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ABSTRACT 

In actuarial and insurance literatures, several researchers suggested generalized linear regression models 
(GLM) for modeling claim costs as a function of risk factors. The modeling of claim costs involving both 
zero and positive claims experience has been carried out by fitting the claim costs collectively using 
Tweedie model. However, the probability of zero claims in Tweedie model is not allowed to be fitted 
explicitly as a function of explanatory variables. The purpose of this article is to propose the application of 
Zero Adjusted Gamma (ZAGA) and Zero Adjusted Inverse Gaussian (ZAIG) regression models for 
modeling both zero and positive claim costs data. The models are fitted to the Malaysian motor insurance 
claims experiences which are divided into three types namely Third Party Bodily Injury (TPBI), Own 
Damage (OD) and Third Party Property Damage (TPPD). The fitted models show that both claim 
probability and claim cost are affected by either the same or different explanatory variables. The fitted 
models also allow the relative risk of each rating factor to be compared and the low or high risk vehicles to 
be identified, not only for the claim cost but also for the claim probability. The AIC and BIC indicate that 
ZAIG regression is the best model for modeling both positive and zero claim costs for all claim types.  
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1. INTRODUCTION 

In actuarial and insurance literatures, several 
researchers suggested generalized linear regression 
models (GLM) for modeling claim costs as a function 
of risk factors and such studies can be found in 
Brockman and Wright (1992); Renshaw (1994); 
MacCullagh and Nelder (1989) and Ismail and Jemain 
(2009). Due to the common properties of claim costs 
distributions which have positive support and right 
skewness (Hogg and Klugman, 2009), Gamma and 
Inverse Gaussian regression models have been used 
by researchers for fitting insurance claim costs. 
Nevertheless, Gamma and Inverse Gaussian 

regression models can only be fitted to claim cost data 
with non-zero claims.  

A distribution that includes both positive and zero claim 
costs is a distribution with discrete and continuous mixture, 
where the discrete probability distribution represents cases 
of zero claims (or cases of making no claim) and the 
continuous distribution represents cases of positive claims 
whose distribution is skewed to the right. The modeling of 
claim costs involving both zero and positive claims 
experience can be carried out by fitting the claim costs 
collectively using Tweedie model. As examples, Czado 
(2005); Jorgensen and Souza (1994) and Smyth and 
Jorgensen (2002) applied Tweedie model for modeling 
claim costs, while Peters et al. (2008) and Wuthrich 
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(2003) fitted Tweedie model for payments of 
outstandings in claims reserves. 

However, the probability of zero claims in Tweedie 
model is not allowed to be fitted explicitly as a function of 
explanatory variables (or a function of regression 
covariates). As an alternative, a zero adjusted regression 
model, which is a regression model with a mixed discrete 
and continuous distributions, can be used to model both 
zero and positive claim costs and at the same time, allows 
the zero claim probability to be modeled explicitly as a 
function of explanatory variables. The discrete distribution 
of zero adjusted regression model is represented by 
Bernoulli distribution, whereas the continuous distribution 
can be represented by any continuous distribution with a 
positive range and right skewness. If the continuous 
distribution is represented by Gamma distribution, the 
model is called Zero Adjusted Gamma (ZAGA) regression 
model and if the continuous distribution is represented by 
Inverse Gaussian distribution, the model is called Zero 
Adjusted Inverse Gaussian (ZAIG) regression model. 
Several applications of ZAGA and ZAIG regression models 
can be found in Tong et al. (2011); Heller et al. (2006); 
Ferreira (2008) and Bortoluzzo et al. (2009) also compared 
ZAIG regression model with Tweedie model and found that 
ZAIG regression model is better than Tweedie model. 

The purpose of this article is to propose the 
application of ZAGA and ZAIG regression models for 
modeling both zero and positive claim costs data. The 
models are fitted to the Malaysian motor insurance 
claims experience which are divided into three types; 
Third Party Bodily Injury (TPBI), Own Damage (OD) 
and Third Party Property Damage (TPPD).  

2. MATERIALS AND METHODS 

2.1. Zero Adjusted Regression Models 

Let Wi be the binary variable that indicates the 
occurrence of at least one claim and *

iπ  the probability of 

at least one claim in the ith rating class, i = 1,2,…,n. The 
probability function for Wi can be defined as: 
 

i iw w* *
i i i if (w ) ( ) (1 ) ,    w 0,1= π − π =  

 
Let ei,0<ei<1, be the exposure in the ith rating class 

which is defined as the proportion of observation period 
for which the policy has been in force. Assuming ei is 
known, let yi be the number of claims in the observation 
period and assume yi follows a Poisson process with 
mean (or average) number of claims *

iπ  Then: 
 

*
i i i iy | e ~ Poisson(e )π  

* *
i i i iKb(y 0 | e 1) exp( ) 1= = = −π = − π  

 
And: 
 

* *
i i i i i iKb(y 0 | e ) exp( e ) 1 e= = − π = − π  

 
so that Equation (1): 

 
i iw w

i i i if (w ) (1 ) ,    w 0,1= π − π =  (1) 

 
Is a Bernoulli event with *

i i i ie ,  0 1π = π < π < .  

If Ci is the random variable for average claim costs in 
the ith rating class which is represented as: 
 

i
i

i

0 with probability (1 )
C

0 with probability 

= − π
> π

 

 
Then Ci has a mixed discrete-continuous probability 

function Equation (2): 
 

i i i

i i i

f (c ) 1 ,       c 0

        g(c ),    c 0

= − π =
= π >

 (2) 

 
where, g(ci) is the density function of a continuous and 
right skewed distribution and πi is the probability of 
claim from a Bernoulli event defined in (1). The 
regression model of a mixed discrete-continuous 
probability function defined in (2) is called the zero 
adjusted regression model. 

2.2. ZAGA and ZAIG Regression Models 

Let g(ci) be the density function of Gamma 
distribution defined as Equation (3): 
 

2

2

1
1

i
i 2

i
i 1

2
i 2

c
c exp

g(c )
1

( )

 
−  

 

σ

σ  
− σ µ =
 σ µ Γ σ 

 (3) 

 
where, σ is the scalar parameter. Therefore, the mean 
and variance for ZAGA regression model are E(Ci) = πI 
µi and 2 2

i i i iVar(C ) ( )= π µ π + σ  and the covariates can be 

incorporated via a logit link Equation (4): 
 

( )
( )

T
i

i T
i

exp x

1 exp x

π

π

β
π =

+ β
 (4) 

 
and a log link Equation (5): 
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( )T
i iexp x µµ = β  (5) 

 
where, βπ and βµ are the vectors of regression parameters 
for πi and µi respectively and xi is the vector of 
explanatory variables. 

Let g(ci) be the density function of inverse Gaussian 
distribution defined as Equation (6): 

 
2

i i
i 3

i ii

1 1 c
g(c ) exp

2c2 c

  − µ
 = −  σµ σ π   

 (6) 

 
where, σ is the scalar parameter. Therefore, the mean 
and variance of ZAIG regression model are E(Ci) = πI µi 
and 2 2

i i i i iVar(C ) (1 )= π µ − π + µ σ  and the covariates are 

incorporated in the regression model also via logit and 
log links in (4)-(5). 

2.3. Maximum Likelihood Estimation 

The regression parameters, βπ and βµ and the scalar 
parameter, σ, for both ZAGA and ZAIG regression 
models can be estimated using maximum likelihood 
procedure. The maximum likelihood estimates of, βπ βµ 
and σ for ZAGA regression model can be obtained by 
maximing likelihood of f(ci) shown in (2): 

 

2

2i i

i i

n

i
i 1

1
1

i
i 2

i
i i 1

c 0 c 0 2
i 2

L( , , ) f (c )

c
c exp

                  (1 )
1

( )

π µ
=

 − 
σ 

= > σ

β β σ =

 
− σ µ = − π π
 σ µ Γ σ 

∏

∏ ∏
 

 
Or log likelihood: 

 

i i

i i

i i i2
c 0 c 0

2i
i2 2 2

i

logL( , , )

1
log(1 ) log( ) 1 log(c )

c 1 1
    log( ) log

π µ

= >

β β σ

  = − π + − π + −  σ 

 − − σ µ − Γ  σ µ σ σ 

∑ ∑  

 
The maximum likelihood estimates for ZAIG 

regression model can also be obtained in a similar 
manner.  

2.4. Goodness of Fit 

Several measures can be used for comparing ZAGA and 
ZAIG regression models such as Akaike Information 
Criteria (AIC) and Schwartz Bayesian Information Criterion 
(BIC). Let n be the number of observations, m the number 
of estimated parameters and l the log likelihood. The AIC 
and BIC can be calculated respectively as: 
 

AIC 2 2m= − +ℓ  
  
And: 
 

BIC 2 mln(n)= − +ℓ  
 

3. RESULTS 

The database for the Malaysian motor insurance 
claims costs experience is supplied by Insurance 
Services Malaysia Berhad (ISM), providing information 
on private car insurance portfolios of ten general 
insurance companies in 2001-2003 and containing 
1,009,175 policies with 117,586 (or 9.7%) claims. The 
claim costs, which are in Ringgit Malaysia (RM) currency, 
are divided into three types namely OD, TPPD and TPBI. 
In this study, we consider five rating factors, each with two, 
five, five, five and five rating classes, producing a total of 
2×5×5×5×5 = 1250 rating classes. Therefore, each rating 
class corresponds to eighteen explanatory variables 
(covariates), including the intercept. The rating factors and 
classes are shown in Table 1.  
 
Table 1. Rating factors and classes 
Rating factors Rating classes 
Coverage Comprehensive 
 Non-comprehensive 
Vehicle age 0-1 year 
 2-3 years 
 4-5 years 
 6-7 years 
 8+ years 
Vehicle  0-1000 cc 
cubic capacity (cc) 1001-1300 cc 
 1301-1500 cc 
 1501-1800 cc 
Vehicle make Local type 1  
 Local type 2  
 Foreign type 1  
 Foreign type 2  
 Foreign type 3  
Location North 
 East 
 Central 
 South 
 East Malaysia 
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Table 2. ZAGA and ZAIG regression models (TPBI) 
 ZAGA    ZAIG 
 ------------------------------------------------------------------------------------- ---------------------------------- 
Parameter estimated std error p-value Estimated std error p-value 
Claim cost: 
intercept 3.76 0.22 0.00 0.04 0.09 0.64 
non-comprehensive 1.48 0.15 0.00 2.67 0.26 0.00 
2-3 years 0.96 0.16 0.00 - - - 
8+ years -0.81 0.17 0.00 - - - 
0-1000 cc 0.39 0.23 0.08 4.84 1.32 0.00 
1301-1500 cc -0.89 0.22 0.00 - - - 
1501-1800 cc -1.01 0.22 0.00 1.17 0.18 0.00 
1801+ cc -1.06 0.20 0.00 2.23 0.27 0.00 
Local type 2 2.18 0.24 0.00 6.42 1.88 0.00 
Foreign type 1 - - - 3.66 0.40 0.00  
Foreign type 2 0.91 0.16 0.00 4.41 0.59 0.00 
Foreign type 3 1.10 0.28 0.00 2.10 0.58 0.00 
north 0.36 0.19 0.05 0.71 0.15 0.00 
east 1.22 0.19 0.00 2.07 0.25 0.00 
south 0.72 0.19 0.00 0.82 0.16 0.00 
east Malaysia  0.55 0.23 0.01 1.39 0.20 0.00 
scalar,  
σ 0.42 0.02 0.00 -1.21 0.03 0.00 
Claim probability:       
intercept -1.13 0.28 0.00 -1.13 0.28 0.00 
non-comprehensive 1.46 0.15 0.00 1.46 0.15 0.00 
2-3 years -1.48 0.23 0.00 -1.48 0.23 0.00 
4-5 years -1.39 0.23 0.00 -1.39 0.23 0.00 
6-7 years -1.48 0.23 0.00 -1.48 0.23 0.00  
8+ years -2.06 0.24 0.00 -2.06 0.24 0.00 
0-1000 cc 0.51 0.23 0.03 0.51 0.23 0.03 
1301-1500 cc -0.37 0.22 0.09 -0.37 0.22 0.09 
1501-1800 cc -0.70 0.23 0.00 -0.70 0.23 0.00 
1801+ cc -0.93 0.23 0.00 -0.93 0.23 0.00 
Local type 2 2.06 0.20 0.00 2.06 0.20 0.00 
Foreign type 2 0.53 0.19 0.01 0.53 0.19 0.01 
Foreign type 3 3.17 0.24 0.00 3.17 0.24 0.00 
north 0.59 0.23 0.01 0.59 0.23 0.01 
east 1.21 0.23 0.00 1.21 0.23 0.00 
south 0.87 0.23 0.00 0.87 0.23 0.00 
east Malaysia  1.89 0.24 0.00 1.89 0.24 0.00 
log likelihood -3997.36 -3818.71 
AIC 8060.71 7701.42 
BIC 8230.03 7860.48 

 

The fitted ZAGA and ZAIG regression models for 
TPBI, OD and TPPD claims are presented in Table 2-
4. The results indicate that both ZAGA and ZAIG 
models produce either same or different significant 
factors. As an example, the claim cost for TPBI from 
ZAGA model imply that the rating factor for foreign 
type 1 vehicle is not significant, while ZAIG 
regression model show that the rating factors for 2-3 
years, 8+ years and 1301-1500 cc vehicles are not 

significant. On the other hand, the claim probabilities 
for TPBI from both ZAGA and ZAIG regression 
models have the same significant rating factors. 

4. DISCUSSION 

From Table 2-4, the fitted claim cost and claim 
probability for each claim type can be calculated 
respectively as: 
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Table 3. ZAGA and ZAIG regression models (OD) 
 ZAGA    ZAIG 
 ------------------------------------------------------------------------------------ ---------------------------------- 
Parameter estimated std error p-value estimated std error p-value 
Claim cost: 
Intercept 3.41 0.16 0.00 2.79 0.25 0 
6-7 years -0.38 0.17 0.02 - - - 
1301-1500 cc -1.35 0.22 0.00 - - - 
1501-1800 cc -1.88 0.20 0.00 -2.73 0.26 0 
1801+ cc -1.55 0.20 0.00 -1.85 0.28 0 
Local type 2 3.84 0.22 0.00 4.97 1.41 0 
Foreign type 2 1.52 0.18 0.00 1.94 0.29 0 
Foreign type 3 2.31 0.27 0.00 9.87 1.22 0 
North - - - 1.03 0.20 0 
East 1.55 0.19 0.00 2.55 0.37 0 
South 0.53 0.19 0.01 1.08 0.20 0 
east Malaysia  1.06 0.19 0.00 2.01 0.29 0 
scalar,  

σ 0.38 0.03 0.00 -0.91 0.03 0 
Claim probability:       
Intercept 0.50 0.08 0.00 0.50 0.08 0 
1501-1800 cc -0.56 0.15 0.00 -0.56 0.15 0 
1801+ cc -0.50 0.15 0.00 -0.50 0.15 0 
Foreign type 3 1.22 0.18 0.00 1.22 0.18 0 
       
log likelihood -3149.03 -3073.96 
AIC 6330.06 6177.92 
BIC 6412.16 6254.88 

 

i k ik
k

ˆ exp x
 µ = β 
 
∑  

 
And: 
 

k ik
k

i

k ik
k

exp x
ˆ

1 exp x

 β 
 π =
 + β 
 

∑

∑
 

 
where, βk is the regression parameter and xik the explanatory 
variable with a value of zero or one. As an example, the 
fitted claim cost and claim probability for TPBI based on 
ZAIG regression model for vehicles with comprehensive 
coverage, age 0-1 year, cubic capacity 0-1000, local (type 1) 
make and North location respectively are: 
  

iˆ exp(0.04 4.84 0.71) RM267.74µ = + + =  
 
And: 
 

i

exp( 1.13 0.51 0.59)
ˆ 0.4925

1 exp( 1.13 0.51 0.59)

− + +π = =
+ − + +

 

so that the expected TPBI claim cost that take into 
account both zero and positive claims is 

i i i i
ˆ ˆ ˆE(C ) c RM131.86= = π µ = .  

The results in Table 2-4 can also be used to compare 
the relative risk of each rating factor and therefore, 
identifying low or high risk vehicles. As an example, the 
fitted claim cost and claim probability for TPBI based on 
ZAIG regression model for vehicles with non-
comprehensive coverage, age 0-1 year, cubic capacity 0-
1000, local (type 1) make and North location 
respectively are:  
 

iˆ exp(0.04 2.67 4.84 0.71) RM3866.09µ = + + + =  
 
And: 
 

i

exp( 1.13 1.46 0.51 0.59)
ˆ 0.8069

1 exp( 1.13 1.46 0.51 0.59)

− + + +π = =
+ − + + +

 

 
Indicating that non-comprehensive coverage has 

higher risk in both claim cost and claim probability than 
the comprehensive coverage. Therefore, the claim cost 
that take into account both zero and positive claims 
increases and the expected value is 

i i i iˆ ˆ ˆE(C ) c RM3119.56= = π µ = . 
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Table 4. ZAGA and ZAIG regression models (TPPD) 
 ZAGA    ZAIG  
 --------------------------------------------------------------------------------------- ------------------------- 
Parameter estimated std error p-value estimated std error p-value 
Claim cost:       
intercept 3.21 0.17 0.00 4.00 0.27 0.00 
non-comprehensive 1.37 0.14 0.00 2.54 0.26 0.00 
4-5 years -0.29 0.17 0.09 - - - 
6-7 years -1.11 0.18 0.00 -0.96 0.17 0.00 
8+ years -1.65 0.18 0.00 -1.30 0.21 0.00 
0-1000 cc 0.68 0.20 0.00 - - - 
1301-1500 cc - - - -1.57 0.29 0.00 
1501-1800 cc -0.82 0.17 0.00 -2.43 0.29 0.00 
1801+ cc -0.48 0.17 0.00 -2.49 0.29 0.00 
Local type 2 2.43 0.20 0.00 4.89 2.46 0.05 
Foreign type 1 - - - -1.51 0.16 0.00 
Foreign type 2 1.21 0.17 0.00 - - - 
Foreign type 3 1.58 0.24 0.00 0.67 0.33 0.04 
north - - - 0.97 0.19 0.00 
east 0.64 0.17 0.00 2.31 0.30 0.00 
south - - - 1.24 0.20 0.00 
east Malaysia  - - - 1.32 0.22 0.00 
scalar,  
σ 4.27 0.02 0.00 -0.75 0.03 0.00 
Claim probability:       
intercept 0.01 0.2 0.96 0.01 0.20 0.96 
non-comprehensive 0.94 0.13 0.00 0.94 0.13 0.00 
2-3 years -1.19 0.21 0.00 -1.19 0.21 0.00 
4-5 years -1.17 0.21 0.00 -1.17 0.21 0.00 
6-7 years -1.34 0.21 0.00 -1.34 0.21 0.00 
8+ years -1.38 0.21 0.00 -1.38 0.21 0.00 
1501-1800 cc -1.09 0.18 0.00 -1.09 0.18 0.00 
1801+ cc -1.16 0.18 0.00 -1.16 0.18 0.00 
Local type 2 1.08 0.17 0.00 1.08 0.17 0.00 
Foreign type 1 -0.40 0.18 0.03 -0.40 0.18 0.03 
Foreign type 3 2.08 0.20 0.00 2.08 0.20 0.00 
east 0.80 0.18 0.00 0.80 0.18 0.00 
south 0.31 0.18 0.08 0.31 0.18 0.08 
east Malaysia  0.46 0.18 0.01 0.46 0.18 0.01 
log likelihood -3621.31 -3379.07 
AIC 7296.61 6816.14 
BIC 7435.15 6964.93 

 
Based on both AIC and BIC, ZAIG regression model 

is better than ZAGA regression model for all TPBI, OD 
and TPPD claims. 

5. CONCLUSION 

This study proposes the application of ZAGA and 
ZAIG regression models for modeling both positive and 
zero claim costs for three types of motor insurance 
claims; TPBI, OD and TPPD. The main advantage of 
using ZAGA and ZAIG regression models compared to 

Tweedie model is that the probability of claim can be 
expressed in a function of explanatory variables. The 
fitted models show that both claim probability and claim 
cost are affected by either the same or different 
explanatory variables. The fitted models also allow the 
relative risk of each rating factor to be compared and the 
low or high risk vehicles to be identified, not only for the 
claim cost but also for the claim probability. The 
application of ZAGA and ZAIG regression models 
proposed in this study can also be used for other lines of 
insurance (besides motor insurance) or any other data 
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(besides insurance data), as long as the covariates for 
both positive and zero costs are available. Further 
applications can also be performed to other distributions 
with positive range and right skewness.  
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