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Abstract: Problem statement: In this study, we construct the estimation for a periodic component of 
the intensity function of a periodic Poisson process in the presence of power function trend by using 
the general kernel function. Beside that we also construct the statistical properties of the estimator. 
Approach: It is considered the worst case where there is only available a single realization of the 
Poisson process having intensity which consist of a periodic component and a power function trend, 
observed in the interval [0, n]. It is assumed that the period of the periodic component and the slope of 
the power function trend are known. Results: It has been formulated the estimator and asymptotic 
approximations to the bias and variance of the estimator. Conclusion: The estimator that we construct 
is asymptotically unbiased estimator for a periodic component of the intensity function of a periodic 
Poisson process in the presence of a power function trend. 
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INTRODUCTION 
 
 On a periodic Poisson process, there are several 
nonparametric methods to estimate the function of the 
intensity at a given point, the methods are kernel type 
estimation and nearest neighbor estimation. These 
methods have been used to estimate the function of 
local intensity function with the period τ is known 
(Helmers and Mangku, 2000). In addition, the local 
intensity function estimation using the nearest neighbor 
method and the proofs of weak and strong consistency 
of the estimator obtained have been studied (Mangku, 
1999). Another method is imitating the general form of 
maximum likelihood to estimate the rate of 
homogeneous Poisson process that can be applied to 
estimate the global intensity function in the periodic 
Poisson process (Helmers and Mangku, 2000). The 
intensity function of Poisson process has been used in 
modeling the rate of oil spill in the North Sea, Netherland 
(Helmers, 1995). Computationally, has been formulated 
an algorithm to estimate the intensity function of a 
Poisson process with exponential quadratic and periodic 
trends (Helmers and Zitikis, 1999). 
 Estimation of the intensity function can be 
distinguished based on the period, the period is known 
and the period is unknown. For the period is unknown, 
estimation of the intensity function is more complicated 
than process with the period is known. The consistency 
of kernel type estimator of the intensity function for 

periodic Poisson processes with unknown period have 
been studied (Helmers et al., 2003). For the period is 
known, the formulation of kernel type estimator and the 
proofs of weak and strong convergence of the estimator 
have been studied and the proof of asymptotic 
normality has been studied. 
 Modeling of a phenomenon with periodic Poisson 
process evolved to include a linear trend component 
(Helmers and Mangku, 2009) and using the double 
periodic intensity function (Helmers et al., 2007). One 
particular form of stochastic process with continuous 
time is a Poisson process with the intensity of a periodic 
function. This process can be used to model similar 
phenomena. If the arrival rate is increased by a power 
function of time, the most appropriate model to use is a 
periodic Poisson process with power function trend. In 
addition, the estimation for the intensity function of a 
periodic Poisson process that includes power function 
trend has been performed. The consistency of the 
estimator obtained using a uniform kernel function 
(Rahayu, 2008), statistical properties of the estimator 
obtained by using a uniform kernel function have been 
studied (Rachmawati, 2008) and the global intensity 
function estimation of periodic components also have 
been studied (Yuliawati, 2008). 
 In this study we will construct an estimator for a 
periodic component that includes power function trend, 
with the contribution of this study is in the estimation 
process we will use general kernel function, where the 
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kernel function to be used is a function not only for 
uniform distribution but can be used for arbitrary 
distribution. By using a more general kernel function, 
the phenomena that can be presented by this model will 
more extensive and closer to the real phenomena 
because assumption that the event must have uniform 
distribution have been removed. 
 

MATERIALS AND METHODS 
 
Assumptions: Suppose N is a non homogeneous 
Poisson process on the interval [0, ∞) with the intensity 
function λ is unknown. This function is assumed to be 
locally integrable and consist of two components, a 
periodic (cyclic) component with period τ >0 is known 
and a power function trend. In other words, for any 
point s ∈[0, ∞) the intensity function λ can be written 
as follows Eq. 1: 
 

b
c(s) (s) asλ = λ +  (1) 

 
 a>0 and 0 <b<1, with λc (s) is a periodic 
function with period τ and a is the slope of the trend 
and it is assumed that the value of a, b and τ are 
known. This study does not assume a parametric 
form of λc we suppose that only a single realization 
of the cyclic Poisson point process is observed 
within a bounded “window” (Mangku, 1999). Then, 
λc is periodic with the Eq. 2: 
 

c c(s) (s k )λ = λ + τ  (2) 

 
for every ∈ [0, ∞) and k∈ℤ . 
 Suppose that for some ω∈Ω, there is only a single 
realization of N (ω) of the Poisson process N defined 
on a probability space (Ω, F, P) with the intensity 
function as in (1) was observed in the finite interval [0, 
n]∈ [0, ∞). Because λc  is periodic function with the 
period τ, then the problem for estimating λc at the point 
s, with  s∈ ℝ can be reduced to the problem estimating 
λc at the point s, with s∈ [0, τ)  
 A point s, is called Lebesgue points of a function of  
λ  if Eq. 3 (Wheeden and Zygmund, 1977): 
 

h

h 0 h

1
lim (x s) (s) dx 0

2h→ −
λ + − λ =∫  (3) 

 
 In this study, it is assumed that s is a Lebesgue 
point of  λc. Suppose hn, is a sequence of positive real 
numbers converging to zero Eq. 4: 

nh 0↓  (4) 

 
 For n  → ∞ and suppose k: ℝ→ℝ  called kernel 
function if it satisfies the following properties: 
 
(K.1) k = A probability density function, 
(K.2) k = Bounded, 
(K.3) k = Has support in [-1, 1] 
 
The estimator: With the above assumptions, estimator 
for  λc at a given point s, s∈[0, τ) can be formulated as 
follows Eq. 5 and 6: 
 

nn

c,n,K

k 1n,b n b n0

n b

b
k 1n,b

1 1 x (s k )
(s) K N(dx)

L h k h

a (s k )

L k

τ

τ

=

=

 − + τλ =  
 

+ τ−

∑ ∫

∑
 (5) 

 
n

n,b bk 1

1 n
with L and n

k
τ

τ=

 = =  τ 
∑  (6) 

 
 The idea behind the estimation of kernel type 
estimator  c,n,kλ  of λc can be explained as follows: 

 From (1) and (2), for every point s and k∈ ℤ then: 
 

b
c c(s) (s k ) (s k ) a(s k )λ = λ + τ = λ + τ − + τ  

 
 With (6), the above equation can be written as Eq. 7: 
 

n
b

c b
k 1n,b

n n b

b b
k 1 k 1n,b n,b

1 1
(s) ( (s k ) a(s k ) )

L k

1 1 a (s k )
( (s k )

L k L k

τ

τ τ

τ
=

= =

λ = λ + − + τ

+ τ= λ + τ −

∑

∑ ∑
 (7) 

 
 Value of the function λ (s+kτ) at the point s, can be 
approximated by the average value of the number of 
events accured around s, in interval [s+kτ-hn, s+kτ+hn] 
and by using (3), (7) can be written as Eq. 8: 

 

c,n,K

n
n n

b
k 1n,b n

n b

b
k 1n,b

(s)

1 1 EN([s k h ,s k h ])

L k 2h

1 (s k )

L k

τ

τ

=

=

λ

+ τ − + τ+≈

+ τ−

∑

∑

 (8) 

 
 By replacing EN ([s+kτ-hn,s+kτ+hn]) with its 
stochastically equivalent N ([s+ kτ- hn, s+ kτ+hn]) so 
that (8) can be written as Eq. 9: 
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c,n,K

n
n n

b
k 1n,b n

n b

b
k 1n,b

n
n

[ 1,1] nb 0
k 1n,b n

n b

n b
k 1n,b

n n

1b 0
k 1n,b n n

b
kn,b

(s)

1 1 1 N([s k h ,s k h ])

L k 2h

a (s k )

L k

1 1 1
I ([s k h ,s k

L h k 2

a (s k )
h ])N(dx)

L k

1 1 x (s k )
k N(dx)

L h k h

a (s k )

L k

τ

τ

τ

τ

=

=

−
=

=

τ

=

λ

+ τ − + τ+≈

+ τ−

= + τ − +

+ τ+ −

 − + τ=  
 

+ τ−

∑

∑

∑ ∫

∑

∑ ∫
n

1

τ

=
∑

 (9) 

 

with 1

1
k [ 1,1]

2
= − . To generalized the estimator we used 

general kernel function k. 

 
RESULTS 

 
Statistical properties: 
Theorem 1: Asymptotic approximation of the 
expected value for the estimator: Suppose that the 
intensity function λ as (1) and locally integrable. If the 
kernek K is symmetric and satisfies the conditions 
(K.1), (K.2), (K.3), hn ↓ 0, n1-2b hn

2 → ∞ for n→ ∞ then 
Eq. 10: 
 

2c
c,n,K c n

1 2 2
n1

"(s)
E (s) (s) h

2

z K(z)dz o(h )
−

λλ = λ +

+∫
 (10) 

 
 For s is a Lebesgue point from λc. 

  
Proof: From Eq. 7 can be exemplified Eq. 11 and 12: 

 
n

n

1 0
k 1n,b n b n

n b

2 b
k 1n,b

1 1 x (s k )
Y K N(dx)

L h k h

1 (s k )
Y

L k

τ

τ

=

=

 − + τ=  
 

+ τ=

∑ ∫

∑
 (11) 

 

c,n,k 1 2then weget E (s) E(Y ) E(Y )λ = −  (12) 

 
 The first term of (12) is Eq. 13: 

n n

1 b 0
k 1n,b n n

n n

b 0
k 1n,b n n

1 1 x (s k )
E(Y ) k EN(dx)

L h k h

1 1 x (s k )
k (x)(dx)

L h k h

τ

=

τ

=

 − + τ=  
 

 − + τ= λ 
 

∑ ∫

∑ ∫

 (13) 

 
 With the replacement of variables, for example: y = x-
(s+ kτ), dy = dx. Therefore (13) can be written as Eq. 14: 

 
n

1 b
k 1n,b n nR

n

cb
k 1n,b n nR

bn

b
k 1n,b n nR

1 1 y
E(Y ) k (y s k )I(y

L h k h

s k [0,n])dy

1 1 y
k (y s)I

L h k h

(y s k [0,n])dy

a y (y s k )
k

L h h k

I(y s k [0,n])dy

τ

=

τ

=

τ

=

 
= λ + + τ + 

 

+ τ∈

 
= λ + 

 

+ + τ∈

  + + τ+  
 

+ + τ∈

∑ ∫

∑ ∫

∑∫

 (14) 

 
 Can be noted 

that
1 b

n

n,b bk 1

1 (n / )
L 0(1)

k 1 b

−
τ

=

τ= = +
−∑ therefore: 

 

1 b
n,b

1 b
1 b

1 1

L ((n / ) / (1 b) 0(1)

1
1

((n / ) / (1 b)) 1 0( )
n

−

−
−

=
τ − +

=
 τ − + 
 

 

 
 By using geometric series, above equation can be 
written as Eq. 15: 

 

1 b 1 b

1 b 2 2b

1 1
1 0( )

((n / ) / (1 b)) n

1 b 1
0

(n / ) n

− −

− −

 = + τ −  

−  = +  τ  

 (15) 

 
 for n → ∞, then the first term of (14) can be 
written as Eq. 16: 

 
n

cb
k 1n,b n nR

1 b

1 b 2 2b
n

1 1 y
k (y s)

L h k h

I(y s k ) [0,n])dy

1 1 b 1 (n / )
0 0(1)

h (n / ) n 1 b

τ

=

−

− −

 
λ + 

 

+ + τ ∈

  − τ = + +   τ −   

∑ ∫
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c
nR

1 b 1 b
n

c2 2b
nR

c1 b
n nR

y
k (y s)dy

h

1 1 1
1 0 0

h n n

1 y
0 k (y s)dy

n h

1 1 y
1 0 k (y s)dy

h n h

− −

−

−

 
λ + 

 

   = + +   
   

  + λ +  
   

   = + λ +   
    

∫

∫

∫

 (16) 

 
 Then using Young’s formula we obtained for n → ∞ 
Eq. 17: 
 

2
2

c c c c n

y
(y s) (s) '(s)y "(s) o(h )

2!
λ + = λ + λ + λ +  (17) 

 
 So we get Eq. 16 as Eq. 18: 
 

c c

2
1 b 2

n nR c n

(s) '(s)y
1 1 y

1 0 k dyyh n h "(s) o(h )
2!

−

 λ + λ
     = +        +λ +    

 

∫  (18) 

 
 With the replacement of variables, for 

example
n n

y dy
z ,dz

h h
= =  then (18) can be written as Eq. 19: 

 

c c n

2 2
n1 b " 2n

n R c n

'
c c n

R R

"1 b
2 2 2c
n n

R R

'
c c

R

(s) '(s)zh
1 1

1 0 k(z) dzhz hh n (s) o(h )
2!

(s) k(z)dz (s)h zK(z)dz
1

1 0
(s)n h z K(z)dz o(h k(z)dz)
2

(s) k(z)dz (s

−

−

 λ + λ
    = +      +λ +   

 

 λ + λ
     = +   λ    + + 
 

= λ + λ

∫

∫ ∫

∫ ∫

∫ n

R

"
2 2 2c
n n 1 b

R R

)h zK(z)dz

(s) 1
h z k(z)dz o(h ) k(z)dz 0

2 n −

λ  + + +  
 

∫

∫ ∫

 (19) 

 
 Because K is symmetric and satisfies (K.1) and 
(K.2) then (19) becomes: 
 

1"
2 2 2c

c n n

1

"
2 2 2c

c n n1 b
1

2
n

1 b 2
n

(s)
(s) h z k(z)dz o(h )

2

1 (s)
0 (s) h z k(z)dz o(h )

n 2

h
0

n h

−

−
−

−

λ= λ + +

λ + = λ + + 
 

 
+  
 

∫

∫  

 
 For n → ∞. Because n1-2b hn

2 → ∞, then for n → ∞ 
the right side of the above equation becomes Eq. 20: 

1"
2 2 2c

c n n

1

(s)
(s) h z k(z)dz o(h )

2 −

λ= λ + +∫  (20) 

 
 The second term of (14) can be described as follows. 
 By using Taylor series, we obtained: 
 

b bb

b

b 1 b 2 2

(y s k ) s y s

k k k k

b s b s y b s y
(b 1) ...

1! k 1! k k 2! k k

− −

+ + τ    = τ + + = τ +   
   

       + τ + + τ + + − τ + +       
       

 

 
 Because hn ↓ 0 for n → ∞, then the behavior of J 
equal to hn. So the above equation can be rewritten as: 

 
b 2

b 1 n
2

s b s y h
( ) 0

k 1! k k k
−   = τ + + τ + +   

   
 

 
 For n → ∞. So that the second term of (14) 
becomes: 
 

bn

b
k 1n,b n nR

b b 1n

k 1n,b n nR

2
n
2

a y (y s k )
k I(y s k [0,n])dy

L h h k

a y s b s
k

L h h k 1! k

y h
0 I(y s k [0,n])dy

k k

τ

=

−τ

=

  + + τ + + τ∈ 
 

      = τ + + τ +             

 
+ + + τ∈  

 

∑∫

∑∫  

 

 With the replacement of variables, 
n n

y dy
z ,dz

h h
= =  

the above equation becomes: 
 

b b 1n
n

k 1n.b R

2
n

n2

a s b s zh
k(z)

L k 1! k k

h
0 I(zh s k [0,n])dz

k

−τ

=

    = τ + + τ +         

 
+ + + τ∈  

 

∑∫
 

bn n

n
k 1 k 1

b 1

n
n,b R

n
2
n 2

k 1

s 1
bh

k k

a s
zK(z)(zh s k [0,n])

L k

1
dz 0(h )

k

τ τ

= =

−

τ

=

  τ + +  
  

 
  = τ + + + τ∈   
 
 + 
 

∑ ∑

∫

∑

 

 

 With 
n,b

1

L
 as (15),  is symmetric and satisfy (K.1) 

and (K.3) so the above equation can be written as: 
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n1 b 2 2b 2

k 1 k 1

a(1 b) 1 s 1
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(n / ) n k k

τ τ

− −
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1 b 2 2b
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2
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0
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k
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τ
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1 b 2 2b
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1 b 2 2b
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0
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h h
0 0
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τ

− −
=
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2
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=

−

 −   = τ + +    τ    
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 

∑
 

 
 For n → ∞. May be noted that, by using Taylor 
series we obtained: 

 
bn n

b

k 1 k 1

n n
b

1 b
k 1 k 1

1 b

s 1
0

k k

n 1 n 1
0 0(1)

k k

n
0(1)

τ τ

= =
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−
= =

−
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= +
τ

∑ ∑

∑ ∑  

 
 So the above equation can be written as Eq. 21: 

 
2
n

1 b 1 b 2 2b 1 b

b
1 2b 1 b

2
n

2 2b 1 b

2
b n

1 2b 1 b

n a(1 b) 1 h
0(1) 0 0
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1 1
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0 0
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− −
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  −   = + + +      τ τ      
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   

  − +   
   

 (21) 

 
 The second term of (12) is deterministic, then we 
obtained Eq. 22: 

n

2 b
k 1n,b

n

b
k 1n,b

a (s k )
E(Y ) E

L k

a (s k )

L k

τ

=

τ

=

 + τ=   
 

+ τ=

∑

∑
 (22) 

 

 With 
n.b

1

L
 as (15), right side of Eq. 22 becomes 

Eq. 23: 
 

bn

1 b 2 2b
k 1

1 b 2 2b 1 b

b
1 b 1 2b 2 2n

b
1 b 1 2b 2 2b

a(1 b) 1 s
0

(n / ) n k

a(1 b) 1 n
0 0(1)

(n / ) n

1 1 1
a(1 b)n 0 0 0

n n n

1 1 1
a(1 b)n 0 0 0

n n n

τ

− −
=

− − −

− = −

− − −

 −    = + τ +    τ     

 −    = + +    τ τ    

     = − + + +     
     

    = − + + +    
    

∑

b
1 2b

1
a(1 b)n 0

n −





 = −  
 

 (23) 

 
 By combining (20), (21) and (23) we obtained: 
 

( )

c,n,k

1"
2 2 2c

c n n

1

2
b n

1 2b 1 2b 1 b

b
1 2b

1"
2 2 2c

c n n

1

2
n

1 2b 1 b

"
c

c

E (s)

(s)
(s) h z k(z)dz o(h ) a

2

1 1 h
(1 b)n 0 0

n n n

1
a(1 b)n 0

n

(s)
(s) h z k(z)dz 0 h

2

1 h
0 0

n n

(
(s)

−

− − −

−

−

− −

λ

λ= λ + + +

    − + + +     
     

  − − +  
  

λ= λ + +

  + +   
   

λ= λ +

∫

∫

( )

( )

1
2 2 2
n n

1

2
2n
n1 b 2 1 b

n

s)
h z k(z)dz o h

2

h 1
0 0 h

n h n

−

− −

+

 
+ + 
 

∫

 

 

 For n → ∞ Because 
1 b

1
0

n − →  dan n1-2b hn
2 → ∞ for 

n →∞, then the fourth and fifth term of the above 
equation is o (hn

2). So that the above equation can be 
written as Eq. 24: 
 

1"
2 2 2c

c n n

1

(s)
(s) h z k(z)dz o(h )

2 −

λ= λ + +∫  (24) 
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For n → a. Theorem 1 is proven. 
 
Theorem 2: Asymptotic approximation of the 
variance for the estimator: Suppose the intensity 
function λ as (1) and locally integrable. If kernel k 
satisfies (K.1), (K.2), (K.3), hn ↓ 0,n1-bhn → ∞ for n → 
∞ and λc  bounded around s, then for n → ∞ Eq. 25: 
 

1b
2

c,n ,k 1 b 1 b
n n1

a(1 b) 1
var (s) k (z)dz o

(n / ) h n h− −
−

 − τ
λ = +  τ  

∫  (25) 

 
Proof: From Eq. 11 and because Y2 is deterministic, 
then Eq. 26: 
 

c,n,k 1Var (s) Var(Y )λ =  (26) 
 
 For large value of n and k ≠ j, the interval [s+kτ-
hn,s+kτ+hn] and [s+jτ-hn,s+jτ+hn] do not overlap so that 

for all 
n

x (s k )
k j, k N(dx)

h

 − + τ≠  
 

and 

n

x (s j )
k N(dx)

h

 − + τ
 
 

are independent. So that Var  (Y1) 

can be determined as follows Eq. 27: 
 

1

n n

b 0
k 1n,b n n

n n 2
2 2b 0

k 1n,b n n

Var (Y )

1 1 x (s k )
Var k N(dx)

L h k h

1 1 x (s k )
k var(N(dx))

(L h ) k h

τ

=

τ

=

  − + τ=    
  

 − + τ=  
 

∑ ∫

∑ ∫

 (27) 

 
 Because N is a Poisson process, then Var (N) = E 
(N) so that (27) becomes Eq. 28: 

 
n n 2

2 2b 0
k 1n,b n n

n n 2
2 2b 0

k 1n,b n n

1 1 x (s k )
k E(N(dx))

(L h ) k h

1 1 x (s k )
k (x)

(L h ) k h

τ

=

τ

=

 − + τ=  
 

 − + τ= λ 
 

∑ ∫

∑ ∫

 (28) 

 
 With the replacement of variables, y = x- (s+ kτ) 
dy = dx, then (28) can be written as Eq. 29: 

 
n

2
1 2 2b R

k 1n,b n n

1 1 y
Var (Y ) k

(L h ) k h

(y s k )I(y s k [0,n])dy

τ

=

 
=  

 

λ + + τ + + τ∈

∑ ∫  (29) 

 
 By combining (1) and (2), the right side of (29) 
becomes Eq. 30: 

( )
n

2
c2 2b R

k 1 nn,b n

b

n
2

c2 2b R
K 1n,b n n

n
2

2 2b R
k 1n,b n n

b

1 1 y
k ( (y s))

k hL h

a(y s k ) )I(y s k ) [0,n])dy

1 1 y
k (y s)I(y s)

(L h ) k h

a 1 y
k [0,n)]dy k

(L h ) k h

(y s k ) I(y s k [0,n])dy

τ

=

τ

=

τ

=

 
λ + 

 

+ + + τ + + τ ∈

 
= λ + + 

 

 
+ τ∈ +  

 

+ + τ + + τ∈

∑ ∫

∑ ∫

∑ ∫

 (30) 

 
 Because λc is bounded around s then  λc (y+ s) ≤ 
λ0, λ0 is a constant value, so that the first term of the 
right side of Eq. 30 can be written as Eq. 31: 
 

n
2

2 2b R
k 1n,b n n

c

n
2

02 2b R
k 1n,b n n

1 1 y
k

(L h ) k h

(y s)I(y s k ) [0,n])dy

1 1 y
k I

(L h ) k h

(y s k [0,n])dy

τ

=

τ

=

 
 
 

λ + + + τ ∈

 
≤ λ 

 

+ + τ∈

∑ ∫

∑ ∫

 (31) 

 
 With the replacement of variables, 

n n

y dy
z ,dz

h h
= = the right side of (31) becomes Eq. 32: 

 
n

20
n2 2b R

k 1n,b n

1
k (z)I(zh s k )

L h k

[0,n])dz

τ

=

λ= + + τ

∈

∑ ∫  (32) 

 
 Because K satisfies (K.3) then (32) can be written 
as Eq. 33: 
 

n1 20
n2 2b1

k 1n,b n

1
k (z)dz I(zh s k )

L h k

[0,n])

τ

−
=

λ= + + τ

∈

∑∫  (33) 

 
 To determine the quantity of the right side of (33), 

we divided in three cases, for  
1 1

0 b ,b
2 2

< < = and 

1
b 1

2
< <  For 

1
0 b

2
< <   can be noted that Eq. 34: 

 
n

n2b
k 1

1 2b

1
I(zh s k [0,n])

k

n

0
1 2b

τ

=

−

+ + τ∈

 
 τ = +

−

∑
 (34) 
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 For n →. By using the result that we obtained from 
(15) and (34), then the right side of (33) becomes: 

 
n1 20

n2 2b1
k 1n,b n

1
k (z)dz I(zh s k [0,n])

L h k

τ

−
=

λ + + τ∈∑∫  

2
1 20

1 b 2 2b1
n

1 2b

1 b 1
k (z)dz 0

h (n / ) n

(n / )
0(1)

1 2b

− −−

−

 λ −  = +   τ   

 τ + − 

∫
 

2
1 20

2 2b 3 3b1
n

1 2b

4 4b

(1 b) 1
k (z)dz 0

h (n / ) n

1 (n / )
0 0(1)

n 1 2b

− −−

−

−

λ −  = +  τ  

  τ + +   −  

∫
 

2
1 20

2 2b 3 3b1
n

1 2b

(1 b) 1
k (z)dz 0

h (n / ) n

(n / )
0(1)

1 2b

− −−

−

 λ −  = +  τ   

 τ + − 

∫
 

2

2 2b
1 n n2

0 1

2 b 3 3b
n n

(1 b) 1
0

(1 2b)nh n h
k (z)dz

1 1
0 0

n h n h

−

−

− −

  − +  −  = λ  
    + +    
    

∫  

 
 By taking the largest quantity, the above equation 
can be written as Eq. 35: 

 
2

1 20
2 2b1

n n

(1 b) 1
k (z)dz 0

(1 2b)nh n h−−

 − λ= +  −  
∫  (35) 

 

 For n → ∞. For 
1

b
2

= , can be noted that Eq. 36: 

 
n

n2b
k 1

1
(zh s k [0,n]) In n 0(1)

k

τ

=

+ + τ∈ = +∑  (36) 

 
 For n → ∞. By using the result that we obtained 
from (15) and (36), the right side quantity of (33) 
becomes: 

 
n1 20

n2 2b1
k 1n,b n

2
1 20

1 b 2 2b1
n

1
k (z)dz I(zh s k [0,n])

L h k

1 b 1
k (z)dz 0 (In n 0(1))

h (n / ) n

τ

−
=

− −−

λ + + τ∈

 λ −  = + +  τ   

∑∫

∫

 

21 20
2 2b 3 3b1

n

21 2
0 2 2b1

n

2 2b 3 3b 3 3b
n n n

(1 b) 1
k (z)dz 0

h (n / ) n

(1 b)
In n 0(1)) k (z)dz 0

(n / ) h

1 1 1
0 0

n h (n / In n)h n h

− −−

−−

− − −

 λ −  = +  τ   

 −+ = λ + τ 

     
+ +       

     

∫

∫  

2
1 20

2 2b 2 2b1
n n

3 3b 3 3b
n n

(1 b) In n 1
k (z)dz 0

(n / ) h n h

1 1
0 0

(n / In n)h n h

− −−

− −

 − λ= +  τ  

   
+ +   
   

∫
 

 
 By looking the largest quantity, the above equation 
becomes Eq. 37: 
 

( )2
10 2

2 2b 1
n

2 2b
n

1 b In n
k (z)dz

(n / ) h

1
0

n h

− −

−

− λ
= +

τ

 
 
 

∫
 (37) 

 

 For n→∞ For 
1

b 1
2

< <  can be noted that Eq. 38: 

 

( )
n

n2b
k 1

1
I zh s k [0,n] 0(1)

k

τ

=

+ + τ∈ =∑  (38) 

 
 For n→∞ So that the right side of (33) can be 
written as Eq. 39: 
 

n1 20
n2 2b1

k 1n,b n

1 20
1 b 2 2b1

n

2
1 20

2 2b 3 3b1
n

1 2
0 2 2b 3 3b1

n n

1
k (z)dz I(zh s k [0,n])

L h k

1 b 1
k (z)dz 0 0(1)

h (n / ) n

(1 b) 1
k (z)dz 0 0(1)

h (n / ) n

1 1
k (z)dz 0 0

n h n h

τ

−
=

− −−

− −−

− −−

λ + + τ∈

 λ −  = +  τ   

 λ −  = +  τ   

    
= λ +   

   

∑∫

∫

∫

∫

2 2b 3 3b
n n

2 2b
n

1 1
0 0

n h n h

1
0

n h

− −

−


  



   
= +   

   

 
=  

 

 (39) 

 
 For n→∞  By taking the largest quantity of (35), 
(37) and (39) can be obtained the quantity of (33) which 
also states the quantity of the first term of (30), the 
quantity is Eq. 40:  
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2 2b
n

1
0

n h−

 
 
 

 (40) 

 
 For n → ∞  Furthermore, it can be considered the 
second term of the right side of (30). By using Taylor 
series expansion, we obtained: 
 

b

b b 1

2
b 2

(y s k )

y
(s k ) b(s k )

1!

y
b(b 1)(s k ) ...

2!

−

−

+ + τ

= + τ + + τ

+ − + τ +

 

 
 Because hn ↓ 0 for n →∞ a then the behavior of y 
is equal to hn. So the above equation can be written as 
Eq. 41: 
 

b
n(s k ) 0(h )= + τ +  (41) 

 
 By using (41), the second term of (30) can be 
written as Eq. 42: 
 

n
2 b

2 2b R
k 1n,b n n

n
2 b

2 R
k 1n,b n 2b n

n

a 1 y
k (y s k )

(L h ) k h

I(y s k [0,n])dy

a 1 y
k ((s k )

(L h ) k h

0(h ))I(y s k [0,n])dy

τ

=

=

 
+ + τ 

 

+ + τ∈

 
= + τ 

 

+ + + τ∈

∑ ∫

∑ ∫
 (42) 

 

 With the replacement of variables 
n n

y dy
z ,dz

h h
= =  

and because k satisfies (K.3) then (42) can be written as: 
 

n 1 2 b
2 2b 1

k 1n,b n

n n

a 1
k (z)((s k )

l h k

0(h ))I(zh s k ) [0,n])dz

τ

−
=

= + τ

+ + + τ ∈

∑ ∫  

 
 Using (15) the above equation can be written as 
Eq. 43: 
 

2

1 b 2 2b
n

n 1 2 b
2b 1

k 1

a 1 1
0

h (n / ) n

1
k (z)dz((s k )

k

− −

τ

−
=

  = +  τ   

+ τ∑ ∫

 

n n

2 1 2
2 2b 3 3b 1

n

0(h ))I(zh s k [0,n])

a (1 b) 1
0 k (z)dz

h (n / ) n− − −

+ + + τ∈

   − = +   τ   
∫

 

n

n2b
k 1

2

2 2b 3 3b
n

n1 2
n n2b1

k 1

(s k )
I(zh s k [0,n])

k

a (1 b) 1
0

h nn

1
k dz I(zh s k [0,n]) 0(h )

k

τ

=

− −

τ

−
=

+ τ + + τ∈

 
 −   + +     
   τ  

 + + τ∈ 
 

∑

∑∫

 (43) 

 
 In the same way, by looking at each case the Eq. 43 
becomes Eq. 44: 
 

2
1 2

2 2b 3 3b 1
n

bn

n2b 2 2b
k 1 n

a (1 b) 1
0 k (z)dz

h nn

(s k ) 1
I(zh s k [0,n]) 0

k n h

− − −

τ

−
=

 
 −   = +     
   τ  

 + τ + + τ∈ +  
 

∫

∑

 (44) 

 
 For n → ∞ Can be noted that Eq. 45: 
 

bn

n2b
k 1

n

n2
k 1

(s k )
I(zh s k [0,n])

k

s
I(zh s k [0,n])

k k

τ

=

τ

=

+ τ + + τ∈

τ = + + + τ∈ 
 

∑

∑
 (45) 

 
 By using Taylor series expansion we obtained: 
 

b b b 1

2 2

b 2 2

2

s b s b

k k k 1! k k 2!

s
(b 1)

k k

−

−

τ τ τ     + = + +     
     

τ   −    
   

 

 

 Because 
2

s
0

k
→  for n → ∞, then the above 

equation becomes: 
  

b b

2 b 1 2

b

b 1

s 1 1
o

k k k k k

1
0

k k

−

+

τ τ     + = +     
     

τ   = +   
   

 

 
 So that, Eq. 45 becomes: 
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n2
k 1

bn

b 1
k 1

s
I(zh s k [0,n])

k k

1
0

k k

τ

=

τ

+
=

τ + + + τ∈ 
 

 τ   = +         

∑

∑
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bn n

b 1
k 1 k 1

n n
b

b b 1
k 1 k 1

n
b

b
k 1

1
0

k k

1 1
0(1)

k k

1
0(1)

k

τ τ

+
= =

τ τ

+
= =

τ

=

τ   = +   
   

= τ +

= τ +

∑ ∑

∑ ∑

∑

 

 
 We may be recalled that 3 

1 b
n

n,b bk 1

1 (n / )
L 0(1)

k 1 b

−
τ

=

τ= = +
−∑ so the above equation can 

be written as Eq. 46: 
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1 b b
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1 b

(n / )
0(1)

1 b

−

−

 τ= τ + + − 

τ τ= +
−

 (46) 

 
 For n →∞  By combining (46) into (44) we can 
obtained Eq. 47: 
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 τ τ  + +   −   

∫

∫
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  − τ +  τ  =  
    + +    
    

 +  
 

 − τ= +  τ  

     + + +     
    

=

∫

∫

b 1 2
1 b 2 2b1
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(1 b) 1
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(n / ) h n h− −−
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∫

 (47) 

 
 For n → ∞. 
 With combining (40) and (47) into (30), then we 
obtained Eq. 48: 

c,n,k

b 1 2
2 2b 1 b 1

n n

b
1 2

2 2b 1 b 2 2b1
n n n

Var (s)

1 a(1 b)
0 k (z)dz

n h (n / ) h

1 a(1 b) 1
0 k (z)dz 0

n h (n / ) h n h

− − −

− − −−

λ

  − τ= +  τ 

   − τ+ = +   τ   

∫

∫

 (48) 

 

 For n→∞ We considered that 
1 b

1
0(1)

n − =  for n→∞ 

then the right side of (48) becomes Eq. 49: 
 

b
1 2

1 b 1 b 1 b1
n n

b 1 2
1 b 1 b1

n n

a(1 b) 1 1
k (z)dz 0

(n / ) h n h n

a(1 b) 1
k (z)dz o

(n / ) h n h

− − −−

− −−

 − τ= +  τ  

 − τ= +  τ  

∫

∫

 (49) 

 
 For n → ∞  Theorem 2 is proven. 
 
Convergence of the estimator 1: From Eq. 10, it can 
be verified that c,n,k cE( (s)) (s)λ → λ for n→∞ in other 

words c,n,k(s)λ is an unbiased estimator for λc (s). From 

Eq. 25 it can be verified that c,n,kVar (s) 0λ → for n→∞ 

so that form these results we obtained MSE c,n,k(s)λ for 

n→∞.  
 

DISCUSSION 
 
 The construction of the estimation for periodic 
component of the intensity function of a periodic 
Poisson process in the presence of power function trend 
can give Mean Square Error of this estimator 
asymptotically convergent to zero for n→∞.  
 

CONCLUSION 
 
 We have constructed an estimator for periodic 
component of the intensity function of a periodic 
Poisson process in the presence of power function 
trend. In the estimation process, we do not use any 
assumption, except N is a Poisson process observed 
in bounded interval [0, n]. From the estimation we 
get, Mean Square Error for the estimator convergent 
to zero for n→∞. 
 There are two things of the development for this 
study. First, unlike the previous studies which the 
intensity function estimation only for periodic 
component with linear trend (b =1), this study includes 
a power function trend (0<b<1), because of many 
phenomena when the rate of the event increases by a 
power function of time. 
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 Second, in this study also extended to the more 
general case, we no longer use a uniform kernel 
function (when the probability density function is for 
uniform distribution random variables) but in this study 
(K.1) is a probability density function for arbitrary 
distribution. 
 

REFERENCES 
 
Helmers, R. and I.W. Mangku, 2000. Statistical 

estimation of poisson intensity function. 
Proceedings of the SEAM-GMU Intenational 
Conference on Mathematics and its Applications, 
Jul. 26-29, Yogyakarta, pp: 9-21. 

Helmers, R. and I.W. Mangku, 2009. Estimating the 
intensity of a cyclic Poisson process in the 
presence of linear trend. Ann. Inst. Stat. Math., 61: 
599-628. DOI: 10.1007/s10463-007-0160-2 

Helmers, R. and R. Zitikis, 1999. On estimation of 
poisson intensity functions. Ann. Inst. Stat. Math., 
51: 265-280. DOI: 10.1023/A:1003806107972 

Helmers, R., 1995. on estimating the intensity of oil-
pollution in the North-Sea. CWI.  

Helmers, R., I.W. Mangku and R. Zitikis, 2003. 
Consistent estimation of the intensity function of a 
cyclic poisson process. J. Multivariate Anal., 84: 
19-39. DOI: 10.1016/S0047-259X (02)00008-8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Helmers, R., I.W. Mangku and R. Zitikis, 2007. A non-
parametric estimator for the doubly periodic 
poisson intensity function. Stat. Meth., 4: 481-492. 
DOI: 10.1016/j.stamet.2007.02.002 

Mangku, I.W., 1999. Nearest Neighbor Estimation of 
the Intensity Function of a Cyclic Poisson Process. 
1st Edn., CWI, Amsterdam, pp: 11. 

Rachmawati, RN., 2008. Statistical properties of the 
estimator of periodic poisson process with power 
function trend. Undergraduate Thesis, Bogor 
Agricultural University. 

Rahayu, M., 2008. Consistency of the estimator of the 
intensity function of a periodic poisson processes 
with power function trend. Undergraduate Thesis, 
Bogor Agricultural University. 

Wheeden, R.L. and A. Zygmund, 1997. Measure and 
Integral: An Introduction to Real Analysis. 1st 
Edn., CRC Press, ISBN-10: 0824764994, pp: 288. 

Yuliawati, L., 2008. Estimation of Global Intensity 
Function Periodic Poisson Processes with Power 
Function Trend. Undergraduate Thesis, Bogor 
Agricultural University. 


