N?
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= Pc:E :gz land is the probability corresponding to
the resultant complex random vector Z that reprssen
the whole distribution of the four random variabileshe
complex space C.

5. THE RESULTANT COMPLEX
RANDOM VECTOR CONCEPT APPLIED
TO THE LAW OF LARGE NUMBERS

5.1. First Casee A Distribution with Three
Random Variables

Boltzmann (1995); Cercignani (2006); Thoneisl.
(2003); Orluc and Poirier (2005); Planck (1945);
Prigogine (1997); Prigogine and Stengers (1992);
Science et Vie (1999); Stewart (1996; 2002); Vamian
(2007) and Weinberg (1992) consider now this
discrete  probability  distribution  with  three
equiprobable random variables (N = 3):

Xj
no L 1 1
3 3 3
ij |(1_}):g |( —}):g |(1—}):g
3 3 3 3 3 3

We have herez1:22:23:%+% andZ=z+2z+2z

= 1+2i and we can notice thdk| = |z,| = |z4|, hence,
|ZIFlz+ 2+ 2% 3|z4 3|z 3z

S{ZP=9|7 1= {; ;‘j: cand Chf = -2(1)(2) = -

_ _ _S_9
=& =|Zf-Chf= 5+ 4& & Pt= NE

= b Ps

What is important here is that we notice the
following fact:

—Iz=f—05555 .2 0!

We got 0.5 from the study done above of a
probability distribution with two random variables.

Chf %94 =-0.444..>- 0.E. We got -0.5 from the

study done above of a probability distribution witto
random variables also.
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5.2. Second Cas_e. A Distribution with N N :2:@: 1+ (22— 1¥ - 05an Ct;f: - 2(5— o
Random Variables N 2 N 2
As a general case, let us consider then this
probability distribution with N equiprobable random N=4— |Z|2 (41 _ ) soss 05an
. 2
variables: 4
Chzf 270 _ _y3752-05
X X X X N 4
i 1 2 N
1 1 1
P P== P,=— Py =— -
(Y Y "N N=5= 'NZF %21)2:0.682 0.625an
_(N-1 _(N-1 _(N-1 o
P Pml-'[TJ sz-'[T} PmN"[T, } Cizfziz(i Y. _032>-0375
N 5
o= _ o i(N-1)
We have here:z=z,=..=z,=-+= = and N =10 IZI2 1+ (11(?2- 5 082 0.68an
Z=z,+z,+...+z, =1+ i(N-1) _
s " chf :&):—0.182—0.32
N 10°
And we can notice that:
N =100 12 12 @00 B _ 5005 082an
lz11=1z21=...=lzn | N? 1007
Chf _ —2(100- 1)
. =————=-0.0198=-0.18
Hence: N2 100
|ZIF1z+ z+...+ 7 £ Nz Nz4...= Njz Zf 1+ 1000 3
. (N-17 N =1000= 14" : -1+ 1000 1) _ 1 598002 0.980:
=|Zf=N’|z f= N NZ+ NE =% (N- 3 , where; N 1000
Chf _ -2(1000- 1)_ ~
1<j<N: and N 1000 0.00199& - 0.18
and Chf= N'x Chf=-2 p px R We can deduce mathematically that:
=—2NZX[%J( NN 1} ~2(1)(N- )= - 2(N- 1)
||m |2 = || w
=& =|Zf-Chf= 1+ (N- 1§+ 2(N- 1 N Nos NE N N2
g N _Chf _ . -2(N-1)_
2P6:W:W:b P 1 a“dN'LTW‘N“f‘lT‘O

Therefore, the degree of our knowledge From the above, we can also deduce this conclusion:

corresponding to the resultant complex vector is = As much as N increases, as much as the degree of
our knowledge in R corresponding to the resultant

12f 1+ (N-1f and its relative chaotic factor = : 2
complex vector is perfect, that is, it is equalltand

N? N?
Chf _-2(N-1)_ 4 thus we can verify that we have as mugh as the chaotic factor that forbids us.from
predicting exactly the result of the random expemin

N2 N?
always: P& = |zf _Chf _ 1 in R a}p_proaches 0. Mathematically we say: If N _'sand
N®> N? to infinity then the degree of our knowledge in R

What is important here is that we notice the tends to 1 and the chaotic factor tends to 0.
following: Take for example: Moreover:

295 IJMSS
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|2f 1+ (- 1f _

-2 1) ( 6. EXPECTATIONS CORRESPONDING
N? 12

7 TO THE COMPLEX RANDOM VECTORS

Montgomery and Runger (2005); tiler (2005);
Orluc and Poirier (2005) and Walpole (2002) let us
now compute the real, imaginary and complex
expectations of the random variables. For this psep
let us consider the following Bernoulli distributio

For N=1=

1 andc—?f:
N

This means that we have a random experiment with
only one outcome, hence, either#1 or R = 0, that
means we have either a sure event or an impossiiela
in R. For this we have surely the degree of our
knowledge is 1 and the chaotic factor is 0 since th
experiment is either certain or impossible, which i

absolutely logical. X; x, =1 X, =2
1 2
53. The Law of Large Numbers and the P, P, = P=3 P, = a=3
Resultant Complex Random Vector Z . .
P P =i(l-p)= ig=2 P =i(l-q)= ip=1
The law of large numbers says that: m mt 3 m2 3

“As N increases, then the probability that the We can see that:
value of sample mean to be close to population

mean approaches 1” 2
PP we have) P, =R, + %=}+Z=]
= 3 3
We can deduce now the following conclusion related
to the law of large numbers. And:
We can see, as we have proved, that as much as N

increases, as much as the degree of knowledgeeof th 2 i
ij= Rn1+ Enzz iq+ ip=§+§= [

M

Iy

resultant complex vectolrz—l2 tends to 1 and its relative j
N =i(2-1)=i(N-1)

chaotic factorc—h;c tends to 0. Assume now that the
N e The complex random vector correspondingt@sx

random variablesx;'s correspond to the particles or 1 9

molecules moving randomly in a gas or a liquid.ifSo a=pr |q—§+—3

we study a gas or a liquid with billions of such « The complex random vector correspondingz@sx

particles, N is big enough (e.g., Avogadro number) '

allow that its corresponding temperature, pressure,

energy tend to the mean of these quantities,

corresponding to the whole gas. This because the

chaotic factor of the whole gas, that is, of thsutant

complex random vector representing all the random  The expectation of the random variables with tre re

particles or vectors, tends to 0O, thus, the belasfiche probability part is defined by:

whole system in R is predictable with great prexisi

since the degree of our knowledge of the whole gas 2 1 2N 1 4 5

tends to 1Figure 2 and 3 below illustrate this result. E,(x):Zl:ij”. =xh*txk= Eng“ ég} 37373

Hence we have joined here two different key J

concepts which are: the law of large numbers ard th  The expectation of the random variables with the
resultant complex random vector. The first one codme imaginary probability part is defined by:

from ordinary statistics and probability theory ahe

L2
Z, =q+|p=§+§

The resultant complex random vector is: Z;=z
Zy = 1+i

second from the new theory of complex probability _% - _{a i
. . . . Em(x)_zxjpmj =xRit %R,= E*)"' EfJ

and statistics. This looks very interesting andtfal i 3 3

and shows the validity and the benefits of extegdin _2 2 _ 4

Kolmogorov’s axioms to the complex set. 3 3 3
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Pc? = |[Z2 N*-Chf N2

= : ! ! ! ! j :
SN T 730 B
]
AT L[]
0.5 '—V_“‘i"——_"_' R R . e B — ey

BIYN?, [ZPIN? and Po of the sy stem

b
L

[

! | i i i i i I
g 32 5 10 15 20 25 30 35 40
Number N of random variables

Fig. 2. The degree of our knowledge, the chaotic factarthe Pc of Z, (§N<40)

b o
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o

Fig. 3. The degree of our knowledge and the chaotic fasfaZ as functions of N (in red and in blue) andeafch other (in
green), (EN<40)
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4 Imaginary dimension

e Y W Ec()= By )+ Ep ()

i

p Real dimension

Fig. 4. Graph of the complex expectation Ec(x) which isghm of E(x) and E,(x) in the complex space C

The expectation of the random variables (X, +X,)ZZ - ZEc(x) - ZEc(x)= 0
corresponding to the complex random vectors isnéefi = (X, +X,)ZZ = ZEc(x) + ZEc(x)
by: E(X) + En(X) = (P + %0) + (Xiq + Xoip): = (X, +X,) | ZF = ZEc(x)+ ZEc(x)
, . _ ZEc(x)+ ZEc(x)
= (p-+iX,0) + (x,0+ iX) ke ey v
2
=x,(p+iq)+ x,(q+ip)= x,2, + X,Z,= Z X;z;= Ec(x] B
_ = where, Z =1-i is the conjugate of the resultant complex
= Ec(x)= E (\)+ E, =2+ random vector Z = 1+i,Ec(x)=E (x)- E, (x) is the
3 3 conjugate of the complex expectation vector Ec(x) =

EQ)+En().
Figure 4 illustrates the graphical relation between the ~ And | Zf = ZxZ, which derives from the well known

three expectations: the real one, the imaginary ame theory Of complex numbers.
the complex one. We can infer also that:

We can notice that:
1 zp =26 0~ 1, ()

~ (1Y (20 [1.4 45 (x, +X;)
lz Flz £ (5) "’(gj = 5"'*9—*3

It can be shown also, always for a Bernoulli

. , . distribution, that:
The fact tha{z,| = |z,| is not a special case for this

distribution but is always true for any Bernoulli

E —-iE =
distribution having any probability values. Actuall (0 ~1E, ()= 0+ X))

and in generallz;* = p+q? and|z]* = ¢ + p%, hence Bc()= B 092+ (¢ + %)
21| = |zJ). Ec(x)= (%, + X,)+ ZE, (X)
Due to the previous property, it can be shown for a
Bernoulli distribution that: Moreover, in the same distribution, we can dedisze a
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[Ec(x)+ Ec(x)}+ [Ec(x)— Ec(xj: x+ %)|24 7.VARIANCES CORRESPONDING TO

Eot) Ech= 2 THE COMPLEX RANDOM VECTORS

Ec(x)- Ec(x)=-2E, (X) 7.1. Case 1: A General Distribution

Let us now determine the other characteristicsafor
All these relations prove to be valid for any Bauilto general discrete probability distribution which ahe

distribution. real, imaginary and complex variances of the random
Numerically, our degree of our knowledge of the variables. For this purpose, let us consider the
resultant complex random vector Z = 1+i is: following general probability distribution for N

random variables:

12f _2[E - iE, (] _ 4 E (- iE, ()

N2~ (x,+X,)x N2 (1+2)x 4 % X2 e X
5/3-i(4i/3) _5/3+4/3_9/3 1 i R=h =P e Pn=h
- 6 N 6 __6__2 ij Pm.1:|(l_p1) Prrjzzl(l_pz) Pm.NZI(l_pN)
=19, =19, =1qy
and its corresponding chaotic factor is =
Chf _-2)@)_-2_-1 We have:
N 2 a2 2 The expectation corresponding to the real prokgbili
1z chf_1 1 part of the random variablegiz defined by:
pe=2t = =y =1 it i
Hence, N N2 273 ™ just as it is )
previously proved. E()=)XP =xP+x%B+..
It can be verified in all cases and for any =
distribution that: X Py =X P+ X0+ X By
1, | Zf <1and- 1_ Chf_ C The expectation corresponding to the imaginary part
SENE S TAToETE s of the random variables s defined by:
Thus, we concluge that7f0r any Bernoulli distrilouti Em(x):ixjpmj =X P, + %P, +...
we have: 12F _ ZEc()+ ZEc(x)_ degree of our =
© N2 (X, +%;)xN? X\ B = X400, + XGI0,F .+ Xiid

knowledge of the resultant complex random vector in
terr(rjls of Z .al;d t_he tr::ompl_ex expeccta_tlolg EC MOf thde The expectation corresponding to the complex
rahdom vara _e N the universe - an probability of the random variablesoan be computed by:
chf _2[E (9-iE, (] , _ .
— T 7 = The chaotic factor of the
N Garxp)xN E,(0+ E, (9= 0GP+ XaPotooo ¥ Xy
resultant complex random vector Z. H(XiG, + X 4G, + ...+ X 0 )
Consequently, the resultant probability in C is: = (X, + X)) + (X P+ X L)+ (K, Pt X )
_ _ :Xl(p1+iq1)+x2(p2+iq2)+"'+XN(pN+ in)
ﬁ_ Chf _ ZEc(x)}+ ZEc(x)
N  N? (X, +X,)xN?

2| E -iE
_2[E (9= 1E, (] m(zx)]+1:1:> Pc= 1.
(%, +x,)xN Moreover:

Pe =

N
=XZ, X2t X Zy = Y X7 = EC(X)
=
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E (X*)+E, (X)= (Xp,+ X3p, ...

+X{Py )+ (XFia, + X3ig, + ...+ x}id )

=(X2p, +ix2q,) + (X3P, + iXg )+ ...

=X} (p, +id,) + X5(p,+ i0,)+... + X (P + i0y)

+x32, =i Xjz,=
j=1

— 2 2
=XZ,+ X5Z, %

Ec(x¥)

we have also.
The variance of the real part of the random vaeisbl

x; is defined by:V,(x) =E,(x*) -[E,(X)]’ = E, (X*)- E*(x),
which is the ordinary variance definition that weokv.
The variance of the imaginary part of the random _, v ) =E, (x?) - E?(x) =

variablesx; is defined by:

Vo (%) =E(x%) = [E, ()] = E,(¢) - B2 (X)

Similarly, the variance of the complex probabilitfy

the random variables; is defined by:

Ve(x) = Ec(¢)—[ Ec(x]” = Ec(X )~ EG (X,

But Ec(x)= E (X)+ E, (X)

* And Ec(x)=X2z+ X%2,+...+ X7,
* And z=p+ig,z,=p+ iQ,,....3= R+ iq,
Thus:

Ve(x) = Ec(X) - | Ec(xj2

= (X7py + X{iq,) + (X3p,+ X5q ) +...

XAy +X3idy) ~[E, 09+ B, ()]

= (X7Py + X3P, + .o+ XAPy )+ (X310,

+x4ig, +... +x2jq,) -[E, () + E, (X))’

=E, (X*)+E, (<)~ E2(x)+ E2 ()+ 2E (X)E, (x)

=[E,6¢) - B (9] +[ E,, 0¢°) - B3, (9)] - 2E, (0, (x)

= Ve(X) = V,() +V,(x) ~2E,(VE,, ()

7.2. Case 2: A Bernoulli Distribution

+ (XZNp N+ Ixzf\g N)

To illustrate and verify what has been found above,

let us consider now the following Bernoulli problitii
distribution that has two random variables (N = 2):
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X; X, =1 X, =2

P Raepe: P=a=2
Py P.=il-p)= iq:%i

We have:

E, (X)= ZXP
) 2, ) 1 5
E, (x )=ZX1F?J: XR+ XR= aj(g}’L( ;Z(*

=L 6

And we have also:
2
Em(x)zzxjpmj = xRyt
=1
2
Em(xz) :ijzpmj = XJ.ZFr)n1+ Xﬁ P
j=1

sl

49

-V, () =E, (x*)—E2(x) = (z'j [ls'j -2,

Therefore we get Equation 1:

V() +V,,(x) —2E,(XE, (X)
5,49, 3_ 2(11173:3_25
36 36 2 6)\6 2 9

Elsewhere, we have also Equation 2:

Ec(¥)= %2+ %,2,= (1(1 5'] (2£5+i6j

6 6
-2 Do 0+ £,
_ 1 5
Ec(x)= X7+ %2, = (1)z[+)+ (2)2[6+6j
21,987, 3
576 3273 E (x*)+E, (X)
Ve(x) = Ec(x®)- [Ec(xj (; 3;) [161+1GD
_7,3 121, 49 154 54 1000 3 25
2 2 36 36 36 36 36 2 9

5,
xP,= (1{6} (2§6

1 5\_11
P = = ==
= T )S. + Xz r2 CLEGJ-F ZEGJ 6

. o
P,=il-qg)=ip=—=
vz = i(1=0)=ip 5

}:glzj
6 2

3i

2

):7

1)

)
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Therefore, we can directly see from Equations 1 andsimulations verify what has been found earlier. We
will use Monte Carlo simulation method with the el
of the programming language C++ with its predefined

2 above that:

Ve(x) = Ec(¢ )~ Ec(x]* = V ()+ V,, (x) - 2E (X)E, (x)

As it was proven in the general case of a proltgbili
distribution with N random variables.

8. NUMERICAL SIMULATIONS

pseudorandom function rand() that generates random

numbers with a uniform distributionfable 1-3, are

simulations of a Bernoulli
complex random vectors are chosen randomly by

distribution where the

C++. Table 4-6, are simulations of a uniform

distribution with three random variables havingithe
complex random vectors also chosen randomly by

Cheney and Kincaid (2004); Deitel and Deitel Ct+. Table 7 is a simulation that confirms the direct
(2003); Gentle (2003); Gerald and Wheatley (1999); relation between the resultant complex vector Z and

Liu (2001) and Christian and Casella (200&)merical

the law of large numbers.

Table 1. Computation of Pc for different values of and z which are the complex random vectors of a Bernoulli distivbuand
which are chosen at random. In this case, the resultant conapléam vector is Z =2z, and is always equal to 1+i. The
corresponding probability of Z in C is always 1, juseapected

Z Rc 2 Pc Z Pc
Simulation #1 0.8106 +i(0.1894) 1 0.1894 +i(0.8106 1 1+i 1
Simulation #2 0.0084 +i(0.9916) 1 0.9916 +i(0.0084 1 1+i 1
Simulation #3 0.4558 +i(0.5442) 1 0.5442 +i(0.458 1 1+i 1
Simulation #4 0.5225 +i(0.4775) 1 0.4775 +i(0.5225 1 1+i 1
Simulation #5 0.3723 +i(0.6277) 1 0.6277 +i(0.3723 1 1+i 1
Simulation #6 0.1908 +i(0.8092) 1 0.8092 +i(0.1p08 1 1+i 1
Simulation #7 0.208 +i(0.792) 1 0.792 +i(0.208) 1 1+i 1

Table2. Computation of the real, imaginary and complex expectatmndifferent values of zand z which are chosen at random
and the verification that we have always Ec(x),&HE(X)

Z 2 z E(X) Bn(X) Ec(x)
Simulation #1 0.8106 +i(0.1894)  0.1894 +i(0.8106) 1 +i 1.189 i(1.811) 1.189 +i(1.811)
Simulation #2 0.0084 +i(0.9916)  0.9916 +i(0.0084) 1 +i 1.992 i(1.008) 1.992 +i(1.008)
Simulation #3 0.4558 +i(0.5442)  0.5442 +i(0.4558) 1 +i 1.544 i(1.456) 1.544 +i(1.456)
Simulation #4 0.5225 +i(0.4775)  0.4775+i(0.5225) 1 +i 1.478 i(1.522) 1.478 +i(1.522)
Simulation #5 0.3723 +i(0.6277)  0.6277 +i(0.3723) 1 +i 1.628 i(1.372) 1.628 +i(1.372)
Simulation #6 0.1908 +i(0.8092)  0.8092 +i(0.1908) 1 +i 1.809 i(1.191) 1.809 +i(1.191)
Simulation #7 0.208 +i(0.792) 0.792 +i(0.208) L+  1.792 i(1.208) 1.792 +i(1.208)

Table3. Computation of the real, imaginary and complex variances ftardift values of zand 2z which are chosen at random and
the verification that we have always Vc(x) {X¥+Vm(X) -2E(X) En(X)

Z z Vi(X) Vin(X) Ve(x)

Simulation #1  0.8106 +i(0.1894)  0.1894 +i(0.8106)1 +i  0.1535 3.278 +i(3.432)  3.432 +i(-0.8753)
Simulation #2  0.0084 +i(0.9916)  0.9916 +i(0.0084)1 +i  0.008292  1.017 +i(1.025)  1.025 +i(-2.991)
Simulation #3 ~ 0.4558 +i(0.5442)  0.5442 +i(0.4558)1 +i  0.248 2.119 +i(2.367)  2.367 +i(-2.129)
Simulation #4  0.5225 +i(0.4775)  0.4775+i(0.5225)1 +i  0.2495 2.318 +i(2.567)  2.567 +i(-1.931)
Simulation #5  0.3723 +i(0.6277)  0.6277 +i(0.3723)1 +i  0.2337 1.883 +i(2.117)  2.117 +i(-2.35)
Simulation #6  0.1908 +i(0.8092)  0.8092 +i(0.1908)1 +i  0.1544 1.418 +i(1.572)  1.572 +i(-2.736)
Simulation #7  0.208 +i(0.792) 0.792 +i(0.208) L+ 0.1647 1.459 +i(1.624)  1.624 +i(-2.705)
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Table4. Computation of Pc for different values qf z,, z; which are the complex random vectors of the distributi@hvaimich are
chosen at random. In this case, the resultant complex randoor \@& = z+z,+z3 and is always equal to 1+2i. The
corresponding probability of Z in C is always 1, juseapected

Z Pg 2 PG Z3 Pg A Pc
Simulation #1 0.636 +i(0.364) 1 0.136 +i(0.864) 1 0.228 +i(0.772) 1 1+i(2) 1
Simulation #2 0.8393 +i(0.1607) 1 0.0402 +i(0.9698 1 0.1205 +i(0.8795) 1 1+i(2) 1
Simulation #3 0.7802 +i(0.2198) 1 0.0220 +i(0.978) 1 0.1978 +i(0.8022) 1 1+i(2) 1
Simulation #4 0.3619 +i(0.6381) 1 0.1381 +i(0.8619 1 0.5 +i(0.5) 1 1+i(2) 1
Simulation #5 0.9909 +i(0.0091) 1 0.0015 +i(0.9985 1 0.0076 +i(0.9924) 1 1+i(2) 1
Simulation #6 0.5205 +i(0.4795) 1 0.0533 +i(0.Bu6 1 0.4262 +i(0.5738) 1 1+i(2) 1
Simulation #7 0.0651 +i(0.9349) 1 0.2349 +i(0.7651 1 0.7 +i(0.3) 1 1+i(2) 1

Table5. Computation of the real, imaginary and complex expectatiangdifierent values of gz z,, z; which are chosen at random
and the verification that we have always Ec (X),&EEx(x)
z 2 Z E(x) En(X) Ec(x)
Simulation #1 0.636 +i(0.364) 0.136 +i(0.864) ®@22i(0.772) 1.592 i(4.408) 1.592 +i(4.408)
Simulation #2 0.8393 +i(0.1607) 0.0402 +i(0.9598) 0.1205 + i(0.8795) 1.281 i(4.719) 1.281 +i(4.719)
Simulation #3 0.7802 +i(0.2198) 0.0220 +i(0.978)  .1908 +i(0.8022) 1.418 i(4.582) 1.418 +i(4.582)
Simulation #4 0.3619 +i(0.6381) 0.1381 +i(0.8619) 0.5 +i(0.5) 2.138 i(3.862) 2.138 +i(3.862)
Simulation #5 0.9909 +i(0.0091) 0.0015 +i(0.9985) 0.0076 +i(0.9924) 1.017 i(4.983) 1.017 +i(4.983)
Simulation #6 0.5205 +i(0.4795) 0.0533 +i(0.9467) 0.4262 +i(0.5738) 1.906 i(4.094) 1.906 + i(4.094)
Simulation #7 0.0651 +i(0.9349) 0.2349 +i(0.7651) 0.7 +i(0.3) 2.635 i(3.365) 2.635 +i(3.365)

Table 6. Computation of the real, imaginary and complex variancesifi@reht values of g z, zswhich are chosen at random and

the verification that we have always Vc(x) {X¥+Vm(X) -2E(X) En(X)

Z % Z3 Vi(X) Vin(X) Ve(x)

Simulation #1  0.636 i(0.364) 0.136+i(0.864) 0.22@®1t772) 0.6975 19.43+i(10.77) 20.13+i(-3.267)
Simulation #2  0.8393+i(0.1607)  0.0402+ i(0.9598) 1205+ i(0.8795) 0.4431 22.27+i(11.92) 22.71+ 7®B1)
Simulation #3  0.7802+i(0.2198)  0.0220+ i(0.978) ar8+i(0.8022) 0.6388 21+i(11.35) 21.64+i(-1.64)
Simulation #4  0.3619+i(0.6381)  0.1381+i(0.8619) 5+0i(0.5) 0.8428 14.91+i(8.586) 15.76+i(-7.929)
Simulation #5  0.9909+i(0.0091)  0.0015+ i(0.9985) 0076+ i(0.9924) 0.03162 24.83+i(12.93) 24.86+3(2)
Simulation #6 ~ 0.5205+i(0.4795)  0.0533+i(0.9467) 4282+ i(0.5738) 0.9378 16.76+i(9.431) 17.7+i(#)]
Simulation #7  0.0651+i(0.9349)  0.2349+i(0.7651) 7+0i(0.3) 0.362 11.32+i(6.695) 11.69+i(-11.04)

Table 7. The resultant complex random vector Z;+z+...z+...+2zy, with 1<j<N and the verification of the law of large numbers

Pc
Simulation #1 1 1+i(0) 1+i(0) 1 0 1
Simulation #2 2 0.5+i(0.5) 1+i 0.5 -0.5 1
Simulation #3 3 0.3333 +i(0.6667) 1+i(2) 0.5556  0.4444 1
Simulation #4 5 0.2 +i(0.8) 1+i(4) 0.68 -0.32 1
Simulation #5 10 0.1 +i(0.9) 1+i(9) 0.82 -0.18 1
Simulation #6 100 0.01 +i(0.99) 1 +i(99) 0.9802 .0198 1
Simulation #7 1000 0.001 +i(0.999) 1+i(999) 0.093 -0.001998 1
Simulation #8 10000 0.0001 + i(0.9999) 1 +i(9999) .9998 -0.0002 1
Simulation #9 100000 1e-005 +i(0.99999) 1 +i(99999 0.99998 -2.00E-05 1
Simulation #10 1000000 1e-006 + i(0.999999) 1 +9@ED) 0.999998 -2.00E-06 1
Simulation #11 1E+09 1e-009 +i(0.999999999) 1 99®99999) 0.999999998 -2.00E-09 1
Simulation #12 18 =le+12 le-012+i(1) 1+i(le+012) m -2e-01ZD 1
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9. CONCLUSION |z|2 The degree of our knowledge of the random
experiment, it is the square of the norm of z.
The chaotic factor of z

The resultant complex random vector

In this study | have elaborated the new field of Chf
“Complex Statistics” which is an original paradighmat z
was initiated in my first paper on the expansion of |Zf
Kolmogorov’s system of axioms. | have defined ilsth N2
study a new powerful tool which is the conceptioét  Chf
complex random vector that is a vector represeritieg N?
real and the imaginary probabilities of an outcome, i
identified in the added axioms as being the term z E;
P+P.,. Then | have defined and expressed the resultanEnm
complex random vector as the vector which is tha i EC Expectation in the complex set C
all the complex random vectors and representing theVr Variance in the real set R
whole distribution and system in the complex spgcé ~ Vm Variance in the imaginary set M
have illustrated this methodology by considering a Variance in the complex set C
Bernoulli distribution, then a discrete distributiavith N
random variables as a general case. Afterward,ve ha
determined the characteristics (expectation annee)

= The degree of our knowledge of Z

The chaotic factor of Z

The imaginary number whergs -1
Expectation in the real set R
Expectation in the imaginary set M

<
o
|
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