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ABSTRACT

Inaccuracy of a kernel function used in SupporttgeMachine (SVM) can be found when simulated with
nonlinear and stationary datasets. To minimiseetiner, we propose a new multiclass SVM model using
mean reversion and coefficient of variance algaritto partition and classify imbalance in datasBg.
introducing a series of test statistic, simulatiohshe proposed algorithm outperformed the pertoroe of
the SVM model without using multiclass SVM model.

Keywords: Support Vector Machine, Multiclass, Mean Reversiooefficient of Variance

1. INTRODUCTION Poterba and Summers (1988) and Lo and Mackinlay
(1988) compared the relative variability of retuimger
1.1.Background on Mean Reverson and different time horizons using the variance ratio in
Coefficient of Variance discrete time series. Bali and Demirtas (2008) icorgd
these reports by showing that in a ‘high variance’
There are many definitions of mean reversion. In scenario and using the mean reversion concept could
general, it is an asset model, which shows thattiset cause negative drift. Using regression tests, Fanth
price tends to fall (or rise) after hitting a maxim (or French (1992) determined the correlation with curye
minimum). The process of mean reversion is a log-asset returns, while Chen and Jeon (2000) meastsred
normal diffusion, but the variance does not growing mean reversion behaviour and found that the returns
proportion to the time interval (Pillay and O’'Hagf11). were positively autocorrelated over shorter peribds
The variance grows at the start and sometimes itnegatively autocorrelated over longer periods. To
stabilises at a certain value. The most basic mearmmeasure imbalance in multiclass datasets, Ciestak a
reversion model is the (arithmetic) (Uhlenbeck and Chawla (2009) recommended to use flioent of
Ornstein, 1930). This model is a stochastic proggts Variance to solve the problem. Diebold (2004) also
stationary, Gaussian and Markovian distribution asd reported mean reversion using fractional unit-root
to describe the velocity of a massive Brownianipkrt  analysis of real exchange rates under the golddatdn
under the influence of friction. In the other apgeh, Diebold (2004)showed that the power of the test for
Zhao et al. (2011) introduced AR process where the mean reversion could be raised.
value drifted to its mean in the long run. Currgntvo 4 5 pasyaraund on One-Againgt-All and One-
main methodologies are used for measuring the mean Adainst- :
. ; . . . " ) gainst-One Strategies
reversion, i.e., (i) variance ratio and (ii) regies.
Cochrane (1988) has used the variance ratio to uneas The two commonly used simple decomposing
the relative importance of the random walk compénen strategies are: (i) One-against-all approach coaotsr
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binary SVM classifiers, each of which separates onecharacteristics of the IMF must meet two conditions
class from all the rest. The SVM is trained with the First, in the entire dataset the number of extrema
training examples of a class with positive labeid all (maxima plus minima) and number of zero crossings
the others with negative lables; and (ii) the “One- must either be the same or differ by at most one.
Against-One”, which builds one SVM for each pair of Second, at any point the mean values of the eneslop
classes (Chen et al., 2009). More complex defined by the local maxima and the local minima
decomposition methods employing Error Correcting must be zero (Huang and Shen, 2005). The EMD
Output Codes (ECOC) have been introduced (Dietteric algorithm, which is fundamental to the HHT, canghu

and Bakiri, 1995; Allweinet al:, 2005). Hsu and Lin  (edquce high-frequency noise from input data, sueh a
(2002) compared several multiclass SVM methods. The,gise from retail trades on a stock exchange.

conclusion from their works is that “One-Againstédn
is more practical, because the training procegsicker.  1.4. Objective
Rifkin and Klautau (2004) disagreed with Allweghal.
(2005) that “One-Against-One” and other ECOC were
more accurate than the “One-Against-All" strategy,
arguing that the “One-Against-All" strategy war as
accurate as any other approach by assuming that th
SVMs are well tuned. Rifkin and Klautau (2004)
concluded that a simple scheme such that One-Agains
All and One-Against-One was preferable to a highly

complex ECOC methods. 2 MATERIALSAND METHODS
1.3. Background on the EMD Algorithm
2.1. SVM Modél

The analysis of nonlinear and nonstationary data is
important in many applications such as bioinformsti There are several methods used for data
(Shiet al., 2008; Huangt al., 1996), signal processing classification, one of them being SVM. Let x be a
(Huang et al., 1998; Huang and Attoh-Okine, 2005; Vector in a vector space. A boundary hyperplane is
Huang and Shen, 2005), geophysics (Werg., 1990; ~ €xpressed as one of the hyperplanes:
Datig and Shlurmann, 2004) and finance (Huang and
Attoh-Okine, 2005; Guhathakurtaet al., 2008).
Huanget al. (1996) formulated an a posteriori algorithm Where:
With adaptive control over a ;eparate data stractur W = A.Weight coefficient vector and
\(Nthl-lc'P) \Ev:Sa:\athtr ;emlegzg)he_rﬁélbﬁ:ﬁléazgcc;r;]aegs';%;m b = A bias term. The distance between trainingamsct

u y . \ o A

limitations of the Hilbert transform, which is only X ]:Ic')rlllgwl;:oundary, called margin, Is expressed  as
suitable for a narrow band-pass signal. The kemeis
of the HHT algorithm is the EMD, in which any
complicated dataset can be decomposed into a finide
often small nhumber of Intrinsic Mode Functions (I8)JF
that allow a well-behaved Hilbert transform. Sirtbés . .
decomposition is based on the local charactertstie Since the hyperplanes expressed by Equation 1
scale of the data, it is applicable to nonlinead an Wherg w a_md b are _multlplled by a common consta}nt
nonstationary processes (Huang and Attoh-Okine5R00 are |de_nt|cal, we mtroducg a restriction to this
In signal processing, high-frequency noises fromputn expression, as follows Equation 3:
data are considered simple intrinsic mode osaltesti g
(Huang and Attoh-Okine, 2005). The EMD uses argifti mi'““"’ x+b=1 ®3)
process and curve spline technique to decompose a
signal into a new oscillatory signal termed the IMF The optimal boundary maximizes the minimum of
After a number of decomposition iterations, the Equation 2. By the restriction of Equation 3, tlhss

This study presents a novel multiclass SVM model
using mean reversion and coefficient of variance
algorithm to partition and classify the datasetsj then
introduce SVM to measure their performance. For
verification, we compared to the multiclass SVM rabd
with another SVM model that was without mean
reversion and coefficient of variance algorithm.

w'x+b=0 Q)

)
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1

w'w

reduced to maximisation 9#1— = . As a result, the

Jwl?
underlying optimisation is formalised as Equation 4
Minimize w'w (4)
subject to y(w'x+b)=1.
where, yis 1 if x belongs to one set and ig-1if X
belongs to the other set. If the boundary classiflee
vectors correctly, then;y(w'x+b)=0, of which it is
identical to the margin.
This conditional optimisation is achieved by

Lagrange’s method of indeterminate coefficient. iDef
a function:

L(W,b,ai):%wTw—Zai[yi(wa+ b)—l} (5)

where,q; =0 are the indeterminate coefficients. If w and
b take the optimal value, the partial derivatives zero:

0 oL

L_ o __
E_W iZ‘Jiyi " 3 iZ‘Jiyi

(6)

By setting the derivatives of Equation 6 to zere w
obtain:

UEDICAR (7)

Zi:(J(iyi =0 (8)
Rewriting Equation 5, we obtain:

L(W,b,ai):%wTw—Zaiyin)g —bZaiy+Zq , 9)

Substituting Equations 7-9, we obtain Equation 10:
1 T
L(w,b,a;) :E[Za‘y‘ X J (Zai ¥ % ]
i i
;
gz o3

1 7
:EZZaiaj yyX x+ Zq

(10)

The contribution of the second term of Equation 5
should be minimised versus L should be maximised K
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subject toa. Consequently, the optimisation is reduced
to a quadratic programming problem as follows:

Maximize—%zzaiaj ¥YX %+
i i

subjectt® a; y= 0,a,= 0

(11)

Let @ be a transformation to a higher dimensional
space. The transformed space should satisfy that th
distance is defined in the transformed space andistance
has a relationship to the distance in the origipaice. The
kernel function K(x,X’) is introduced for satisfginthe
above conditions. The kernel function satisfies:

(12)

The above Equation 12 indicates that the kernel
function is equivalent to the distance between a &h
measured in the higher dimensional space transfbrme
by ®. If we measure the margin by the kernel function
and perform the optimisation, a nonlinear boundary
obtained. Note that the boundary in the transformed
space is obtained as:
w'd(x)+b=0 (13)

Substituting Equation 7 into the above Equation 13
while replacing x withd(x), we obtain:

Zaiyiqb(xf)q)(x)+b=zi:a,yK()g,X)+b=0 (14)

The optimisation function of Equation 11 in the
transformed space is also obtained by substituting
x'x;  with K(x,x). These results mean that all the
calculation can be achieved by using ik only and we
do not need to know whab or the transformed space
actually is.

A sufficient condition for satisfying Equation 14 i
that K(x,x) is positive definite. Several examples of
such kernel functions are known, as follows: (Lajda
kernel function) Equation 15:

(x.x") =exp(-a] x- X]) (15)
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2.2.Data Classification Usng Mean Reversion
and Coefficient of Variance Algorithm

We present a novel multiclass model for use with th
SVM family using mean reversion and coefficient of
variance algorithm to partition and classify thendi
horizon (span) of multiclass datasets, respectivily
practice, the typical curve of exchange rates tendift
towards the mean, so the point of reversal canskd to
determine changes in its direction, i.e., from amown
and vice versa. The datasets are then partitiohedea
reversal point using the mean reversion algoritivirich
later explained, as a decision tool.
deviations of a nonstationary datasets are noséme,
SO we measure the datasets between each revens& po

and input them into a SVM model. The procedure for
reversion and coefficient of variance

using mean
algorithm are as follows:

» Compute the meam, (t) of random variables Xt)
e Compute the variance\(t) of V, (t)
» After normalising each Y(t) usingp, (t), we obtain
Vi(t)
M, (1)
* In an upward scenario where;(Yj<V,(t),..,n or a
downward scenario where
Vo) Vi(B) o Va(D) | V(D)
() () Kt ()
point on the x-axis and denote it as,M.e., the

, mark the intercept

value is X, (t) where r =1,2,..,c and c is the last class

using coefficient of variance equationcv(:E
1]

where CV is coefficient of variance) or
Hooa() K, (1)
the x-axis

do not use the intercept point on

* Repeat 4) and stop Whe\lili% is the last data point

(n). Next, plot M,...,M,
e« Compute CV for the data X(t) in blocks of M,
M,,..,M, where n-1 is the number of partitions/blocks

The original datasets Xt) was classified in different
classes of coefficient of varaince and termed toczés.
The next step aims to simulate ¥) individually using

the SVM model for each CV group. As a result, these
in each SVM

multiple sets of kernel parameters
simulation are created; we then integrate all tloeks
partitioned by the CV.
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2.3. Cross Validation M ethods

Schneider and Moore (1997) classified model
evaluation into many methods, e.g., judging the @hod
quality based on the residuals, black box modelcsiein
and cross-validation. According to their reporteyss-
validation is a model evaluation method that separa
training and test data, which uses the test datestothe
performance after the training data were computed b
statistical model. Cross-validation uses the foilgy
three main methods.

The standard2.3.1. Holdout

The Holdout method is the simplest type of cross-
validation. The datasets is separated into two: sbés
training set and the test set. The estimation mfigethe
training set only and leaves the test data blinde T
performance of the Holdout method can be quantified
using a variety of test statistic, i.e., MSE, MAE,
MAPE, R, AIC and BIC. This method is usually
preferable to the residual method and it does thké
much no longer to compute. However, its evaluation
can have a high variance, which may depend greatly
on how the training and test data are divided.his t
study, we select and divide datasets using differen
ratios of the training data and test data, i.e..,7G0
50:50 and 70:30, respectively.

2.3.2. K-Fold

K-fold was proposed to improve the Holdout method.
The K-fold method divides the entire datasets ihto
subsets and uses the Holdout method k times. Ih eac
subset, the training data are computed using théemo
and tested with the test data. Thus, the average isr
computed across all k trials. The advantage of this
method is that it is less important how the data is
divided. Every data point is used in the test seicty
once and in a training set k-1 times. The variaofcthe
estimate is reduced to k is increased. The disdadgarof
this method is that the training algorithm has éorérun
from scratch k times, which means it requires kesnas
many computation to make an evaluation. A varignt o
this method is to randomly divided the data inttest
and training set k different times.

2.3.3. Leave-One-Out

The name Leave-one-out explains itself. This method
applies bootstrap sampling by taking one partidatq
unit) out of the overall training and test dataseereas

JMSS
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the remaining data are used for reference. Therdaga
is that the accuracy of the outcome but this idedaoff

by the massive computational power requirementsnwhe
handling large input datasets. Moreover, this metthas
designed only for model evaluation or in-sample
forecasting so it is rather difficult to apply thigethod to
out-of-sample forecasting.

2.4. The OAO and OAA Strategies

In general, the multiclass SVM is an ongoing
research issue and it can be fundamentally clasiifi
using two different strategies: (i) OAA consists of *
building one SVM per class and trains it while tiest
of the training data remains as the other classaied
‘All'. The method of building the ‘One’ class isefkible
depending upon the structure of datasets and @GpO
is similar to the OAA strategy except the ‘All' slais
individually  partitioned into  subclasses. The
discrimination of OAA strategy between an informoati  *
class and all others often leads to the estimatibn
complex discriminant functions (Schneider and Moore ¢
1997). In brief, the OAO decomposes the original
problem into a set of small problems of two
information classes with n(n-1)/2 binary SVMs. hist
study, we have selected mean reversion and caaffici
of vraince algorithm for selecting the training alat .

3.RESULTS

The simulations were conducted on a personal canput
with clock frequency at 2.50GHz, Intel® cBt8 i5-3210
M CPU and 8 GB of RAM. All the SVMs were trained
with R programming software (Kim and Oh, 2012). Wge
all kernel functions i.e., Gaussian, polynomiahedr,
Laplace, Bessel and ANOVA RBF; then, select the bes
performance out of those functions.

With respect to Materails and Methods, we
introduced theoretical considerations related &©SVM
model and its background in supervised learningiend
structure risk minimisation. We also selected tluddidut .
model, which is part of the model evaluation used t
segregate training and test datasets, before ipaitity
them using the mean reversion and coefficient of
variance algorithm. This technigque is novel and itsed
to construct a multiclass for the SVM family.

3.1. Simulation Procedure

We describe the simulation procedure used by the
multiclass SVM model, as shownkiig. 1. The systematic
order of the workflow is as follows:
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Retrieve 2322 datasets, EUR-USD exchange rates
from Bloomberg terminal from 2001 to 2011
Demonstrating ifFig. 1, we use the Holdout method

to separate the datasets into the training and test
data. After separation, each group has a ratio of
30:70, 50:50 and 70:30. The 30% of the datasets are
used as out-of-sample forecasting

At the reversal point of the curves resulted frdm t
mean reversion technique described in 2.2, we use
CV to classify each group of dependent variables
and yields a number of sub-groups

From (3) for each sub-group we simulate the
multiclass SVM model using the R programming
software (Kim and Oh, 2012). This fits the
multiclass kernel functions and parameters for
each subgroup. During this stage, we obtain many
kernel parameters for each group partitioned, as
shown inTable 1

Integrate all of the results from (4) in the timr@ies
domain. Finally, we produce a new classified dégase
Quantify the performance of the multiclass SVM
model using a variety of test statistic, i.e., MSRAE,
MAPE, R, AIC, BIC and Accuracy counts which
measures upward and downward movements of each
local data point of the newly simulated datasets
Robustness test of the Multiclass SVM model with
OAA and OAO strategies: From (3) afdble 1,

we assign the first CV class to ‘One’ and the
remaining classes to ‘All' as per the OAA strategy.
Additionally, we select the second CV class and
assign to ‘One’ and the remaining classes to ‘All’
and so on. Alternatively, we introduce OAO
strategy; thus, the pairing of multiclass is atofob:

a) Class 1 and Class 2, Class 1 and Class 3,...,
Class 1 and n where n is the last Class

b) Class 2 and Class 3, Class 2 and Class
4,...,Class 2 and Class n; until the final when

¢) Class n-1 and Class n

For the One-Against-All strategy, we compare
simulation results of the data points, which are
located in the correct classes with the results {{5);

and then analyse the percentage of error. For tiee O
Against-One strategy, use the outcomes from each
paring to vote for the best performance in eacéscla

3.2. Simulation Results

Using procedures in 3.1, we retrieved the original
datasets. The next step was to introduce the Holdou
method to segregate the training and test datagusin
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different ratios,
introduced the mean
variance algorithm to partition and classify thaining
data, respectively. We intended to leave the tast tb

i.e., 30:70, 50:50 and 70:30. We Laplacian kernel functions and parameters, in ciuh
reversion and coefficient of there were six CV classes in 48 blocks/partitiomd each

block had a different number of data points.

Table 4 shows the CV classes including the

be used as reference in order to compare with theLaplacian kernel functions and parameters. At stege,

predicted outcome from the SVM simulation. As autes
48 blocks/partitions were separated into six C\6%4s,
at which are shown iTable 1. We then grouped each
CV class and simulated them with the SVM
classification model using R Programming scriptém(K
and Oh, 2012). The simulated are showmable 2-6.

Table 1 was used to plot a graph aRid). 2 illustrates
the distribution of the six CV classes where ihaxis
represented 50 blocks/partitions and theaxis
represented the CV values of the different classbs.
figures in brackets show the number of data pgiats
CV class and they were re-displayedTiable 4. Each
block/partition contained different numbers of data
points, depending on the change in the curve dinect
i.e., upward to downward or vice versa.

At this point, we had classified datasets into iiaks.
The next step was to run simulations of the SVM ated
The results of those simulations ard able 3.

We fitted the kernel distribution functions and
their parameters. The outcomes shownTiable 2
using different sets of kernel functions, i.e., iedd
polynomial, linear, Laplacian, hyperbolic, Bessada
ANOVA RBF, were different. Moreover, the number
of support vectors, parameters and training errerew
presented inFig. 2. Definitions of the parameters
given in theTable 2 are as follows:

we completed simulations required for building tne t
training data.

Referring to the SVM model for classification, we
simulated the test data, which came from the rafio
training and test data at 70:30, by using the éiin
Laplacian kernel functions and their parameterse Th
simulation results of the three datasets showhign 3,
at which thex-axis represented the number of data points
used for classification and thgaxis represented the
EUR-USD. Finally, the results demonstrated that the
graph of the multiclass SVM model in black soliddli
agreed with the graph of the original datasetsatied
blue line, whereas the graph of SVM model only was
deviated from those two graphs. To ease for pratient
the x-axis represented the test data ranking betwee
2001st to 2049th of the original datasets.

To verify the performance of the multiclass usihg t
mean reversion and coefficient of variance algaritive
plotted three graphs, which showed the simulatésulits
for the multiclass SVM model and the SVM without
multiclass algorithm (SVM model only). The two ghap
of the SVMs after simulations with and without
multiclass were significantly different, as shown i
Table 5. Using the Laplacian kernel function and a
training:test data ratio of 70:30. For example, we
compared the Accuracy count which was 79.88%,
whereas the SVM model without the multiclass

* Sigma: the inverse kernel width used by the Radial, 51gorithm measured by Accuracy count of 73.21%.

Gaussian, Laplacian, Bessel and ANOVA RBF
kernel functions

» Degree: the degree of the polynomial, Bessel or

ANOVA RBF kernel functions, i.e., a positive
integer

e Scale: the scaling parameter of the polynomial an
tangent kernel functions is a convenient way of

Finally, we measured the performance of the malssl|
SVM model comparing with the SVM model only by
using the test statistic, i.e., MSE, MAE, MAPE, RIC
and BIC. The results inrable 5. showed that the

dproposed model outperformed the performance of the

simulation from the SVM model only.

» normalising patterns without any need to modify the 3 3. Robustness Test

data itself

» Offset: the offset used in polynomial or hyperbolic
tangent kernel functions

» Order: the order of the Bessel function

Next, we used the test statistic, i.e., MSE, MAHE an
MAPE, to measure the performance of each kernetitm
in all CV classes of the datasets. The resultsgivé able
3 show that the Laplacian kernel functions perforniesl
best. Having successfully simulated the SVM with
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We reintroduced the same R Programming software
application, which was used to generate the reshtiswn
in the figures indicated in th€able 3-4, to simulate the
OAA and OAA strategies. The simulation procedures wa
similar to the procedures in 3.1 of which the inpata
were four different exchange rates, namely; EUR-USD
EUR-CNY, EUR-RUB and EUR-CHF. It is noted that
each input dataset contained 2322 data point vettie
from Bloomberg terminal from 2001 to 2011.
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Tablel. Classification of the CV class ranking for eachdilathe CV and their related values and the numbéftocks created by
mean reversion algorithm

Block no. Rankin CV class number No. of data point CV value
1 Btto 12" 2 12 0.02592
2 13"to 16" 1 4 0.02278
3 17"to 23¢ 2 7 0.02592
4 24"to 25" 1 2 0.02278
5 26" to 26, 2 1 0.02592
6 27" to 38" 1 12 0.02278
7 39" to 46" 2 8 0.02592
8 47" to 18 1 135 0.02278
9 182910 184" 2 3 0.02592
10 184" to 36T 1 177 0.02278
11 3629to 504" 2 143 0.02592
12 504" to 508" 3 1 0.02077
13 508" to 508" 2 1 0.02592
14 507" to 603¢ 3 97 0.02077
15 604" to 656" 4 53 0.05361
16 657" to 657" 3 1 0.02077
17 654" to 658" 2 1 0.02592
18 659"to 680" 4 22 0.05361
19 68F to 696" 3 16 0.02077
20 697" to 70F" 4 5 0.05361
21 7029to 7024 3 1 0.02077
22 703 to 1748 4 1046 0.05361
23 1749 to 1749 5 1 0.01840
24 1750 to 1756 4 1 0.05361
25 17580 1759 5 9 0.01840
26 176 to 1766 4 1 0.05361
27 176% to 186 F 5 101 0.01840
28 17629101978 6 217 0.01259
29 1980 to 200£! 5 22 0.01840
30 2002%o 2003° 4 2 0.05361
31 2004 to 2014 5 13 0.01840
32 201#to 207% 4 55 0.05361
33 2072%t0 207 5 2 0.01840
34 2074'to 2188 4 115 0.05361
35 2084 to 219% 5 105 0.01840
36 2194 to 2197 4 4 0.05361
37 2198'to 219¢" 5 1 0.01840
38 2194 to 2214" 4 13 0.05361
39 2218t0 2219 5 1 0.01840
40 2218'to 222% 4 9 0.05361
41 2229%t0 223F 5 10 0.01840
42 223990 223% 4 2 0.05361
43 2234'to 2244 5 11 0.01840
44 224%'to 224% 4 1 0.05361
45 2248'to 2314 5 71 0.01840
46 231110 2317" 6 1 0.01259
47 2318'to 2328 5 3 0.01840
48 232%to 23221 6 1 0.01250
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Table 2. Kernel functions for each CV class

Class of kernel  No. of Objective Training
functions support vectors  Sigma Degree Scale Offset Order function value error
Radial

1 77 0.09 N.A. N.A. N.A. N.A. -18.62 0.02
2 53 0.16 N.A. N.A. N.A. N.A. -13.34 0.03
3 38 0.17 N.A. N.A. N.A. N.A. -7.91 0.01
4 265 0.12 N.A. N.A. N.A. N.A. -46.51 0.01
5 51 0.44 N.A. N.A. N.A. N.A. -27.54 0.12
6 28 0.07 N.A. N.A. N.A. N.A. -12.14 0.05
Polynomial

1 53 N.A. 1.00 1.00 1.00 N.A. -13.50 0.03
2 30 N.A. 1.00 1.00 1.00 N.A. -9.51 0.03
3 23 N.A. 1.00 1.00 1.00 N.A. -2.26 0.01
4 196 N.A. 1.00 1.00 1.00 N.A. -108.63 0.13
5 40 N.A. 1.00 1.00 1.00 N.A. -38.47 0.41
6 23 N.A. 1.00 1.00 1.00 N.A. -4.87 0.03
Linear

1 53 N.A. N.A. N.A. N.A. N.A. -13.50 0.03
2 30 N.A. N.A. N.A. N.A. N.A. -9.51 0.03
3 23 N.A. N.A. N.A. N.A. N.A. -2.26 0.01
4 196 N.A. N.A. N.A. N.A. N.A. -108.63 0.13
5 40 N.A. N.A. N.A. N.A. N.A. -38.47 0.41
6 23 N.A. N.A. N.A. N.A. N.A. -4.87 0.03
Laplacian

1 73 0.08 N.A. N.A. N.A. N.A. -26.78 0.02
2 42 0.13 N.A. N.A. N.A. N.A. -17.01 0.06
3 39 0.19 N.A. N.A. N.A. N.A. -9.67 0.01
4 372 0.12 N.A. N.A. N.A. N.A. -59.43 0.01
5 46 0.16 N.A. N.A. N.A. N.A. -35.79 0.25
6 25 0.09 N.A. N.A. N.A. N.A. -16.76 0.17
Hyperbolic

1 49 N.A. N.A. 1.00 1.00 N.A. -431.65 110.29
2 26 N.A. N.A. 1.00 1.00 N.A. -140.27 51.68
3 18 N.A. N.A. 1.00 1.00 N.A. -48.33 12.76
4 188 N.A. N.A. 1.00 1.00 N.A. -7391.51 2373.01
5 36 N.A. N.A. 1.00 1.00 N.A. -197.83 65.98
6 19 N.A. N.A. 1.00 1.00 N.A. -53.53 16.25
Bessel

1 70 1.00 1.00 N.A. N.A. 1.00 -29.68 0.07
2 41 1.00 1.00 N.A. N.A. 1.00 -15.55 0.07
3 28 1.00 1.00 N.A. N.A. 1.00 -8.57 0.02
4 41 1.00 1.00 N.A. N.A. 1.00 -15.55 0.07
5 42 1.00 1.00 N.A. N.A. 1.00 -32.32 0.21
6 29 1.00 1.00 N.A. N.A. 1.00 -12.95 0.07
ANOVA RBF

1 92 1.00 1.00 N.A. N.A. N.A. -10.62 0.01
2 60 1.00 1.00 N.A. N.A. N.A. -5.42 0.01
3 50 1.00 1.00 N.A. N.A. N.A. -2.53 0.00
4 50 1.00 1.00 N.A. N.A. N.A. -2.53 0.00
5 56 1.00 1.00 N.A. N.A. N.A. -18.71 0.06
6 44 1.00 1.00 N.A. N.A. N.A. -4.81.00 0.01
Table 3. Performance evaluation for all kernel functions

Kernel function MSE MAE MAPE
Radial 3.84E-05 0.0048831 0.375369
Polynomial 0.000520 0.0159646 1.212167
Linear 0.000520 0.0159676 1.212442
Laplacian 3.24E-05 0.0046254 0.360253
Hyperbolic 6.192284 1.5028091 113.5211
Bessel 0.000483 0.0128695 0.985140
ANOVA RBF 0.000103 0.0072116 0.547114
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Table4. Details of the number of blocks per CV class,gheameters of the CV class and its value

Class Blocks Parameter of Laplacian kernel fumctio cVv

1 5 F(w,x) = W exp(-0.880257537388077 || x-x'||)+b 0.02278
2 8 F(w, x) = wW exp(-0.126109678105003 || x-x'||)+b 0.02592
3 5 F(w, X) = W exp(-0.1872440577155 || x-X||)+h 0.02077
4 14 F(w, X) = Wexp(-0.120770384940063 || x-x'||)+b 0.05361
5 13 F(w, X) = Wexp(-0.156375637970856 || x-X'||)+b 0.01840
6 3 F(w, x) = w exp(-0.880257537388077 || x-X||)+b 0.01259

Table5. Simulation results using the multiclass SVM mocd@mnpared with simulations using the SVM model withmulticlass
(SVM only), using the original dataset was the refiee

Test statistic SVM model only Multiclass SVM model
Accuracy counts

30:70 70.2600000 78.210000
50:50 70.6000000 78.9200000
70:30 73.2100000 79.8800000
MSE 0.0001429 3.242E-05
MAE 0.0098611 0.0046254
MAPE 0.6946638 0.3602532
R? 0.9827000 0.9992000
AIC -4213.8360000 -5209.8460000
BIC -4200.2000000 -5196.2180000

- ~ - N
Datasets Holdout > .C\ ; Feemimy
classification i
. J & [ J .
P * Y P s ~ I
Classified Multiclass ! !
--1 OAA or OAO (e i

datasets SVM model e &

> \ 7

Fig. 1. Diagram showing the multiclass SVM model with retmess tests using OAA and OAO strategies
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Fig. 2. Classification using mean reversion aaefficient of variance algorithm
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Fig. 3. Performance of the multiclass SVM model compareti tie original dataset where the plot on the xs-a&presents the test
data at 2001st to 2049th of the entire datasets

Table 6. Performance comparison of the multiclass SVM mad@lg different input datasets

Input datasets Hyper-parameter Training error Aacyicount (%)

EUR-USD 22.2637271674138 0.000000 100.00

EUR-CNY 23.5910412737328 0.000862 99.78

EUR-RUB 32.3227585244721 0.000000 100.00

EUR-CHF 78.9518027969328 0.000000 100.00
In the parameter selection of the SVM simulation 5. CONCLUSION

software, we selected Laplacian kernel function and

compared the results simulations of the OAA and OAO  The multiclass algorithm for SVM model consists of
strategiesTable 6 presented performance comparison of mean reversion and coefficient of variance algarith

the multiclass SVM models using the different input using for partiion and classification nonlinear
datasets. The Accuracy count for the OAA and OAO nonstationary datasets yields a significant outgome
strategies reached to 100% for every single siradlat compared with the conventional SVM model without
input data except EUR-CNY vyielded 99.78% and the multiclass algorithm. To verify the robustness bé t

training errors of each simulation were similar. proposed algorithm, the OAA and OAO strategies were
introduced. By using a variety of test statistibe t
4. DISCUSSION simulation results using different inputs from many

) ) o exchange rates i.e., EUR-USD, EUR-CNY, EUR-RUB
The mechanism of mean reversion and coefficient Ofand EUR-CHF confirmed that the proposed multiclass

variance algorithm started by classifying each &8 4orithm outperformed significantly the simulatioof
with its mean, giving two separated groups, tert®d ine conventional SVM model.

‘mean+’ and ‘mean- ‘; and continue to divide each
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