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ABSTRAC 

We consider the problem of minimizing the ℓ2-norm of the KSOR operator when solving a linear systems of 

the form AX = b where, A = I +B (TJ = -B, is the Jacobi iteration matrix), B is skew symmetric matrix. 

Based on the eigenvalue functional relations given for the KSOR method, we find optimal values of the 

relaxation parameter which minimize the ℓ2-norm of the KSOR operators. Use the Singular Value 

Decomposition (SVD) techniques to find an easy computable matrix unitary equivalent to the iteration 

matrix TKSOR. The optimum value of the relaxation parameter in the KSOR method is accurately 

approximated through the minimization of the ℓ2-norm of an associated matrix ∆(ω*
) which has the same 

spectrum as the iteration matrix. Numerical example illustrating and confirming the theoretical relations are 

considered. Using SVD is an easy and effective approach in proving the eigenvalue functional relations and 

in determining the appropriate value of the relaxation parameter. All calculations are performed with the 

help of the computer algebra system “Mathematica 8.0”. 
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1. INTRODUCTION 

We consider linear systems of the form Equation 1: 
 

m

ij

j

j j i

1

ia x b ,a 0,i 1,2, ,m
=

= ≠ =∑ L  (1) 

 

With aij = - aji for i ≠ j and the system admits a unique 

solution. This system of equations can be written as 

Equation 2: 
 

m m mA X b,AX, b R R, A ×= ∈ ∈   (2) 

 

Such linear systems arise in many different 

applications for example in the finite difference 

treatment of the Korteweg de Vries equation, Buckley 

(1977). Also, simi-lar linear systems appears in the 

treatment of coupled harmonic equations, Ehrlich (1972). 

In the iterative treatment of linear systems, we use the 

splitting, A = D-L-U, where D = d×Im is the diag-onal 

part of A, for some non-zero constant d, -L is the strictly 

lower-triangular part of A and -U is the strictly upper-

triangular part of A, Woznicki (2001). 

1.1. Jacobi Method Equation 3: 

 

[ ] [ ] [ ]
i 1 m

n 1 n n

i i ij j ij j

j 1 j i 1ii

1
x b a x – a x

a

−
+

= +=

 
= −  

 
∑ ∑   (3) 

 

The Jacobi Method in matrix form is Equation 4: 

 
[n 1] [n ] 1 1

J jX T X D bT D (L U)+ − −= + = +   (4) 

 

TJ is the Jacobi iteration matrix, it is clear that TJ in this 

case is a skew symmetric matrix. 

1.2. The SOR Method is Equation 5: 

 

[ ] [ ]
i 1 m

n 1 n [n 1] [n] [n]

i i i ij j ij j ii i

j 1 j i 1ii

updated components old components

x x b a x a x a x
a

i 1,2, ,m; n 0, 1,

−
+ +

= = +

 
 ω  = + − − −
 
 
 

= =

∑ ∑
14243 144424443

L L

 (5) 
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where, ω∈ (0,2) is a relaxation parameter, ω = 1 gives 

the well-known Gauss-Seidel method. 

The SOR Method in matrix form is Equation 6: 
 

( )(

[n 1] [n ] 1

SOR

1

SOR

X T X (D L) b

T (D L) 1 D U)

+ −

−

= + − ω ω

= −ω −ω + ω

 

 
 (6) 

 
where, TSOR  is the SOR iteration matrix. 

The choice of the relaxation parameter ω is very 

important for the convergence rate of the SOR method. 

For certain classes of matrices (2-cyclic consistently 

ordered) with property A, in the sense of Young (2003), 

for such systems there is a functional eigenvalue relation 

of the form Equation 7: 
 

( ) 1/21λ + ω− = ωµλ  (7) 

 

where, λ  is an eigenvalue of the TSOR and µ is a 

corresponding eigenvalue of the TJ. Most work on the 

choice of  ω is to minimize ρ(TSOR) which is only an 

asymptotic criteria of the convergence rate of linear 

stationary iterative method, Hadjidimos and Neumann 

(1998). In real computations, we have to consider 

average convergence rate Milleo et al. (2006). The 

determination of the optimal value of the relaxation 

parameter ωopt can be obtained with the help of the 

eigenvalue functional relation (7). Young (2003), 

determined ωopt when TJ has only real eigenvalues and 

ρ(TJ) 〈1. In this case we have: 

 

opt
2

J

2

1 1 ( (T ))
ω =

+ − ρ
 

 
where the optimality is understood in the sense of the 

minimization of ρ(TSOR). 

Maleev (2006) determined ωopt when TJ has only pure 

imaginary eigenvalues and   ρ (TJ) 〈 1. In this case we have: 
 

opt
2

J

2

1 1 ( (T ))
ω =

+ + ρ
 

 
Golub and Pillis (1990) introduced a simple proof for 

the eigenvalue functional relation (7) by the use of the 

Singular Value Decomposition (SVD) approach for real 

symmetric matrices. Yin and Yuan (2002) considered the 

skew symmetric case as well as the symmetric case. 

Milleo et al. (2006) considered the minimization of 
2

l -

norms of the SOR and MSOR operators for the skew 

symmetric case. 

1.3. The KSOR Method is 

In a recent work Youssef (2012), introduced the 

KSOR method Equation 8 and 9: 

 

[ ] [ ]
*

n 1 n

i i

ii

i 1 m
[n 1] [n] [n 1]

i ij j ij j ii i

j 1 j i 1
Assumed
updatedupdated old

*

x x
a

b a x a x a x

i 1,2, ,m, R [ 2,0]

+

−
+ +

= = +

ω
= +

 
 
 − − −
 
 
 

= ω ∈ − −

∑ ∑ 14243
14243 14243

L

  (8) 

 

[ ]

[ ]

n 1

i *

* i 1 m
n [n 1] [n ]

i i ij j ij j

j 1 j i 1ii

*

1
x

(1 )

x b a x a x
a

i 1,2, ,m, R [ 2,0]

+

−
+

= = +

=
+ ω

  ω
+ −     

= ω ∈ − −

∑ ∑

L

  (9) 

 

The KSOR Method in matrix notation is Equation 10:  
 

( )(
( )(

[n 1] [n ] * * 1 *

KSOR

* * 1 *

KSOR

X T X 1 D L) b

T 1 D L) [D U]

+ −

−

= + + ω −ω ω

= + ω −ω + ω
 (10) 

 

where, TKSOR  is the KSOR iteration matrix (operator). 

As it was in the SOR the rate of convergence of the 

KSOR method depends on the choice of the relaxation 

parameter ω*. For certain classes of matrices (2-cyclic 

consistently ordered with property A), Youssef (2012) 

established the eigenvalue functional relation Equation 11: 
 

( ) 1/ 2

i i i i1β + ωβ − = ω µ β  (11) 

 

where, βI's are the eigenvalues of the TKSOR and µi's are 

the eigenvalues of the Jacobi iteration matrix TJ. The 

eigenvalue functional relation (11) can be proved by the 

use of the SVD technique. 

1.4. Singular Value Decoposition 

Singular Value Decomposition (SVD) of a matrix 
mB R ×∈ l

 is a factorization: 
 

( )T m

1 2 qB U , diag s ,s , ,s R ,q mim{ ,m}V ×= Σ Σ = ∈ =lL l  

 

where, s1 ≥s2≥…≥sq ≥0, U and V are orthogonal matrices 

such that: 



Youssef, I.K. and A.I. Alzaki /Journal of Mathematics and Statistics 8 (4): 461-470, 2012 

 

463 Science Publications

 
JMSS 

T T

P q,U U I V V I= =  

 

We consider in this study the case studied by Yin and 

Yuan (2002) also by Milleo et al. (2006) in which the 

coefficient matrix take the form Equation 12: 
 

P

T

q

I F
A

F I

− 
=  
 

 (12) 

 

where, F ×∈ p q
R  with p + q = m   and p ≥ q. 

In this case the Jacobi iteration matrix becomes 

Equation 13: 
 

J T

0 F
T

F 0

 
=  − 

  (13) 

 
It is clear that TJ is skew symmetric and accordingly 

admits pure imaginary eigenvalues and the KSOR 

iteration matrix TKSOR becomes Equation 14: 
 

*

P* *

KSOR * *2
T T

q* 2 * * 2

1
I F

1 1
T

1
F I F F

( 1) 1 ( 1)

 ω
 

ω + ω + =
 −ω ω

− 
ω + ω + ω + 

 (14) 

 
Usually, researchers work on obtaining the optimum 

value of the relaxation parameter in the sense of 

minimizing the spectral radius of the iteration matrix or 

an equivalent quantity. We use the SVD approach in 

proving the eigenvalue functional relation for the KSOR 

method. Also, we use the same argument of Golub and 

Pillis (1990) to define a matrix ∆(ω*
) which has the same 

spectrum as the iteration matrix TKSOR.  

Our objective is to find the optimal value of the 

relaxation parameter ω*
 which minimizes the 

2
l -norm 

of the KSOR operator and illustrate the theoretical 

results through applications to a numerical example. 

2. MATERIALS AND METHODS 

We use the SVD in proving the relation between the 

eigenvalues of the skew symmetric Jacobi iteration 

matrix TJ and the singular values of a block sub-matrix 

F, theorem (1). We will prove the relation between the 

eigenvalue functional relation between the eigenvalues 

of TJ and TKSOR by using SVD, theorem (2). We will find 

the spectal raduis of ((TKSOR)
T
 TKSOR), theorem (3). We 

will find the optimal value of the relaxation parameter ω*
 

to minimize the 
2

l -norms of the TKSOR theorem (4). 

Theorem 1 

 Let Abe the matrix given by (12), then Equation 15: 
 

2 2 2 T 2

i J J i
{ } (T ) ( (T )) ( FF ) { S i 1,2...,q}µ = σ = σ = σ − = − =   (15) 

 

where, 2

i
µ are the eigenvalues of 2 2

J i
T , S  are the squares of 

the singular values of F and (σ(TJ))
2
 is the set of squares 

of the eigenvalues of TJ. 

Proof 

 Using the SVD to decompose the corner block matrix 

F, we obtain Equation 16: 
 

TF U V= Σ   (16) 
 

where, p×p  matrix U and q×q matrix V are orthogonal, 

i.e.: 
 

T T

p qU U I ,V V I= =  

 

and ∑ is the p×q diagonal matrix (of singular values) 

defined in (17). The eigenvalues of the matrix: 
 

T T T 2 2 2

1 2 qFF U U are {s ,s ,.....,s }= ΣΣ  

 
And: 
 

T T T TFF U U U U U= ΣΣ = ΣΣ  
 

Accordingly, the eigenvectors of the matrix FF
T
 equal 

to the columns of orthogonal matrix U. Similarly, F
T 

F = 

V∑T ∑V
T 

has its eigenvectors equal to the columns of 

orthogonal matrix V. The number of nonzero singular 

values Si of F is equal to the rank of F. 

Substituting the singular value decomposition (16) 

into the corner elements F, F
T 

of (13), we obtain (18) 

Equation 17 and 18: 
 

1

2

q 1

q

s 0 0

0 s 0 0
q q

s

0 s

0 0
(p q) q

0 0

−

 
 
  ×    

Σ =  
 
  − ×    

 

L L

M O M M

L L L

L

M L M

L

 (17) 

 
T

J T T T

0 F 0 U V
T

F 0 V U 0

 Σ 
= =   − − Σ   

 (18) 
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Now, we will find a relation between the singular 

values Si (diagonal of ∑) and the eigenvalues µi of TJ 

where i = 1,2,..,q. For µi ≠ 0 an eigenvalues of TJ, we have 

Equation 19: 

 

i i i i

J i J i

i i i i

x x x x
T iff T i 1,2, , t

y y y y

       
= µ = −µ = …       − −       

  (19) 

 

So that, the number of non-zero eigenvalues of  TJ 

equals 2t that’s come in pairs ±µi. To account for zero 

eigenvalues, we write Equation 20: 

 

i i

J

i i

z z 0
T 0 i 1,2, , r

z z 0

     
= = = …     

    
⊻ ⊻

  (20) 

 

We construct the n×n non-singular matrix W whose 

columns are the orthogonal eigenvectors of (19) and 

(20): 

 

*

X X Z
W n p q 2t r

Y Y Z

 
= = + = + − 

 

 

Note that the t columns of p×t matrix X and q×t 

matrix Y are the t respective eigenvectors of (19), the r 

columns of p×r matrix Z and q×r matrix Z
T
 come from 

the r null vectors of (20). 

Ordinarily, we would scale the columns of W to 

produce an orthogonal matrix as a technical 

convenience, however, we assume that the columns of 

W are scaled so that Equation 21: 

 
HWW = 2I   (21) 

 

Let the matrix I denote the t×t matrix whose diagonal 

elements are the t positive eigenvalues µi of (19). Then 

(19) and (20) can be combined to produce the single 

matrix equation: 

 

J * *

J 0 0
X X Z X X Z

T 0 J 0
Y Y Z Y Y Z

0 0 0

 
     = −     − −      

 

 

Which, when multiplied through on the right by W
H
 

we get Equation 22: 

 
H

J H

0 XJY
T

YJX 0

 
=  

 
  (22) 

Comparing the block entries of TJ in (18) and (22), 

we obtain the equalities: 

 

 H TF XJY U V= = Σ  

 

And: 

 

 T H TF YJX V U− = = − Σ  

 

And we see Equation 23: 

 
2 H T

2

J 2 H T

T T

T T

XJ X 0 FF 0
T

0 YJ Y 0 F F

U U 0

0 V V

   −
= =   

−

Σ

   

 − ΣΣ
=  

− Σ 

  (23) 

 

 Accordingly: 

 

{ } ( ) ( )( ) ( ) { }22 2 T 2

i J J iT T FF S . i 1,2,...,qµ = σ = σ = σ − = − =  

Theorem 2 

 Let TKSOR and TJ be given, respectively, by (14) and 

(13). Then the eigenvalues µi ∈ σ(TJ) and βi ∈ σ(TKSOR) 

are linked by the functional relation Equation 24: 

 

( )2
* *2

i i i i1β = ω−ω β µ β+   (24) 

 

Moreover, the eigenvalues and 2-norm of matrices 

TKSOR and ∆(ω*
) are related as follows Equation 25-29: 

 

( ) ( )( )*

KSORTσ = σ ∆ ω   (25) 

 

( ) ( )( ) ( )( )* *

KSOR i
1 i q

T max
≤ ≤

ρ = ρ ∆ ω = ρ ∆ ω   (26) 

 
k k * k *

KSOR 2 2 i 2
1 i q

|| T || || || max || ( ) |) |(
≤ ≤

= ∆ ω = = ∆ ω   (27) 

 

Where: 
 

( ) ( )* * *

1 q p q*

1
diag( ( ), ‚ , I )

1
−∆ ω = ∆ ω ∆ ω

ω +
L   (28) 

 

( )

*

i* *
*

i * *2
2

i i* 2 * * 2

1
s

1 1
i 1,.q

1
s s

(1 ) 1 (1 )

 ω
 

+ ω + ω ∆ ω = =
 −ω ω

− 
+ ω + ω + ω 

  (29) 
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where, si are the singular values of F. 

Proof 

 By using the singular value decomposition of the 

matrix F we have F = U∑V
T 

where U and V orthogonal 

matrices, then the matrix TKSOR has the form Equation 30: 
 

*
T

P* *

KSOR * *2
T T T T

q* 2 * * 2

1
I U V

1 1
T

1
V U I V V

(1 ) 1 (1 )

 ω
Σ 

+ ω + ω =
 −ω ω

Σ − Σ Σ 
+ ω + ω + ω 

  (30) 

 

Let the orthogonal matrices U and V be factored out 

then TKSOR has the form Equation 31: 

 

KSOR

*

P T* *

* *2 T
T T

q* 2 * * 2

U 0
T

0 V

1
I

U 01 1

1 0 V
I

(1 ) 1 (1 )

 
=  

 

 ω
Σ   + ω + ω    −ω ω  Σ − Σ Σ + ω + ω + ω 

  (31) 

 

Note that (31) reveals the unitarily equaivalent matrix 

*ω
Γ  with four block submatrices, each of which is a 

diagonal sub-matrix where Equation 32: 

 

* 2

*

P* *

* *
T T

q* 2 * * 2

T

T

T

1
I

1 1
and

1
) I

(1 ) 1 (1 )

U 0 U 0
Q , Q

0 V 0 V

ω

 ω
Σ + ω + ω Γ =

 −ω ω
Σ − Σ Σ 

+ ω + ω + ω 

  
= =   

   

  (32) 

 

This mean that there is a permutation matrix P which 

“pulls” the two corner diagonal matrices to the main 

diagonal, i.e., *

TP P
ω

Γ  has only 2×2 or 1×1 matrices 

along its main diagonal. When *ω
Γ  of (32) is permuted 

into the block diagonal form, we obtain Equation 33: 

 

( )

( ) ( )

*

* T

* *

1 q p q*

P P diag

1
, ‚ , I

1

ω

−

∆ ω = Γ =

 ∆ ω ……∆ ω ω + 

  (33) 

 

where each 2×2 matrix ∆i(ω
*) is given by Equation 34: 

( )

*

i* *
*

i * *2
2

i i* 2 * * 2

1
s

1 1
i 1, ,q

1
s s

(1 ) 1 (1 )

 ω
 

+ ω + ω ∆ ω = =
 −ω ω

− 
+ ω + ω + ω 

L   (34) 

 

where, si are the singular values of F. 

We have seen that each member of the  ω* family of 

KSOR iteration matrix TKSOR is unitarily equivalent to a 

matrix ∆ (ω*
) having only 2×2 or 1×1 matrices on the 

main diagonal. That is, from (31) and (33) Equation 35: 

 

( ) ( )T * T T

KSORT Q P PQ for unitary QP= ∆ ω   (35) 

 
Unitary equivalent (35) implies that both the 

eigenvalues and the 2-norms agree for both (ω*
-

families of) matricies TKSOR and ∆(ω*
) then we have 

(25), (26) and (27). From (25) we have Equation 36: 
 

( ) ( )( )*

i m KSOR i mdet I T 0 iff det I 0β − = β − ∆ ω =  (36) 

 
From the right-hand determinant above, we see, from 

(33), (34), that all βi are constrained by Equation 37:  
 

( )( )*

i i 2 i*

1
,or det I 0;i 1,2, ,q

1
β = β − ∆ ω = = …

ω +
  (37) 

 
Then: 
 

( )( )

*

i i* *
*

i 2 i * *2
2

i i i* 2 * * 2

1
s

1 1
det I 0

1
s s

(1 ) 1 (1 )

 ω
β − − 

+ ω + ω β − ∆ ω = =
 ω ω

β − + 
+ ω + ω + ω 

 

( )( )

2

2

*

i 2 i i *

*2 *2
2 2

i i i* 2 * * 3

2 *
2

i i i* * 2

1
det I

1

1
S 0S

(1 ) 1 (1 )

1
s 0

1 (1 )

 
β − ∆ ω = β − + ω 

ω ω 
+ β − + + ω + ω + ω 

ω 
β − + β = + ω + ω 

=  

 
Thus we find: 
 

2* 2 * 2

i i i i i*

1
,or ( 1) s 0 i 1,2, q

1
β = β + ω β − + ω β = = …

ω +
 

 
Accordingly, with the help of (15) we can write 

Equation 38: 
 

2* 2 * 2

i i i i i*

1
,or ( 1) i 1,2, q

1
β = β + ω β − = ω µ β = …

ω +
  (38) 
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Now the left-hand equation, i *

1

1
β =

ω +
 appears in 

(33), (34) once for each occurrence of a zero eigenvalue 

for TJ, but i *

1

1
β =

ω +
 is a special case of the right-hand 

side of (38), namely, when µi is set to zero. Therefore, 

(38) is described by the single relation (24).  

 From the previous theorem we see the 
2

l -norm of 

the KSOR iteration matrix is equivalent to the 
2

l -norm 

of the ∆(ω*
) then, equivalent to the square root of the 

spectral radius of (∆(ω*
))

T
 ∆(ω*

). Then, the problem of 

minimizing the 
2

l -norm of the KSOR iteration matrix is 

equivalent to the problem of minimizing the square root 

of the spectral radius of (∆(ω*
))

T
 ∆(ω*

). 

Theorem 3 

 Under the assumptions of the theorem 2, for K = 1 

the minimum of the of 
2

l -norm of the TKSOR is 

equivalent to Equation 39-41: 

 

( )

* *

2 2

1
R [ 2,0] R [ 2,0]

1
2 2

2
*

: min min

1 1
max [T(t) [T (t) 4C] ],

2 1

ω ∈ − − ω ∈ − −
δ = δ =

 
 

+ − 
+ ω  

  (39) 

 

Where: 

 

 ( )
4*

*

* 2 * 4

2 t
T , t : (1 t)

(1 ) (1 )

ω
ω = + +

+ ω + ω
  (40) 

 

And:  

 

*

* 4

1
C( ) :

(1 )
ω =

+ ω
  (41) 

 

With t is the square of the spectral radius of the 

Jacobi iteration matrix TJ. 

Proof 

 From the theorem 2 we have Equation 42: 

 
* *

KSOR 2 2 i 2
1 i q

1
T * *2

i i
1 i q

|| T || || ( ) || max || ( ) ||

max{ ( ( ) ( ))}

≤ ≤

≤ ≤

= ∆ ω = ∆ ω

= ρ ∆ ω ∆ ω
 (42) 

 

Now we go to calculate Equation 43 and 44: 

( ) ( )

*

i* * 2

T * *

i i * *2
2

i i* * * 2

*

i* *

* *2
2

i i* 2 * * 2

1
s

1 (1 )

1
s – s

1 1 (1 )

1
s

1 1

1
s – s

(1 ) 1 (1 )

 −ω
 

+ ω + ω ∆ ω ∆ ω =
 ω ω
  + ω + ω + ω 

 ω
 

+ ω + ω 
 −ω ω
 

+ ω + ω + ω 

  (43) 

 

( ) ( )

( )

( )

( ) ( )

2

2

2 2

* 2

i

2 2
* *

*2 * 2

i i

3 **

T * *

i i
* 2 * 2

i i

3 **

* 2 * 2
* i

3 2** *

1 s
1

1 1

s s
1

(11
( ) ( )

s s
1

(11

s s 1
1

11 1

)

)

  ω  +
  + ω + ω  
  ω ω +  + ω + ω
 ∆ ω ∆ ω =
  ω ω + 
 + ω + ω
 
  ω ω ω − + +   + ω+ ω + ω  

 (44) 

 

It is easy to see Equation 45: 

 

4

T * * 2

i i 2

* 2
2i

i* 2 * 4 * 4

det( ( ) ( ) I )

2 S 1
(1 S )

(1 ) (1 ) (1 )

∆ ω ∆ ω −β = β −

 ω
+ + β +  + ω + ω + ω 

  (45) 

 

Set 2

i i
s t= and define Equation 46 and 47: 

 

*

* 4

1
c( ) :

(1 )
ω =

+ ω
  (46) 

 

( ) ( )
4*

*

* 2 * 4

2 t
T , t : 1 t

(1 ) (1 )

ω
ω = + +

+ ω + ω
  (47) 

 
Therefore Equation 48: 
 

T * * 2

i i 2 i
det( ( ) ( )) I ) T(t ) C∆ ω ∆ ω −β = β − β +   (48) 

 
Solving this quadratic equation, we find that 

Equation 49: 
 

1
2 2

i i

1
{T(t ) [T (t ) 4C] }

2
β = ± −   (49) 

 

Note that, for any t ≥ 0, ω*∈ R/[-2,0],  we have 

Equation 50: 
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2T(t) 0 T (t) 4C 0〉 − ≥  (50) 

 

Note that: The eigenvalues of the matrix 
T * *

i i
( ) ( )∆ ω ∆ ω  are nonnegative numbers and form the 

roots of the char-acteristic Equation 51 and 52: 

 

( )2

iT t C 0 i 1,2,....qβ − β + = =   (51) 

 

And:  

 

( )2
*

1
0

1
β − =

+ ω
  (52) 

 

The largest of the two roots of (51) is given by: 

 

( ) ( ) 1
* * 2 * * 2

i i i i
, ,

1
L : L ( ) {T t [T t 4C( )] }i 1,2 q

2
= ω ≡ ω + ω − ω = …  

 

The maximum value of each Li is obtained for the 

maximum value of the corresponding T (ω*
, ti). 

Note that: 

 

( )
4*

* 4

dT(t)
2t 1 0,for any t 0

dt (1 )

ω
= + ≥ ≥

+ ω
   

 

Now for any t 〉 0, T(t) is a strictly increasing function 

of  t. Likewise, Li is strictly increasing function of  ti, set 

Equation 53 and 54: 

 

( )*

i
i 1,2, ,q

L : L max L
=

= ω =
L

  (53) 

 

Then:  

 

( ) ( ) ( )( )
1

2* * 2 * *1
L : L T , t T , t 4C( )

2

 = ω = ω + ω − ω 
 

  (54) 

 

With t = ρ2
(TJ). 

The spectral radius of the matrix ∆i
T
(ω*

) ∆i(ω
*
) for 

any given i, is the quantity Li, then from (53) the spectral 

radius of the matrix ∆T
(ω*

) ∆(ω*
) is L. 

Theorem 4 

 The value of ω*
, which has minimum in (39), is the 

unique real positive root in (0,∞) of the Equation 55: 

 

( ) ( )* 2 *2 *f t t 1 0ω = + ω −ω + =   (55) 

Proof 

From (40) we see Equation 56 and 57: 

 

( )

( )

4*
*

* 2 * 4

*

2
T , t :

(1 ) (1 )

l t 0 for any

t

R / [ 2,0]

ω
ω = +

+ ω + ω

+ 〉 ω ∈ − 

  (56) 

 

And:  

 

( )
( )

3* *

* * 3 * 5

dT , t 4 4
: l t

d (1 ) (1

t

)

ω − ω
= + +

ω + ω + ω
  (57) 

 

Then we find Equation 58: 

 

( )*

*

*

dT , t
0 for any 2

d

ω
〉 ω 〈 −

ω
   (58) 

 

The function T(ω*
, t) increases strictly in the interval 

(-∞, -2). 

Differentiating L(ω*
, t) defined in (54) with respect to 

ω*
, and using (40) and (41) we find Equation 59:  

 

* * 5

1* *
2

2

* 4

dT 8
T

dL 1 dT d (1 )

d 2 d 4
T

(1 )

 
  +  ω + ω = + 

ω ω  
−  + ω  

  (59) 

 

 It is clear that Equation 60: 

 

*

*

dL
0 for any ( , 2)

d
〉 ω ∈ −∞ −

ω
   (60) 

 

So that, the function L(ω*
, t) increases strictly in the 

interval (-∞,-2). We will take limit of the function 
*

dL

dω
 

as ω*→∞, we obtain Equation 61: 
 

* * *

* * 5

1* *
0 0 0 2

2

* 4

dT 8

dL 1 dT d (1 )
Lim Lim Lim

d 2 d 4
T

(

T

1 )

ω → ω → ω →

 
 
 
 ω + ω

= + 
ω ω  

−  + ω 


 



+
  (61) 

 

Then when, ω* → ∞  we have
*

dL
0

d

+→
ω

, now we take 

limit as ω*
 → ∞ and obtain Equation 62: 
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* * *

* * 5

1* *
0 0 0 2

2

* 4

dT 8
T

dL 1 dT d (1 )
Lim Lim Lim

d 2 d 4
T

(1 )

ω → ω → ω →

 
  +  ω + ω = + 

ω ω  
−  + ω  

  (62) 

 

Set Equation 63 and 64: 

 

* * 5

dT 8
W T

d (1 )

 = + ω + ω 
  (63) 

 

And:  

 

2

* 4

4
V T

(1 )
= −

+ ω
  (64) 

 

Now simplify (63) and (64) as: 

 

( )
( )

( )
( )

4*
* 2 * 2

2
*

*

*4
* 4 2

2
*

4 t t 2 4 t t
1w

0 as 0
V

(1 ) t t 4
1

 ω ω + −ω +

 
 
 
 

+
 + ω = → ω →

ω
+ ω + +

+ ω

 

 

Then we have Equation 65: 
 

* *
0

dL
Lim 2 0

dω →
= − 〈

ω
  (65) 

 

Therefore, from (61) and (65) L(ω*
, t) has a odd 

number of local minimum points in (0, ∞). 

For any fixed t ∈(0, 1), the global minimum point of 

L(ω*
, t) is a point in (0, ∞) at which  

*

dL

dω
 vanishes. 

Setting 
*

dL
0

d
=

ω
 then: 

 

( )

1
2

2

4* * * 5*

dT 4 dT 8
T T

d d (1 )1

 
 − = − −
 ω ω + ω+ ω 

 

 

Then: 

 

( )

2
2

2

4* * * 5*

dT 4 dT 8
T T

d d (1 )1

 
  − = − −  ω ω + ω   + ω 

 

 That is: 

 

( )

2 2

2

4* **

* * 5 * 10

dT 4 dT
T T

d d1

dT 16 64
T

d (1 ) (1 )

 
    − =    ω ω   + ω 

+ +
ω + ω + ω

 

 

Eliminating (T dT/dω*
)

2 and dividing through -4, we 

obtain: 

 

( )

2

4 * * * 5 * 10*

1 dT dT 4 16
T 0

d d (1 ) (1 )1

  + + = ω ω + ω + ω + ω
 

 

It now follows that: 

 
2

* * * * 6

dT dT 4 16
T 0

d d 1 (1 )

  + + = ω ω + ω + ω 
 

 

Substituting (56) for T and (57) for dT/dω*
, we obtain 

Equation 66: 

 

( ) ( ) 2* 2 * *f t t 1ω = + ω −ω −   (66) 

 

 Then, we have Equation 67 and 68: 

 

( )
( )

( )

2

*

1 2

1 1 4 t t 1
r

t2 t t

+ + +
ω = =

+
  (67) 

 

( )
( )

( )

2

*

2 2

1 1 4 t t 1
r 0

t 12 t t

− + + −
ω = = 〈

++
  (68) 

 

Therefore, f (ω*
) has a unique zero r1(ω

*
) in that 

interval. So the r1(ω
*
) is a unique real positive root in (0, 

∞) of the equation (66), from that and (61), we notes that 

Equation 69: 

 

( )( ) ( )
*

* *

1L r , t Lim L , t
ω →±∞

ω 〉 ω   (69) 

 

So that r1(ω
*
) is a unique real positive root in (0, ∞) 

of the equation which has the minimum of L(ω*
). 

Example 

 Consider a system with: 
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Fig. 1. The behviour of the spectral radius of the TSOR as a 

function of  ω 

 

1.0 0 0.25 0.25 1.0

0 1.0 0.25 0.25 1.5
A , b

0.25 0.25 1.0 0 0.5

0.25 0.25 0 1.0 1.0

−   
   
   = =
   − −
   

−   

   

 

For simplicity we adapted the right hand side b as it 

was in Young (2003) and Youssef (2012) so that the 

exact solution is  x1 = 1, x2 = 1, x3 = 1, x4 = 1. 

It is well known that, for this system we have. 

The eigenvalues of the Jacobi iteration matrix TJ are 

the roots of the equation: 

 
4 2

0.25 0.015625 0µ + µ + =  

 

 The roots are: 

 

1 2 3 40.353553I, 0.353553Iµ = µ = µ = µ = −  

 

For the matrix, 
0.25 0.25

F
0.25 0.25

− 
=  − − 

 the Singular 

values are s1 = s2 = 0.353553. 

It is clear that the Jacobi iteration matrix TJ is a skew 

symmetric, accordingly their eigenvalues are pure 

imaginary complex numbers, and satisfies 2 2

i i
sµ = . 

3. RESULTS 

• We used the SVD in proving the eigenvalue 

functional relation for the KSOR operator 

• The minimization of the 
2

l -norm is used as a good 

estimation for determining the optimum value of the 

relaxation parameter in the KSOR method as well as 

in the SOR method 

 
 
Fig. 2. The behaviour of the 

2
l -norm of TSOR as a function of ω 

 

 
 
Fig. 3. The behviour of the spectral radius of the TKSOR as a 

function of ω* 

 

 
 
Fig. 4. The behaviour of the 

2
l -norm of TSOR as a function of ω* 

 

• From Fig. 1 and 2 we see that the calculated 

results agree with the theoretical results of   

Milleo et al. (2006) 
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• From Fig. 3 and 4 we see that the calculated results 

agree with our theoretical results  

• Numerical example illustrating and confirming the 

theoretical relations is considered 

4. DISCUSION 

Young (2003), considered the problem why 

convergence of the SOR method with the optimum ωopt 

in the sense of minimizing the spectral radius of the 

iteration matrix is some what slower than what might 

expected, the spectral radius is only an asymptotic 

measure of the rate of convergence of a linear iterative 

method. In his treatment Young (2003), established a 

relation between the eigenvalues of certain matrices 

related to A (the SOR iteration matrix, TSOR) and those 

of certain block 2×2 matrices. 

Golub and Pillis (1990) raised the question of 

determining, for each k ≥ 1, a relaxation parameter 

ω∈(0, 2) which minimizes the Euclidean norm of the k
th

 

power of the SOR iteration matrix, associated with a real 

symmetric positive definite matrix with “property A”.  

Hadjidimos and Neumann (1998), used the reduction 

of the SOR operator introduced by Golub and Pillis 

(1990), with the help of the SVD of the associated block 

Jacobi iteration matrix to obtain the minimizing 

relaxation parameter for the case k = 1. Yin and Yuan 

(2002), used the SVD to re-derive the eigenvalue 

functional relations for block skew symmetric matrices 

for the AOR method. Milleo et al. (2006), considered 

systems with block skew symmetric Jacobi iteration 

matrix and used the SVD in studying the behavior of the 

SOR operator from the 
2

l -norm point of view they 

determined theoretically the minimizing relaxation 

parameter of the 
2

l -norm. Youssef (2012), defined the 

KSOR operator, we used the SVD in re-prove the 

functional eigenvalue relation for the KSOR operator 

and the corresponding unitary block 2×2 matrix ∆(ω*
). 

we employed the same argument as in Yin and Yuan 

(2002), also in Milleo et al. (2006) for systems with 

block skew symmetric Jacobi iteration matrix and used 

the SVD in studying the behavior of the 
2

l -norm of the 

KSOR operator. We determined theoretically the 

minimizing relaxation parameter of the 
2

l -norm for the 

KSOR operator. We confirmed our theoretical results by 

a numerical example. We will continue this study in a 

subsequent work in which we will consider a 

generalizations of the KSOR operator.  

5. CONCLUSION 

We used the same argument defined by Golub and 

Pillis (1990), used by Yin and Yuan (2002) also by 

Milleo et al. (2006), we proved that the KSOR iteration 

matrix TKSOR is unitary equivalent to a matrix ∆(ω*
) 

having only 2×2 or 1×1 matrices on the diagonal. We 

minimize the ℓ2-norm of the KSOR operator for matrices 

whose Jacobi iteration matrix is skew symmetric. By our 

results, the optimal value of the relaxation parameter is: 

 

*

opt 2

J

1

(p(T ))
ω = . 
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