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ABSTRACT 

Inaccuracy of a kernel function used in Support Vector Machine (SVM) can be found when simulated with 
nonlinear and stationary datasets. To minimise the error, we propose a new multiclass SVM model using 
mean reversion and coefficient of variance algorithm to partition and classify imbalance in datasets. By 
introducing a series of test statistic, simulations of the proposed algorithm outperformed the performance of 
the SVM model without using multiclass SVM model.  
 
Keywords: Support Vector Machine, Multiclass, Mean Reversion, Coefficient of Variance  

1. INTRODUCTION 

1.1. Background on Mean Reversion and 
Coefficient of Variance  

There are many definitions of mean reversion. In 
general, it is an asset model, which shows that the asset 
price tends to fall (or rise) after hitting a maximum (or 
minimum). The process of mean reversion is a log-
normal diffusion, but the variance does not growing in 
proportion to the time interval (Pillay and O’Hare, 2011). 
The variance grows at the start and sometimes it 
stabilises at a certain value. The most basic mean 
reversion model is the (arithmetic) (Uhlenbeck and 
Ornstein, 1930). This model is a stochastic process with 
stationary, Gaussian and Markovian distribution and use 
to describe the velocity of a massive Brownian particle 
under the influence of friction. In the other approach, 
Zhao et al. (2011) introduced AR process where the 
value drifted to its mean in the long run. Currently, two 
main methodologies are used for measuring the mean 
reversion, i.e., (i) variance ratio and (ii) regression. 
Cochrane (1988) has used the variance ratio to measure 
the relative importance of the random walk component. 

Poterba and Summers (1988) and Lo and Mackinlay 
(1988) compared the relative variability of returns over 
different time horizons using the variance ratio in 
discrete time series. Bali and Demirtas (2008) confirmed 
these reports by showing that in a ‘high variance’ 
scenario and using the mean reversion concept could 
cause negative drift. Using regression tests, Fama and 
French (1992) determined the correlation with currency 
asset returns, while Chen and Jeon (2000) measured its 
mean reversion behaviour and found that the returns 
were positively autocorrelated over shorter periods but 
negatively autocorrelated over longer periods. To 
measure imbalance in multiclass datasets, Cieslak and 
Chawla (2009) recommended to use Coefficient of 
Variance to solve the problem. Diebold (2004) also 
reported mean reversion using fractional unit-root 
analysis of real exchange rates under the gold standard. 
Diebold (2004) showed that the power of the test for 
mean reversion could be raised.  

1.2. Background on One-Against-All and One-
Against-One Strategies  

The two commonly used simple decomposing 
strategies are: (i) One-against-all approach constructs 
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binary SVM classifiers, each of which separates one 
class from all the rest. The SVM is trained with all the 
training examples of a class with positive labels and all 
the others with negative lables; and (ii) the “One-
Against-One”, which builds one SVM for each pair of 
classes (Chen et al., 2009). More complex 
decomposition methods employing Error Correcting 
Output Codes (ECOC) have been introduced (Dietterich 
and Bakiri, 1995; Allwein et al., 2005). Hsu and Lin 
(2002) compared several multiclass SVM methods. The 
conclusion from their works is that “One-Against-One” 
is more practical, because the training process is quicker. 
Rifkin and Klautau (2004) disagreed with Allwein et al. 
(2005) that “One-Against-One” and other ECOC were 
more accurate than the “One-Against-All” strategy, 
arguing that the “One-Against-All” strategy war as 
accurate as any other approach by assuming that the 
SVMs are well tuned. Rifkin and Klautau (2004) 
concluded that a simple scheme such that One-Against-
All and One-Against-One was preferable to a highly 
complex ECOC methods.  

1.3. Background on the EMD Algorithm 

The analysis of nonlinear and nonstationary data is 
important in many applications such as bioinformatics 
(Shi et al., 2008; Huang et al., 1996), signal processing 
(Huang et al., 1998; Huang and Attoh-Okine, 2005; 
Huang and Shen, 2005), geophysics (Wang et al., 1990; 
Datig and Shlurmann, 2004) and finance (Huang and 
Attoh-Okine, 2005; Guhathakurta et al., 2008).    
Huang et al. (1996) formulated an a posteriori algorithm 
with adaptive control over a separate data structure, 
which was later termed the Hilbert-Huang Transform 
(HHT) (Huang et al., 1998). The HHT overcomes the 
limitations of the Hilbert transform, which is only 
suitable for a narrow band-pass signal. The key element 
of the HHT algorithm is the EMD, in which any 
complicated dataset can be decomposed into a finite and 
often small number of Intrinsic Mode Functions (IMFs) 
that allow a well-behaved Hilbert transform. Since this 
decomposition is based on the local characteristic time 
scale of the data, it is applicable to nonlinear and 
nonstationary processes (Huang and Attoh-Okine, 2005). 
In signal processing, high-frequency noises from input 
data are considered simple intrinsic mode oscillations 
(Huang and Attoh-Okine, 2005). The EMD uses a sifting 
process and curve spline technique to decompose a 
signal into a new oscillatory signal termed the IMF. 
After a number of decomposition iterations, the 

characteristics of the IMF must meet two conditions. 
First, in the entire dataset the number of extrema 
(maxima plus minima) and number of zero crossings 
must either be the same or differ by at most one. 
Second, at any point the mean values of the envelopes 
defined by the local maxima and the local minima 
must be zero (Huang and Shen, 2005). The EMD 
algorithm, which is fundamental to the HHT, can thus 
reduce high-frequency noise from input data, such as 
noise from retail trades on a stock exchange. 

1.4. Objective 

This study presents a novel multiclass SVM model 
using mean reversion and coefficient of variance 
algorithm to partition and classify the datasets; and then 
introduce SVM to measure their performance. For 
verification, we compared to the multiclass SVM model 
with another SVM model that was without mean 
reversion and coefficient of variance algorithm. 

2. MATERIALS AND METHODS 

2.1. SVM Model 

There are several methods used for data 
classification, one of them being SVM. Let x be a 
vector in a vector space. A boundary hyperplane is 
expressed as one of the hyperplanes: 
 

Tw x b 0+ =  (1) 
 
Where: 
w = A weight coefficient vector and 
b = A bias term. The distance between training vectors  
xi = The boundary, called margin, is expressed as 

follows: 
 

T
iw x b

w

+
 (2) 

 
Since the hyperplanes expressed by Equation 1 

where w and b are multiplied by a common constant 
are identical, we introduce a restriction to this 
expression, as follows Equation 3: 
 

T

i
min w x b 1+ =  (3) 

 
The optimal boundary maximizes the minimum of 

Equation 2. By the restriction of Equation 3, this is 
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reduced to maximisation of 2 T

1 1

w ww
= . As a result, the 

underlying optimisation is formalised as Equation 4: 
 

TMinimize w w  (4) 

 
subject to yi (w

Tx+b)≥1. 
where, yi is 1 if xi belongs to one set and yi is-1if xi 
belongs to the other set. If the boundary classifies the 
vectors correctly, then yi (wTx+b)≥0, of which it is 
identical to the margin. 

This conditional optimisation is achieved by 
Lagrange’s method of indeterminate coefficient. Define 
a function: 
 

( ) ( )T T
i i i

i

1
L w,b, w w y w x b 1

2
 α = − α + − ∑  (5) 

 
where, αi ≥0 are the indeterminate coefficients. If w and 
b take the optimal value, the partial derivatives are zero: 
 

i i i i i
i i

L L
w y x , y

w b

∂ ∂= − α = − α
∂ ∂∑ ∑  (6) 

 
By setting the derivatives of Equation 6 to zero, we 

obtain: 
 

i i i
i

w y x= α∑  (7) 

 

i i
i

y 0α =∑  (8) 

 
Rewriting Equation 5, we obtain: 

 

( ) T T
i i i i i i i

i i i

1
L w,b, w w y w x b y ,

2
α = − α − α + α∑ ∑ ∑  (9) 

 
Substituting Equations 7-9, we obtain Equation 10: 

 

( )
T

i i i i j j j
i j

T

i i j j j i
i j i

T
i j i j i j i

i j i

1
L w,b, y x y x

2

                    y y x

1
                 y y x x

2

  α = α α  
   

 
− α α + α 

 

= α α + α

∑ ∑

∑ ∑ ∑

∑∑ ∑

  (10) 

 
The contribution of the second term of Equation 5 

should be minimised versus L should be maximised 

subject to α. Consequently, the optimisation is reduced 
to a quadratic programming problem as follows: 
 

T
i j i j i j i

i j i

i i i
i

1
Maximize y y x x

2

subject to y 0,  0

− α α + α

α = α ≥

∑∑ ∑

∑
 (11) 

 
Let Φ be a transformation to a higher dimensional 

space. The transformed space should satisfy that the 
distance is defined in the transformed space and the distance 
has a relationship to the distance in the original space. The 
kernel function K(x,x’) is introduced for satisfying the 
above conditions. The kernel function satisfies: 

 

( ) ( ) ( )T
K x,x x x′ ′= Φ Φ  (12) 

 
The above Equation 12 indicates that the kernel 

function is equivalent to the distance between x and x’ 
measured in the higher dimensional space transformed 
by Φ. If we measure the margin by the kernel function 
and perform the optimisation, a nonlinear boundary is 
obtained. Note that the boundary in the transformed 
space is obtained as: 

 
( )Tw x b 0Φ + =   (13) 

 
Substituting Equation 7 into the above Equation 13 

while replacing x with Φ(x), we obtain: 

 

( ) ( ) ( )T
i i i i i i

i i

y x x b y K x ,x b 0α Φ Φ + = α + =∑ ∑  (14) 

 
The optimisation function of Equation 11 in the 

transformed space is also obtained by substituting 
T
i ix x  with K(xi,xj). These results mean that all the 

calculation can be achieved by using K(xi,xj) only and we 
do not need to know what Φ or the transformed space 
actually is. 

A sufficient condition for satisfying Equation 14 is 
that K(xi,xj) is positive definite. Several examples of 
such kernel functions are known, as follows: (Laplacian 
kernel function) Equation 15: 
 

( ) ( )K x,x exp x x′ ′= −σ −  (15) 
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2.2. Data Classification Using Mean Reversion 
and Coefficient of Variance Algorithm 

We present a novel multiclass model for use with the 
SVM family using mean reversion and coefficient of 
variance algorithm to partition and classify the time 
horizon (span) of multiclass datasets, respectively. In 
practice, the typical curve of exchange rates tends to shift 
towards the mean, so the point of reversal can be used to 
determine changes in its direction, i.e., from up to down 
and vice versa. The datasets are then partitioned at the 
reversal point using the mean reversion algorithm, which 
later explained, as a decision tool. The standard 
deviations of a nonstationary datasets are not the same, 
so we measure the datasets between each reversal points 
and input them into a SVM model. The procedure for 
using mean reversion and coefficient of variance 
algorithm are as follows: 
 
• Compute the mean µn (t) of random variables Xn (t) 
• Compute the variance Vn (t) of Vn (t) 
• After normalising each Vn (t) using µn (t), we obtain 

n

n

V (t)

(t)µ
 

• In an upward scenario where V1(t)<V2(t),..,n or a 
downward scenario where  

• if 2 1

2 1

V (t) V (t)

(t) (t)
<

µ µ
 or 2 1

2 1

V (t) V (t)

(t) (t)
>

µ µ
, mark the intercept 

point on the x-axis and denote it as M1, i.e., the 
value is Xm (t) where r =1,2,..,c and c is the last class 

using coefficient of variance equation (cv
σ=
µ

 

where CV is coefficient of variance) or 

• if n 1 n

n 1 n

V (t) V (t)

(t) (t)
−

−

=
µ µ

, do not use the intercept point on 

the x-axis 

• Repeat 4) and stop when n
n

V (t)

(t)µ
is the last data point 

(n). Next, plot M2,…,Mn 
• Compute CV for the data Xm (t) in blocks of M1, 

M2,..,Mn where n-1 is the number of partitions/blocks 
 

The original datasets Xn (t) was classified in different 
classes of coefficient of varaince and termed to CV class. 
The next step aims to simulate Xn (t) individually using 
the SVM model for each CV group. As a result, these 
multiple sets of kernel parameters in each SVM 
simulation are created; we then integrate all the blocks 
partitioned by the CV. 

2.3. Cross Validation Methods 

Schneider and Moore (1997) classified model 
evaluation into many methods, e.g., judging the model 
quality based on the residuals, black box model selection 
and cross-validation. According to their reports, cross-
validation is a model evaluation method that separates 
training and test data, which uses the test data to test the 
performance after the training data were computed by a 
statistical model. Cross-validation uses the following 
three main methods. 

2.3.1. Holdout 

The Holdout method is the simplest type of cross-
validation. The datasets is separated into two sets: the 
training set and the test set. The estimation model fits the 
training set only and leaves the test data blind. The 
performance of the Holdout method can be quantified 
using a variety of test statistic, i.e., MSE, MAE, 
MAPE, R2, AIC and BIC. This method is usually 
preferable to the residual method and it does take that 
much no longer to compute. However, its evaluation 
can have a high variance, which may depend greatly 
on how the training and test data are divided. In this 
study, we select and divide datasets using different 
ratios of the training data and test data, i.e., 30:70, 
50:50 and 70:30, respectively. 

2.3.2. K-Fold 

K-fold was proposed to improve the Holdout method. 
The K-fold method divides the entire datasets into k 
subsets and uses the Holdout method k times. In each 
subset, the training data are computed using the model 
and tested with the test data. Thus, the average error is 
computed across all k trials. The advantage of this 
method is that it is less important how the data is 
divided. Every data point is used in the test set exactly 
once and in a training set k-1 times. The variance of the 
estimate is reduced to k is increased. The disadvantage of 
this method is that the training algorithm has to be rerun 
from scratch k times, which means it requires k times as 
many computation to make an evaluation. A variant of 
this method is to randomly divided the data into a test 
and training set k different times. 

2.3.3. Leave-One-Out  

The name Leave-one-out explains itself. This method 
applies bootstrap sampling by taking one particle (data 
unit) out of the overall training and test datasets whereas 
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the remaining data are used for reference. The advantage 
is that the accuracy of the outcome but this is traded-off 
by the massive computational power requirements when 
handling large input datasets. Moreover, this method was 
designed only for model evaluation or in-sample 
forecasting so it is rather difficult to apply this method to 
out-of-sample forecasting. 

2.4. The OAO and OAA Strategies 

In general, the multiclass SVM is an ongoing 
research issue and it can be fundamentally classified 
using two different strategies: (i) OAA consists of 
building one SVM per class and trains it while the rest 
of the training data remains as the other class so-called 
‘All’. The method of building the ‘One’ class is flexible 
depending upon the structure of datasets and (ii) OAO 
is similar to the OAA strategy except the ‘All’ class is 
individually partitioned into subclasses. The 
discrimination of OAA strategy between an information 
class and all others often leads to the estimation of 
complex discriminant functions (Schneider and Moore, 
1997). In brief, the OAO decomposes the original 
problem into a set of small problems of two 
information classes with n(n-1)/2 binary SVMs. In this 
study, we have selected mean reversion and coefficient 
of vraince algorithm for selecting the training data. 

3. RESULTS 

The simulations were conducted on a personal computer 
with clock frequency at 2.50GHz, Intel® core(TM) i5-3210 
M CPU and 8 GB of RAM. All the SVMs were trained 
with R programming software (Kim and Oh, 2012). We use 
all kernel functions i.e., Gaussian, polynomial, linear, 
Laplace, Bessel and ANOVA RBF; then, select the best 
performance out of those functions. 

With respect to Materails and Methods, we 
introduced theoretical considerations related to the SVM 
model and its background in supervised learning and its 
structure risk minimisation. We also selected the Holdout 
model, which is part of the model evaluation used to 
segregate training and test datasets, before partitioning 
them using the mean reversion and coefficient of 
variance algorithm. This technique is novel and it is used 
to construct a multiclass for the SVM family.  

3.1. Simulation Procedure 

We describe the simulation procedure used by the 
multiclass SVM model, as shown in Fig. 1. The systematic 
order of the workflow is as follows: 

• Retrieve 2322 datasets, EUR-USD exchange rates 
from Bloomberg terminal from 2001 to 2011 

• Demonstrating in Fig. 1, we use the Holdout method 
to separate the datasets into the training and test 
data. After separation, each group has a ratio of 
30:70, 50:50 and 70:30. The 30% of the datasets are 
used as out-of-sample forecasting 

• At the reversal point of the curves resulted from the 
mean reversion technique described in 2.2, we use 
CV to classify each group of dependent variables 
and yields a number of sub-groups 

• From (3) for each sub-group we simulate the 
multiclass SVM model using the R programming 
software (Kim and Oh, 2012). This fits the 
multiclass kernel functions and parameters for 
each subgroup. During this stage, we obtain many 
kernel parameters for each group partitioned, as 
shown in Table 1 

• Integrate all of the results from (4) in the time series 
domain. Finally, we produce a new classified datasets. 

• Quantify the performance of the multiclass SVM 
model using a variety of test statistic, i.e., MSE, MAE, 
MAPE, R2, AIC, BIC and Accuracy counts which 
measures upward and downward movements of each 
local data point of the newly simulated datasets 

• Robustness test of the Multiclass SVM model with 
OAA and OAO strategies: From (3) and Table 1, 
we assign the first CV class to ‘One’ and the 
remaining classes to ‘All’ as per the OAA strategy. 
Additionally, we select the second CV class and 
assign to ‘One’ and the remaining classes to ‘All’ 
and so on. Alternatively, we introduce OAO 
strategy; thus, the pairing of multiclass is as follows:  

a) Class 1 and Class 2, Class 1 and Class 3,…, 
Class 1 and n where n is the last Class 

b) Class 2 and Class 3, Class 2 and Class 
4,…,Class 2 and Class n; until the final when 

c) Class n-1 and Class n 

• For the One-Against-All strategy, we compare 
simulation results of the data points, which are 
located in the correct classes with the results from (5); 
and then analyse the percentage of error. For the One-
Against-One strategy, use the outcomes from each 
paring to vote for the best performance in each class 

3.2. Simulation Results 

Using procedures in 3.1, we retrieved the original 
datasets. The next step was to introduce the Holdout 
method to segregate the training and test data using 



Bhusana Premanode et al. / Journal of Mathematics and Statistics 9 (3): 208-218, 2013 

 
213 Science Publications

 
JMSS 

different ratios, i.e., 30:70, 50:50 and 70:30. We 
introduced the mean reversion and coefficient of 
variance algorithm to partition and classify the training 
data, respectively. We intended to leave the test data to 
be used as reference in order to compare with the 
predicted outcome from the SVM simulation. As a result, 
48 blocks/partitions were separated into six CV classes, 
at which are shown in Table 1. We then grouped each 
CV class and simulated them with the SVM 
classification model using R Programming scripts (Kim 
and Oh, 2012). The simulated are shown in Table 2-6. 

Table 1 was used to plot a graph and Fig. 2 illustrates 
the distribution of the six CV classes where the x-axis 
represented 50 blocks/partitions and the y-axis 
represented the CV values of the different classes. The 
figures in brackets show the number of data points per 
CV class and they were re-displayed in Table 4. Each 
block/partition contained different numbers of data 
points, depending on the change in the curve direction, 
i.e., upward to downward or vice versa.  

At this point, we had classified datasets into multiclass. 
The next step was to run simulations of the SVM models. 
The results of those simulations are in Table 3. 

We fitted the kernel distribution functions and 
their parameters. The outcomes shown in Table 2 
using different sets of kernel functions, i.e., radial, 
polynomial, linear, Laplacian, hyperbolic, Bessel and 
ANOVA RBF, were different. Moreover, the number 
of support vectors, parameters and training error were 
presented in Fig. 2. Definitions of the parameters 
given in the Table 2 are as follows: 
 
• Sigma: the inverse kernel width used by the Radial, 

Gaussian, Laplacian, Bessel and ANOVA RBF 
kernel functions 

• Degree: the degree of the polynomial, Bessel or 
ANOVA RBF kernel functions, i.e., a positive 
integer 

• Scale: the scaling parameter of the polynomial and 
tangent kernel functions is a convenient way of  

• normalising patterns without any need to modify the 
data itself 

• Offset: the offset used in polynomial or hyperbolic 
tangent kernel functions 

• Order: the order of the Bessel function 
 

Next, we used the test statistic, i.e., MSE, MAE and 
MAPE, to measure the performance of each kernel function 
in all CV classes of the datasets. The results given in Table 
3 show that the Laplacian kernel functions performed the 
best. Having successfully simulated the SVM with 

Laplacian kernel functions and parameters, in conclusion 
there were six CV classes in 48 blocks/partitions and each 
block had a different number of data points. 

Table 4 shows the CV classes including the 
Laplacian kernel functions and parameters. At this stage, 
we completed simulations required for building up the 
training data. 

Referring to the SVM model for classification, we 
simulated the test data, which came from the ratio of 
training and test data at 70:30, by using the trained 
Laplacian kernel functions and their parameters. The 
simulation results of the three datasets shown in Fig. 3, 
at which the x-axis represented the number of data points 
used for classification and the y-axis represented the 
EUR-USD. Finally, the results demonstrated that the 
graph of the multiclass SVM model in black solid line 
agreed with the graph of the original datasets in dotted 
blue line, whereas the graph of SVM model only was 
deviated from those two graphs. To ease for presentation, 
the x-axis represented the test data ranking between 
2001st to 2049th of the original datasets.  

To verify the performance of the multiclass using the 
mean reversion and coefficient of variance algorithm, we 
plotted three graphs, which showed the simulation results 
for the multiclass SVM model and the SVM without 
multiclass algorithm (SVM model only). The two graphs 
of the SVMs after simulations with and without 
multiclass were significantly different, as shown in 
Table 5. Using the Laplacian kernel function and a 
training:test data ratio of 70:30. For example, we 
compared the Accuracy count which was 79.88%, 
whereas the SVM model without the multiclass 
algorithm measured by Accuracy count of 73.21%. 
Finally, we measured the performance of the multiclass 
SVM model comparing with the SVM model only by 
using the test statistic, i.e., MSE, MAE, MAPE, R2, AIC 
and BIC. The results in Table 5. showed that the 
proposed model outperformed the performance of the 
simulation from the SVM model only. 

3.3. Robustness Test 

We reintroduced the same R Programming software 
application, which was used to generate the results shoewn 
in the figures indicated in the Table 3-4, to simulate the 
OAA and OAA strategies. The simulation procedure was 
similar to the procedures in 3.1 of which the input data 
were four different exchange rates, namely; EUR-USD, 
EUR-CNY, EUR-RUB and EUR-CHF. It is noted that 
each input dataset contained 2322 data point retrieved 
from Bloomberg terminal from 2001 to 2011.  
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Table 1. Classification of the CV class ranking for each block, the CV and their related values and the number of blocks created by 
mean reversion algorithm 

Block no. Rankin CV class number  No. of data point CV value 
1 1st to 12th 2 12 0.02592 
2 13th to 16th 1 4 0.02278 
3 17th to 23rd  2  7  0.02592 
4 24th to 25th 1 2 0.02278 
5 26th to 26th 2 1 0.02592 
6 27th to 38th 1 12 0.02278 
7 39th to 46th 2 8 0.02592 
8 47th to 181st 1 135 0.02278 
9 182nd to 184th 2 3 0.02592 
10 185th to 361st 1 177 0.02278 
11 362nd to 504th 2 143 0.02592 
12 505th to 505th 3 1 0.02077 
13 506th to 506th 2 1 0.02592 
14 507th to 603rd 3 97 0.02077 
15 604th to 656th 4 53 0.05361 
16 657th to 657th 3 1 0.02077 
17 658th to 658th 2 1 0.02592 
18 659th to 680th 4 22 0.05361 
19 681st to 696th 3 16 0.02077 
20 697th to 701st 4 5 0.05361 
21 702nd to 702nd 3 1 0.02077 
22 703rd to 1748th 4 1046 0.05361 
23 1749th to 1749th 5 1 0.01840 
24 1750th to 1750th 4 1 0.05361 
25 1751st to 1759th 5 9 0.01840 
26 1760th to 1760th 4 1 0.05361 
27 1761st to 1861st 5 101 0.01840 
28 1762nd to1978th 6 217 0.01259 
29 1980th to 2001st 5 22 0.01840 
30 2002nd to 2003rd 4 2 0.05361 
31 2004th to 2016th 5 13 0.01840 
32 2017th to 2071st 4 55 0.05361 
33 2072nd to 2073rd 5 2 0.01840 
34 2074th to 2188th 4 115 0.05361 
35 2089th to 2193rd 5 105 0.01840 
36 2194th to 2197th 4 4 0.05361 
37 2198th to 2198th 5 1 0.01840 
38 2199th to 2211th 4 13 0.05361 
39 2212th to 2212th 5 1 0.01840 
40 2213th to 2221st 4 9 0.05361 
41 2222nd to 2231st 5 10 0.01840 
42 2232nd to 2233rd 4 2 0.05361 
43 2234th to 2244th 5 11 0.01840 
44 2245th to 2245th 4 1 0.05361 
45 2246th to 2316th 5 71 0.01840 
46 2317th to 2317th 6 1 0.01259 
47 2318th to 2320th 5 3 0.01840 
48 2321st to 2322nd 6 1 0.01250 
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Table 2. Kernel functions for each CV class 
Class of kernel No. of      Objective Training  
functions support vectors Sigma Degree Scale Offset Order function value error 
Radial  
1 77 0.09 N.A. N.A. N.A. N.A. −18.62 0.02 
2 53 0.16 N.A. N.A. N.A. N.A. −13.34 0.03 
3 38 0.17 N.A. N.A. N.A. N.A.  −7.91 0.01 
4 265 0.12 N.A. N.A. N.A. N.A. −46.51 0.01 
5 51 0.44 N.A. N.A. N.A. N.A. −27.54 0.12 
6 28 0.07 N.A. N.A. N.A. N.A.  −12.14 0.05 
Polynomial         
1 53 N.A. 1.00 1.00 1.00 N.A.  −13.50 0.03 
2 30 N.A. 1.00 1.00 1.00 N.A.  −9.51 0.03 
3 23 N.A. 1.00 1.00 1.00 N.A.  −2.26 0.01 
4 196 N.A. 1.00 1.00 1.00 N.A.  −108.63 0.13 
5 40 N.A. 1.00 1.00 1.00 N.A.  −38.47 0.41 
6 23 N.A. 1.00 1.00 1.00 N.A.  −4.87 0.03 
Linear         
1 53 N.A. N.A. N.A. N.A. N.A.  −13.50 0.03 
2 30 N.A. N.A. N.A. N.A. N.A.  −9.51 0.03 
3 23 N.A. N.A. N.A. N.A. N.A.  −2.26 0.01 
4 196 N.A. N.A. N.A. N.A. N.A.  −108.63 0.13 
5 40 N.A. N.A. N.A. N.A. N.A.  −38.47  0.41 
6 23 N.A. N.A. N.A. N.A. N.A.  −4.87 0.03 
Laplacian         
1 73 0.08 N.A. N.A. N.A. N.A.  −26.78 0.02 
2 42 0.13 N.A. N.A. N.A. N.A.  −17.01 0.06 
3 39 0.19 N.A. N.A. N.A. N.A.  −9.67 0.01 
4 372 0.12 N.A. N.A. N.A. N.A.  −59.43 0.01 
5 46 0.16 N.A. N.A. N.A. N.A.  −35.79 0.25 
6 25 0.09 N.A. N.A. N.A. N.A.  −16.76 0.17 
Hyperbolic         
1 49 N.A. N.A. 1.00 1.00 N.A.  −431.65 110.29 
2 26 N.A. N.A. 1.00 1.00 N.A.  −140.27 51.68 
3 18 N.A. N.A. 1.00 1.00 N.A.  −48.33 12.76 
4 188 N.A. N.A. 1.00 1.00 N.A.  −7391.51 2373.01 
5 36 N.A. N.A. 1.00 1.00 N.A.  −197.83 65.98 
6 19 N.A. N.A. 1.00 1.00 N.A.  −53.53 16.25 
Bessel         
1 70 1.00 1.00 N.A. N.A. 1.00  −29.68 0.07 
2 41 1.00 1.00 N.A. N.A. 1.00  −15.55 0.07 
3 28 1.00 1.00 N.A. N.A. 1.00  −8.57 0.02 
4 41 1.00 1.00 N.A. N.A. 1.00  −15.55 0.07 
5 42 1.00 1.00 N.A. N.A. 1.00  −32.32 0.21 
6 29 1.00 1.00 N.A. N.A. 1.00  −12.95 0.07 
ANOVA RBF         
 1  92  1.00  1.00  N.A.  N.A.  N.A.  −10.62 0.01 
2 60 1.00 1.00 N.A. N.A. N.A.  −5.42 0.01 
3 50 1.00 1.00 N.A. N.A. N.A.  −2.53 0.00 
4 50 1.00 1.00 N.A. N.A. N.A.  −2.53 0.00 
5 56 1.00 1.00 N.A. N.A. N.A.  −18.71 0.06 
6  44 1.00 1.00 N.A. N.A. N.A.  −4.81.00 0.01 

 
Table 3. Performance evaluation for all kernel functions 
Kernel function MSE MAE MAPE 
Radial 3.84E-05 0.0048831 0.375369 
Polynomial 0.000520 0.0159646 1.212167 
Linear 0.000520 0.0159676 1.212442 
Laplacian 3.24E-05 0.0046254 0.360253 
Hyperbolic 6.192284 1.5028091 113.5211 
Bessel 0.000483 0.0128695 0.985140 
ANOVA RBF 0.000103 0.0072116 0.547114 
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Table 4. Details of the number of blocks per CV class, the parameters of the CV class and its value 
Class  Blocks Parameter of Laplacian kernel function  CV 
1 5 F(w,x) = wT exp (-0.880257537388077 || x-x’||)+b 0.02278 
2 8 F(w, x) = wT exp (-0.126109678105003 || x-x’||)+b 0.02592 
3 5 F(w, x) = wT exp (-0.1872440577155 || x-x’||)+b 0.02077 
4 14 F(w, x) = wT exp (-0.120770384940063 || x-x’||)+b 0.05361 
5 13 F(w, x) = wT exp (-0.156375637970856 || x-x’||)+b 0.01840 
6 3 F(w, x) = wT exp (-0.880257537388077 || x-x’||)+b 0.01259 

 
Table 5.  Simulation results using the multiclass SVM model compared with simulations using the SVM model without multiclass 

(SVM only), using the original dataset was the reference 
Test statistic SVM model only Multiclass SVM model 
Accuracy counts   
 30:70 70.2600000  78.210000 
 50:50 70.6000000 78.9200000 
 70:30 73.2100000  79.8800000 
MSE 0.0001429 3.242E-05 
MAE 0.0098611 0.0046254 
MAPE 0.6946638 0.3602532 
R2 0.9827000 0.9992000 
AIC −4213.8360000 −5209.8460000 
BIC −4200.2000000 −5196.2180000 

 

 
 

Fig. 1. Diagram showing the multiclass SVM model with robustness tests using OAA and OAO strategies 

 

 
 

Fig. 2. Classification using mean reversion and coefficient of variance algorithm 
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Fig. 3. Performance of the multiclass SVM model compared with the original dataset where the plot on the x-axis represents the test 

data at 2001st to 2049th of the entire datasets 
 
Table 6. Performance comparison of the multiclass SVM model using different input datasets 
Input datasets Hyper-parameter Training error Accuracy count (%) 
EUR-USD 22.2637271674138 0.000000 100.00 
EUR-CNY 23.5910412737328 0.000862 99.78 
EUR-RUB 32.3227585244721 0.000000 100.00 
EUR-CHF 78.9518027969328 0.000000 100.00 
 

In the parameter selection of the SVM simulation 
software, we selected Laplacian kernel function and 
compared the results simulations of the OAA and OAO 
strategies. Table 6 presented performance comparison of 
the multiclass SVM models using the different input 
datasets. The Accuracy count for the OAA and OAO 
strategies reached to 100% for every single simulated 
input data except EUR-CNY yielded 99.78% and the 
training errors of each simulation were similar.  

4. DISCUSSION 

The mechanism of mean reversion and coefficient of 
variance algorithm started by classifying each datasets 
with its mean, giving two separated groups, termed to 
‘mean1+’ and ‘mean1– ‘; and continue to divide each 
mean1+’ and ‘mean1–’ until the minimum and maximum 
values of the datasets located in both ends. Therefore, we 
may obtain ‘mean2+’ and ‘mean2–’ inasmuch as ‘mean3+’ 
and ‘mean3–’ and so on. In this study, we optimise the 
classification process; and have found six possible CV 
classes. The future work will be in the area of optimization 
of kernel functions in the frequency domain.  

5. CONCLUSION 

The multiclass algorithm for SVM model consists of 
mean reversion and coefficient of variance algorithm 
using for partition and classification nonlinear 
nonstationary datasets yields a significant outcome, 
compared with the conventional SVM model without 
multiclass algorithm. To verify the robustness of the 
proposed algorithm, the OAA and OAO strategies were 
introduced. By using a variety of test statistic, the 
simulation results using different inputs from many 
exchange rates i.e., EUR-USD, EUR-CNY, EUR-RUB 
and EUR-CHF confirmed that the proposed multiclass 
algorithm outperformed significantly the simulations of 
the conventional SVM model.  
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