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ABSTRACT 

Spatial Durbin Model (SDM) is one method of spatial autoregressive. This model was developed because the 
dependencies in the spatial relationships not only occur in the dependent variable, but also on the independent 
variables. In the assessment of parameter estimation, the process is carried out by Maximum Likelihood 
Estimation (MLE). This estimation can be approximation by Spatial Autoregressive Models (SAR). By MLE, 
the matrix of independent variable in SAR is X and in SDM is [I  X  W1X], so that the estimation in SDM 
was done by replace matrix X in SAR by [I  X  W1X]. This estimation perform the unbiased estimator for β 
and σ2. Estimate ρ was done by optimize the concentrated log-likelihood function with respect to ρ. 
 
Keywords: Maximum Likelihood Estimation, Spatial Autoregressive Models, Spatial Durbin Model 

1. INTRODUCTION 

 Spatial Autoregressive Model (SAR) is very popular 
methods in spatial analysis. Spatial method is a method 
to get information of observations influenced by space or 
location effect. Lesage and Pace (2009) stated that the 
autoregressive process is indicated by the dependency 
relationship among a set of observations or locations. 
 Lesage and Pace (2009) has shown that one model of 
spatial autoregressive is Spatial Autoregressive Models 
(SAR), which the function is y =  ρW1y + Xβ + ε. It 
shows the spatial lag effect on the dependent variable. 
Spatial relationship among observations is expressed by 
the weight matrix (W1) and parameter ρ which is the 
spatial lag parameter on dependent variable. Anselin in 
Lesage and Pace (2009) also called the model as Mixed 
Regressive-Autoregressive. Special cases of SAR model 
is Spatial Durbin Model which add lag effect of the 
independent variables, so that the model is y = ρW1y + 
β0 + Xβ1 + W1Xβ2 + ε. 

 The researches about Spatial Durbin Model (SDM) 
were Bekti and Sutikno (2012) about diarrhea modeling, 
Triki and Maktouf (2012) who studies the factors 
associated with the emergence of banking crises during 
the process of financial liberalization. Joshi and 
Gebremedhin (2012) were study about relationship 
between poverty and income inequality in the 
Appalachian region. 
 Several references have written about parameter 
estimation of spatial autoregressive model. There was 
Maximum Likelihood Estimation (MLE) which noted by 
Ord and Anselin in Lesage and Pace (2009) also Anselin 
and Rey (2010). Pushparaj (2013) and Seya et al. (2012) 
were use Bayesian estimation. Liu et al. (2010) have been 
noted Generalized Method of Moments (GMM) estimation 
of the regression and MRSAR models with SAR 
disturbance. Baltagi and Bresson (2011) has been study 
about maximum likelihood estimation and lagrange 
multiplier tests for panel Seemingly Unrelated Regressions 
with spatial lag and spatial errors. 
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 Lesage and Pace (2009) noted that estimation of 
spatial models by least squares can be lead to inconsistent 
estimates of the regression parameters for models with 
spatially lagged dependent variables, inconsistent estimation 
of the spatial parameters and inconsistent estimation of 
standard errors. In contrast, maximum likelihood is 
consistent for these models. Lu and Zhang (2010) stated 
that GMM was close to MLE in terms of model fitting, 
much easier in computation and robust to non-normality 
and outliers. Lu and Zhang (2010) were also showed that 
the Bayesian method with heteroscedasticity did not 
effectively estimate the spatial autoregressive parameters 
but produced very small biases for the regression 
coefficients of the model when few outliers existed. 
 In many cases and references, the estimation parameter 
of SDM was performed by estimation in SAR. The matrix 
of independent variable in SAR is X and in SDM is Z=[I  X 
W1X], so that the estimation in SDM was done by replace 
matrix X in SAR by Z = [I  X  W1X]. Therefore, this study 
is performing parameter estimation in SDM. 

2. MATERIALS AND METHODS 

 General model of spatial linear regression model 
for cross-section data is specified as: 
 

1y = ρW y + Xβ + u  (1) 

 
And: 

 
2

2u = λW u +ε ε ~ N(0,σ I)  (2) 

 
Where:  
y = Vector of dependent variable (n×1), 
X = Matrix of independent variable (n× (k+1)) 
β = Vector of regression coefficient parameter 

((k+1) ×1) 
ρ = Spatial lag coefficient parameter on 

dependent variable, 
λ = Spatial lag coefficient parameter on error u 

ε = error (n×1) 
W1 and W2 = Weighted matrix (n×n) 
I = Identity matrix (n×n) 
n = Number of observations or locations (i= 

1,2,3,...,n) 
k = Number of independent variable (k = 

1,2,3,...,l) 
 
 Model in Equation (1) and Equation (2) were shown 
the autoregressive process in dependent variable and 

error. From Equation (1) and Equation (2), when X = 0 
and W2 = 0, then will be obtained spatial autoregressive 
model in first order, such Equation (3): 
 

1y = ρW y + ε  (3) 

 
 When W1 = 0 or ρ = 0, Equation (1) will be Spatial 
Error Model (SEM) in Equation (4): 
  

2y = Xβ + λW u +ε  (4) 

 
 When W2 = 0 or λ = 0, Equation (2) will be Spatial 
Autoregressive Model (SAR) or Mixed Regressive-
Autoregressive in Equation (5): 
 

1y = ρW y + Xβ + ε  (5) 

 
 When ρ = 0 or λ = 0, Equation (1) and Equation (2) 
will be general linear regression in Equation (6). There is 
no spatial effect in this model: 
 

1y = ρW y + Xβ + ε  (6) 

 
 SDM is special cases of SAR, which adding spatial 
lag on independent variable (Lesage and Pace, 2009). 
This model was developed because the dependencies in 
the spatial relationships not only occur in the dependent 
variable, but also in the independent variable.  
 SDM model is specified as Equation (7). Parameter 
β0 is intercept, β1  is vector of regression coefficient 
parameter without weighted, β2  is vector of regression 
coefficient parameter with weighted: 
 

1 0 1 1 2y = ρW y +β + Xβ + W Xβ + ε  (7) 

 
Or: 

 
n n

i ij j 0 1k ki 2k ij kj i
j=1 k=1 k=1 j=1

y = ρ w y +β + β x + β w x + ε
l l

∑ ∑ ∑ ∑  

 
 Vector coefficient parameter of spatial lag on 
independent variable is β2. SDM can be formed into 
Equation (8): 
 

( )-1

1y = I - ρW Zβ + ε  (8) 
 
Where: 
 

( )( ) [ ] [ ]T-1 2
1 0 1 2y ~ N I - ρW Zβ,σ I Z = I X WX β = β β β  (9) 
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 Matrix Z in Equation (9) was shown that matrix X in 
SAR can be replaced by Z = [I X W1 X] for SDM 
estimation. 
 The role of weighting is important because it 
represents relationships among locations. It also represents 
the neighboring among observations, so it needs the 
accuracy weighting method. The weight matrix is: 
 

11 12 1n

21 22 2n

n1 n2 nn

w w ... w

w w ... w
W =

... ... ... ...

w w ... w

 
 
 
 
 
 

 

 
 The value w11, …, wnn can be take binary form, row 
standardization, or variance stabilization. Lesage and 
Pace (2012) has showed that the matrix W is typically 
row-stochastic, so the n×1 spatial lag vector Wy contains 
values constructed from an average of neighboring 
observations. Smith (2009) and Stakhovych and Bijmolt 
(2009) was noted that that for both spatial lag and spatial 
autoregressive models with strongly connected weight 
matrices, maximum likelihood estimates of the spatial 
dependence parameter are necessarily biased downward. 
 This study use the data to simulated the SDM 
estimation by MLE. The data was collected from 
Central Bureau of Statistics Indonesia in 2009 (BPS, 
2010). It about relationships of rate of illiteracy 
(ILLITERACY) and the percentage of pouseholds 
owning a mobile phone (PHONE) in East Java, 
Indonesia. The locations were 38 regencies. In this 
simulation, ILLITERACY was the dependent variable 
and PHONE was the independent variable. 

3. RESULTS 

 Parameter estimate in this research was done by 
Maximum Likelihood Estimation. From the equation 
of SDM: 
 

1y = ρW y + Zβ + ε  
 
 Develop error in this Equation (10): 
 

1ε = y -ρW y - Zβ  (10) 

  Or: 
 

1ε = (I - ρW )y - Zβ   
 
 Then, the likelihood function is in Equation (11-12): 
 

( )
n /2

2 T
2 2

1 1
L(σ ;ε) = exp - ε ε

2πσ 2σ
   
   
   

 (11) 

( ) ( )
n /2

2 T
2 2

1 1
L(ρ,β,σ | y) = J exp - ε ε

2πσ 2σ
   
   
   

 (12) 

 
 The Jacobian function from Equation (10) can be 
performed by differentiation its equation to dependent 
variable y Equation 13: 
 

 1

ε
J = = I -ρW

y

∂
∂

 (13) 

 
 Substitute Equation (10) to Equation (12), so that 
likelihood function is: 
 

( ) ( )( )

n / 2
2

12

T

1 12

1
L(ρ,β,σ | y) = I -ρW

2πσ

1
exp - (I -ρW )y - Zβ (I - ρW )y - Zβ

2σ

 
 
 

 
 
 

 (14) 

 
 Then, the natural logarithm of Equation (14) is 
Equation (15-16): 
 

( ) ( )( )
12

T

1 12

n 1
ln(L) = ln + ln I - ρW

2 2πσ

1
- (I - ρW )y - Zβ (I - ρW )y - Zβ

2σ

 
 
    (15) 

  

( ) ( )( )

2
1

T

1 12

n n
ln(L) = - ln(2π) - ln(σ ) + ln I - ρW

2 2
1

- (I - ρW )y - Zβ (I - ρW )y - Zβ
2σ

  (16) 

 
 Estimate β: Parameter estimate can be performed 
by maximize natural logarithm in Equation (11), 
which differentiation this equation to β. It shows in 
Equation (17) and the results shows in Equation (18) 
and Equation (19): 
 

( ) ( )( )

( ) ( )( )

( )( ) ( )

1 12

1 12

-1T T T T
1 12

ln(L)
0

β

1
(I W )y Zβ (I W )y Zβ

ln(L) 2
β β

1
(I W )y Zβ (I W )y Zβ

2
0

β

1
0 = Z I -ρW y - Z Zβ β = Z Z Z (I - ρW )y

σ

∂ =
∂

 ∂ − − ρ − − ρ − ∂ σ =
∂ ∂

 ∂ − − ρ − − ρ − σ =
∂

T

T

 (17) 
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 So that, the estimation is: 
 

( )-1T T
1β̂ = Z Z Z (I - ρW )y  (18) 

 
 Or: 
 

( ) ( )-1 -1T T T T
1β̂ = Z Z Z y -ρ Z Z Z W y   (19) 

 
 The estimator is unbiased. It was evidenced by: 
 

( ) ( )( )
( ) ( ) ( )( )

-1T T
1

-1 -1T T
1 1

ˆ ˆE β = E Z Z Z (I -ρW )y

ˆ ˆ= Z Z Z I - ρW I - ρW Zβ = β
 

 
 Estimate σ2: Such at parameter estimate β, estimate 
σ2 can be performed by differentiation Equation (11) to 
σ2. It shows in Equation (20) and the results shows in 
Equation (21): 
 

( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

2 2 2

1 122

T

1 12

T

1 12

ln(L) ln(L) n
0

2
1

(I W )y Zβ (I W )y Zβ
2

1
0 = -n + (I -ρW )y - Zβ (I - ρW )y - Zβ

σ

(I - ρW )y - Zβ (I - ρW )y - Zβ
σ =

n

∂ ∂= = −
∂σ ∂σ σ

+ − ρ − − ρ −
σ

T

 (20) 

 
 So that, the estimation is: 
 

 

T
2 1 1(((I - ρW )y - Zβ) ((I - ρW )y - Zβ))
σ̂ =

n
 (21) 

 
 The estimation is biased. It was evidenced 
by ( )2 2ˆE σ σ≠ :  

 

( )
( ) ( )( )

( ) ( )( )
( )

( )

T

1 12

T

1 1

T

ˆ ˆ(I - ρW )y - Zβ (I - ρW )y - Zβ
ˆE σ = E

n

1
ˆ ˆ= E (I -ρW )y - Zβ (I - ρW )y - Zβ

n
1

= E ε ε
n
1

= E SSE
n

 
 
  
 

 

 The unbiased estimation for σ2 is:  

 

( )T

SSE

n - 2tr(S) + tr(S S)

 
 
 
 

 

 
where, SSE is sum square error and: 

 

( )( )-1T T
1 1S = ρW + Z Z Z Z (I - ρW )  

 
 Estimate ρ: Estimation of β and σ2 are close form 
solutions. To produce maximum likelihood estimates for 
these parameters, Lesage and Pace (2009) stated that it 
needs to optimize the concentrated log-likelihood 
function with respect to ρ such as in Equation (26). 
Suppose that the estimation of ρ is ρ̂ , then Equation (19) 
become Equation (22): 

 

( ) ( )-1 -1T T T T
1

ˆ ˆβ = Z Z Z y -ρ Z Z Z W y  (22) 

 
 From Equation (19), can be develop two parameter 
estimations. There are 0δ̂  and dδ̂  in Equation (23). 

Estimate δ0 and δd can be develop from model y = Zδ0 +e0 
and W1y-Zδd + ed by Ordinary Least Square: 

 

( ) ( )-1 -1T T T T
0 d 1

ˆ ˆδ = Z Z Z y δ = Z Z Z W y  (23) 

 
So: 

 

( ) ( )-1 -1T T T T
1 0 d

ˆ ˆ ˆβ = Z Z Z y -ρ Z Z Z W y = δ -ρδ
 

 
 Then, the error e0 = y - Zδ0 and ed = W1y - Zδd are 
substitute in parameter σ2. The results shows in 
Equation (24): 

 

[ ] [ ]{ }T

0 d 0 d2
e -ρe e -ρe

σ =
n

  (24) 

 
 Substitute Equation (24) to Equation (11) will 
be performing natural logarithm to estimate ρ. The 
resutls shows in Equation (25): 
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[ ] [ ]T

0 d 0 d
1

n n
ln(L(ρ)) = - ln(2π) -

2 2

e -ρe e -ρe 1
ln + ln I - ρW -

n 2

 
 
 
 

 

 

[ ] [ ]{ }T

0 d 0 d

1

n n
ln(L(ρ)) = - ln(2π) - ln e -ρe e -ρe

2 2
n 1

- ln(n) + ln I -ρW -
2 2  

  So: 

 [ ] [ ]{ }T

0 d 0 d 1

n
f(ρ) = c - ln e -ρe e -ρe + ln I -ρW

2
  (25) 

 Where: 

 n n 1
c = - ln(2π) - ln(n) -

2 2 2  
 
 To get concentrated log-likelihood yields exactly the 
same as optimize maximum likelihood. There are many 
methods to calculate Jacobian J = |I-ρW1| in Equation 
(25). Kelejian and Prucha (2007); Lesage and Pace 
(2009) were note these methods, such as scaling the 
weight matrix by its maximum eigenvalue and Monte 
Carlo approximation. 
 To simplify optimization of the log-likelihood 
with respect to the scalar parameter ρ, labeled as ρ1, . . 
. , ρr in Equation (26): 

 

[ ] [ ]{ }
[ ] [ ]{ }

[ ] [ ]{ }

T
1

0 1 d 0 1 d 1 1

T

2 0 2 d 0 2 d 2 1

T

0 r d 0 r d r 1r

nf(ρ ) c - ln e -ρ e e -ρ e + ln I -ρ W
2
n

f(ρ ) c - ln e -ρ e e -ρ e + ln I -ρ W
= 2

.....
.....

n
c - ln e -ρ e e -ρ e + ln I -ρ Wf(ρ ) 2

  
  
  
  
  
  
  
  

   
   

 (26) 

4. DISCUSSION 

 The SDM model for simulated data specified as: 

 

1 0 1 1 2y = ρW y +β + xβ + W xβ + ε  

Table 1. Parameter estimation by SDM 
 Parameters 
-------------------------------------------------------------- Log 
  β0                  β1                   β2    ρ    σ likelihood 
Method: Eigen 
7.856*       -2.679*     1.055**    0.408*  0.3497    -14.985 
(-3.096)    (-9.721)    (-1.917)     (-2,582) 
Method: Chebyshev 
7.854*       -2.679*     1.055**    0.409*  0.3497    -14.984 
(-3.095)    (-9.721)     (-1.9182)  (-2,582) 
Method:Monte carlo 
8.024*      -2.680*      1.021**    0.397*  0.3502    -15.071 
(-3.136)    (-9.709)    (-1.841)     (-2.486) 
Note: the first and second row in the parameter column show 
the parameter estimate and t-statistic, (*) significant at α = 5%, 
(**) significant at α = 10%, n = 38 
 
 The rate of illiteracy (ILLITERACY) was the 
dependent variable. The percentage of households owning 
a mobile phone (PHONE) was the independent variable. 
 The results of simulation by R Software can be seen 
on Table 1. In R, it was use spdep package which 
introduced by Roger Bivand (Fischer and Getis, 2009). It 
was use Eigen, Chebychev and Monte Carlo to calculate 
the Jacobian. The weighted method was row 
standardization. The results show that the PHONE 
variable in all Jacobian methods were significance on α = 
5%. The lag coefficient parameter on dependent variable 
(ρ) is significant on α = 5%. The lag of PHONE is 
significant on α = 10%. 

5. CONCLUSION 

 The parameter estimation for SDM can be 
approximation by SAR estimation. The matrix of 
independent variable in SAR is X and in SDM is Z=[I X 
W1X], so that the estimation in SDM was done by 
replace matrix X in SAR by Z = [I X W1X].  
 The likelihood function is: 
 

( ) ( )( )

n /2
2

12

T

1 12

1
L(ρ,β,σ | y) = I -ρW

2πσ

1
exp - (I -ρW )y - Zβ (I - ρW )y - Zβ

2σ

 
 
 

 
 
 

 

 
 The unbiased estimator of β is: 
 

( )-1T T
1β̂ = Z Z Z (I - ρW )y

 
 
 The biased estimator of σ2 is: 
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( ) ( )( )T

1 12
(I - ρW )y - Zβ (I - ρW )y - Zβ

σ̂ =
n

 

 

and the unbiased estimator is: 

 

( )T

SSE

n - 2tr(S) + tr(S S)

 
 
 
 

 

 
Where: 
 

( )( )-1T T
1 1S = ρW + Z Z Z Z (I - ρW )  

 
 To estimate ρ by optimization of the log-likelihood 
with respect to the scalar parameter ρ, labeled as ρ1, . . . , 
ρr in these equation: 
 

[ ] [ ]{ }
[ ] [ ]{ }

[ ] [ ]{ }

T
1

0 1 d 0 1 d 1 1

T

2 0 2 d 0 2 d 2 1

T

0 r d 0 r d r 1r

nf(ρ ) c - ln e -ρ e e -ρ e + ln I -ρ W
2
n

f(ρ ) c - ln e -ρ e e -ρ e + ln I -ρ W
= 2

.....
.....

n
c - ln e -ρ e e -ρ e + ln I -ρ Wf(ρ ) 2

  
  
  
  
  
  
  
  

   
     
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