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Abstract: Problem statement: In this study, we construct the estimation foreaiqdic component of
the intensity function of a periodic Poisson pracesthe presence of power function trend by using
the general kernel function. Beside that we alsastoct the statistical properties of the estimator
Approach: It is considered the worst case where there is ambilable a single realization of the
Poisson process having intensity which consist peaodic component and a power function trend,
observed in the interval [0, n]. It is assumed thatperiod of the periodic component and the stifpe
the power function trend are knowResults: It has been formulated the estimator and asynptoti
approximations to the bias and variance of theregtir.Conclusion: The estimator that we construct
is asymptotically unbiased estimator for a periocicnponent of the intensity function of a periodic
Poisson process in the presence of a power funtréon.

Key words: Unbiased estimator, intensity function, several payametric methods, asymptotic
normality, statistical properties

INTRODUCTION periodic Poisson processes with unknown period have
been studied (Helmert al., 2003). For the period is
On a periodic Poisson process, there are sever&hown, the formulation of kernel type estimator e
nonparametric methods to estimate the functiorhef t proofs of weak and strong convergence of the eftima
intensity at a given point, the methods are ketygé  have been studied and the proof of asymptotic
estimation and nearest neighbor estimation. Thessormality has been studied.
methods have been used to estimate the function of Modeling of a phenomenon with periodic Poisson
local intensity function with the periodis known process evolved to include a linear trend component
(Helmers and Mangku, 2000). In addition, the local(Helmers and Mangku, 2009) and using the double
intensity function estimation using the nearesgheor  periodic intensity function (Helmemt al., 2007). One
method and the proofs of weak and strong consigtengoarticular form of stochastic process with contisio
of the estimator obtained have been studied (Mangkuime is a Poisson process with the intensity oéaqulic
1999). Another method is imitating the general fafm function. This process can be used to model similar
maximum likelihood to estimate the rate of phenomena. If the arrival rate is increased by wepo
homogeneous Poisson process that can be applied fienction of time, the most appropriate model to issa
estimate the global intensity function in the pdiio periodic Poisson process with power function trend.
Poisson process (Helmers and Mangku, 2000). Theddition, the estimation for the intensity functioha
intensity function of Poisson process has been ised periodic Poisson process that includes power fancti
modeling the rate of oil spill in the North Seativgland trend has been performed. The consistency of the
(Helmers, 1995). Computationally, has been fornedlat estimator obtained using a uniform kernel function
an algorithm to estimate the intensity function af (Rahayu, 2008), statistical properties of the estim
Poisson process with exponential quadratic andbgieri obtained by using a uniform kernel function haverbe
trends (Helmers and Zitikis, 1999). studied (Rachmawati, 2008) and the global intensity
Estimation of the intensity function can be function estimation of periodic components alsoehav
distinguished based on the period, the period @wkn been studied (Yuliawati, 2008).
and the period is unknown. For the period is unkmow In this study we will construct an estimator for a
estimation of the intensity function is more coropted ~ periodic component that includes power functiomdre
than process with the period is known. The consiste Wwith the contribution of this study is in the esttion
of kernel type estimator of the intensity functitor ~ process we will use general kernel function, wheee
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kernel function to be used is a function not ondy f h ;0 4)
uniform distribution but can be used for arbitrary
distribution. By using a more general kerne_l fum_lnti For n - « and suppose k& — R called kernel
the phenomena that can be presented by this matiel we, o, if it satisfies the following properties:
more extensive and closer to the real phenomena
because assumption that the event must have unifor(i.1) k = A probability density function,
distribution have been removed. (K.2) k = Bounded,
(K.3) k = Has supportin [-1, 1]
MATERIALSAND METHODS
The estimator: With the above assumptions, estimator
Assumptions. Suppose N is a non homogeneousfor A at a given point s,[§0, 1) can be formulated as
Poisson process on the interval 4§, with the intensity  follows Eq. 5 and 6:
function A is unknown. This function is assumed to be

locally integrable and consist of two components, a5 ()= 1 iij‘ K[X (s+ I{)]N(dx)
periodic (cyclic) component with period>0 is known - ntl i kai Ko h, .
and a power function trend. In other words, for any , » (st k) (5)
point s[0, «) the intensity functio can be written ~ b

. Ln b k=1 k
as follows Eq. 1: :

. n 1 _ln

A(S)=A, (s)+ al 1) withL, , =3, zandn -[;} (6)

a>0 and 0 <b<l, with\; (s) is a periodic The idea behind the estimation of kernel type
function with periodt and a is the slope of the trend estimator A_,, of Ac can be explained as follows:

and it is assumed that the value of a, b andre From (1) and (2), for every point s and i then:
known. This study does not assume a parametric
form of A, we suppose that only a single realization A (S)=A (s+ k)=A (st kK a(s kY

of the cyclic Poisson point process is observed

within a bounded “window” (Mangku, 1999). Then, With (6), the above equation can be written as7Eq.
A¢ is periodic with the Eq. 2:

A= S Losk)-a@ k)

A (S)=A, (s+ k) ) L, , ik -
_ 11 _a s (st k)
for everyl [0, «) and KIZ . B anka:;k*’()\(SJr ) Ln,b;. k®

Suppose that for some1Q, there is only a single
realization of N @) of the Poisson process N defined
on a probability space(X, F, P) with the intensity
function as in (1) was observed in the finite iagdr0,
n]d [0, «). Because\. is periodic function with the
periodt, then the problem for estimatiig at the point
s, with 1R can be reduced to the problem estimating

Value of the functio\ (s+kr) at the point s, can be
approximated by the average value of the number of
events accured around s, in interval [shk s+ki+h]
and by using (3), (7) can be written as Eq. 8:

A at the point s, with(s [0, T) Acnk(S)
- A point s, is called Lebesgue points of a functibn 1 & 1EN(stk-h,s k+h])
A if Eq. 3 (Wheeden and Zygmund, 1977): 1 P >h (8)
n,b k=1 n
1 &(stk)f
. 1,0 -
Ilmhﬁoﬁj_h\)\(x +s)=A(s}dx=0 (3) anbkz:; Kb

In this study, it is assumed that s is a Lebesgue By replacing EN ([s+kh,s+ki+h,]) with its
point of A.. Suppose h is a sequence of positive real stochastically equivalent N ([s+tkh,, s+ k+h,]) so
numbers converging to zero Eq. 4: that (8) can be written as Eq. 9:
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Aenk(S)
:ﬁgkibm([% kr—zrr}n,sr k+ R 1
s
lehzklbjo; Ly(ls+kt=h,, stk 9)
+h, DN (e~ ;(S
oS [ s
i ZZ‘( K®

n,b Kk

+
with k, =%[—1,1]. To generalized the estimator we used L, h,

general kernel function k.
RESULTS

Statistical properties:

Theorem 1. Asymptotic approximation of the
expected value for the estimator: Suppose that the
intensity functionA as (1) and locally integrable. If the

kernek K is symmetric and satisfies the conditions

(K.1), (K.2), (K.3), h 1 0, 7% h? - o for n- o« then
Eg. 10:

Exens (8)= A, (s 2eS) (S) h? w0

j_lz K(z)dz+o(h?)
For s is a Lebesgue point froxg

Proof: From Eg. 7 can be exemplified Eq. 11 and 12:

I_1 Z J- (x (s+|<r)]N(dx)
nflaicik (11)
_ & (st ke
e
thenweget&, ,, (sf E(Y ) E(Y (12)

The first term of (12) is Eq. 13:
405

1 X= (s+ k)

1 & lfok[

Ln,bh n k= 1F
With the replacement of variables, for example:»
(s+ ki), dy = dx. Therefore (13) can be written as Eq. 14

E(Y,) =

(13)
X_(hs-'-k[)})\(X)(dX)

n

1
K

E(Y) = bhki

s+ kt [0, n])dy

L bhnzkbj (hy])\ (y+s)l

(y+s+ kO[O0, n])dy

ijk[y](y+s+ kY

k=1R h kb
I(y +s+ kt 0[O, n])dy

j[ })\(y+s+kr)l(y+

(14)

a

n

Can be

noted

-b
thatL, -0/

mo 1
nb = Z“F 176 +0(2) therefore:

1 1
T (n/1)7°/ (1-b)+ 0(1)

1

L

n,b

(11 1 (- b))[ 1+ o% )j

By using geometric series, above equation can be
written as Eq. 15:

(o
)

for n - oo, then the first term of (14) can be
written as Eq. 16:

- r
(n/T)" /(- b))

__1-b (1
- (n /T)l_b n2—2b

1

O(F)) (15)

1 ikibf

y
k| = )\c(y+s)
I-n,bhn k=1 R [hn]

I(y +s+ kt)O[0,n])dy

“wlom 7=l

(n/t)™®

(nky*
1-b

+ 0(1)]
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_l'k ”A (y +s)dy

1[ 11 "j The second term of (14) can be described as fellow
h (16) By using Taylor series, we obtained:
( =) J k(y}\ (y+s)dy

(y+s+ ko) :[HSJ)" :(Tﬁjb
k" k k k
Al o

b s b s b-1 Q b-2 2
Al vl

v k) 1l k) k2 k k
Then using Young's formula we obtained fornw

Eq. 17- Because h! 0 for n - o, then the behavior of J
Q-1 equal to k. So the above equation can be rewritten as:

=).(5)+ °(S)h2 j Zk(z)dz o’ (20)

2
Ny +S)=A ()AL Sy A S+ off (17) -
- oot
So we get Eq. 16 as Eq. 18: '
1 1 y Ac(8)+Ac(S)y o For n -~ . So that the second term of (14)
=—|1+0 kl — 2 d 1 :
hn[ [nl-bni (hnj +)\c"(s)%+o(hﬁ) y (18)  pecomes:
a +s+ k
With  the replacement of variables, for L h ; I k[hyj(ykfl(y +s+kt [0, n])dy
n,b 'nk=lR n
_y _ay : .
examplez == ,dz=—> then (18) can be written as Eq. 19: ot b b-1
? e
Lodar Lhy)id k) o k
1 1 Ac(s)+ A, (s)zh, v (n
==[1+0 — ||[k(z 2 L40| o ||i(y +s+ ke [0, n])dy
hn[ [n“’Di @ o (s)Z hn +o(f ) ah k(K B

A (S)] k(2)dz+ A, (s)n [ zK(2)dz

[1 [ With the replacement of variables,=l dz=ﬂ
n'? +%h§jz2}<(z)dz+ o(f[ k(z)dz
R R

hn ' hl‘l
the above equation becomes:
= (s)[ k(z)dz+ A, (3h, [ zK(z)dz b1
N & oo e )
+%h§j Zk(2)dz+ o(ff | k(@2)dz é%] "t
R R : +O(k’;]] I(zh, + s+ kO [0,n])dz
Because K is symmetric and satisfies (K.1) and )
(K.2) then (19) becomes: i[ﬁa +bh”kzi:l%
c(s) b-1
=A(s)+—=— hzj Zk(z)dz o(f ) - La [HE) IZK(Z)(ZW + s+ kO [0,n])
(s) .
+o[ } A (S)+ =2 [ Zk(z)dz o(h 1
.[ dz+ O(Hf )kZ:; 2
(%)
n'h?
With

as (15), is symmetric and satisfy (K.1)
For n - . Because ¥°h,? — o, then for n— o nb

the right side of the above equation becomes Eq. 20 and (K.3) so the above equation can be written as
406
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([ a@@- b) 1 s _ a &(stk)
_((n”)l_ [n“bn( [H j+0(h§)z j E(Yz)_E[Ln,kai G ]

o k) (22)
a-b) __a xh(st
((n /T)l— nZ—ZbJJ Ln,ka:;. kb
(;[”ED +0(h?)0(1) With as (15), right side of Eq. 22 becomes
_ a(- b) 1 Eq.23:
53 ((n/r)l bof n]]
,( a(l- b) 1 _(a@-b) [ 1 j ( Sjb
+O(hn )[(n /T)l_b] + ({ nZ‘ZbJJ ((n /T)l—b n2—2b kzl T+ k
& s\ a@-b) 1 a(-b) [ ! ](” 0 1)
_Z;(HEJ ((n /T)l_b +O[ nZ_ij] ((n /T)l b 2-2b e @
2 2 o 1 1 1
oo L SR SN
1 1 1
=i T+sjb 2 b)+0[ ; j T C{F} {W * (én“"j
= k (n /T)l—b n2—2b 1
h2 =a(1_ b)ﬁJ ({ﬂ)
+0 ] "
n
By combining (20), (21) and (23) we obtained:
For n . «. May be noted that, by using Taylor EA. ,k(S)

series we obtained: (s)
= (s)+ 2 hzjzzk(z)dz+ off ¥ a

(02 52 SRSPERWERNES

n
Nyl d)=n v 1 1
= -[T +;0(k = Tl_b + O(l)ék _(a(l_ b)ﬁ) + ({nl_%jj
_n
w0 =N (9)+ c(s)th Zk(z)dz § B)
. : 1 h
So the above equation can be written as Eq. 21: +0 ey +0 nEb

om o) ) i
Tl—b - “+b

(n /.[.)l b n} 2b n )
h2 N 1
+0( nl—thJ + 0( hn) nto

=a(l- byt + (é 1:}2b)+ (é ibj
n n

1 h (21) 1 2b 1 2
+0£ - 2b]+0{ 1an: For n— o Because—; — 0 dan i*h,? - oo for
n n

1 he n oo, then the fourth and fifth term of the above
a(l- by + ({ Hbj { ;bj equation is o (ff). So that the above equation can be
n n -
written as Eq. 24:

The second term of (12) is deterministic, then we— (S)’L)\C(S)hzj 2k(@)dz offf

(24)
obtained Eq. 22:
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For n- a. Theorem 1 is proven.

Theorem 2: Asymptotic approximation of the
variance for the estimator: Suppose the intensity
function A as (1) and locally integrable. If kernel k
satisfies (K.1), (K.2), (K.3),ht 0,mh, = o for n -

o andA. bounded aroung then for n— « Eq. 25:

h 1
:I; k2 (Z)dZ+ {WJ

Proof: From Eg. 11 and because ¥ deterministic,
then Eq. 26:

a(l- by®

25
(n/t)"h, (25)

vard, , . (s)=

varX,,,(s)= Var(y, ) (26)

For large value of n and %k j, the interval [s+k-

hn,stkt+h,] and [s+1-h,,s+jT+h,] do not overlap so that
K#j, k[x_(?-k[)}N(dx) and

n

for all

k(x_fm}N(dx) are independent. So that Var ({Y

can be determined as follows Eq. 27:

Var (Y,)

_ x=(s+ k)
_Var[L bhnzkbj. ( ]N(dx)]

(L bh )ZZKij Z[X(Sk[)Jvar(N(dX))

(27)

Because Ns a Poisson process, then Var (N) = E

(N) so that (27) becomes Eq. 28:

x(hs-i-k[)} E(N(dx))

k=1 n

1 1 of X=(s+ k)
“Cpy &k k[ h, }A(X)

l nt 1 2
T zk”’j k[

(28)

With the replacement of variables, y = x- (s# k
dy = dx, then (28) can be written as Eq. 29:

n'[i ) l
(Ln,bhn)zél(ZbJ.Rk (hn]

Ay +s+ kr)l(y+ s+ ke O [0, n])dy

Var (Y,) =

(29)

By combining (1) and (2), the right side of (29) _

becomes Eg. 30:

408

Sy

+a(y+ s+ k P )I(y+ s+ k )J [0,n])dy

oy i { JA Greltyes)

(Lo )22k2bj ( ]

(y+s+ ki)’ I(y+ s+ kt O [0,n])dy

(30)

+kt [0, n)]dy +

Because\; is bounded around then A; (y+ s)<
Ao, Ag is a constant value, so that the first term of the
right side of Eq. 30 can be written as Eq. 31:

Ll

(L, bh )?
)\C(y+s)l(y+ s+ k)0 [0,n])dy (31)
(I—n bh )ZZKZDJ‘ ( }\
(y +s+ ktO[0,n])dy
With the replacement of variables,

z:hl,dz:% the right side of (31) becomes Eq. 32:

n n

= Zk%j k*(z)l(zh, + s+ k)

2
nbhnk‘iL

0[0,n])dz

(32)

Because K satisfies (K.3) then (32) can be written
as Eq. 33:

A,

=% j k (z)dzz

nbn

0[o,n])

sl(zh, + s+ k) (33)

To determine the quantity of the right side of)(33

we divided in three cases, for0< b<%,b=—;and

%<b<1 For o< b<% can be noted that Eq. 34:

nt

Z ~I(zh, +s+ kO [0,n])
( )I—Zb (34)
1-2b
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For n . By using the result that we obtained from
(15) and (34), then the right side of (33) becomes:

)\
wh,

Ao ye 1-b  f 1Y
_Ej-lk (Z)d{ /" + ({nz—zbJ ]

(n/t)=°
(55 w00

:m-llkz(z)dz( o ()
R
:m-llkz(z)dz( o D
(255 +o0)
@-by o( 1 J
@-2b)nh, | F2h

1 1
FRARES

k (z )dzz s I(2zh, + s+ KO [0.0]

=)o [ k(2)d

By taking the largest quantity, the above equation

can be written as Eq. 35:
— (1_ b)z)\o oo 1
=——— "0 " K*(z2)d — 35
(L- 2b)nh J K@z 72 h (35)
For n - o. For b=% , can be noted that Eq. 36:

nt

S L(zh, +s+ kO [0,n)= Inn+ O

S (ah, . A (36)
’ EIIRSC )d{{ mh nmbhn}]

For n - . By using the result that we obtained
from (15) and (36), the right side quantity of (33)
becomes:

A,
L, h

j k (z)dzz _I(zh, + s+ kO [0,n])

n,

S ond g ) o

n

409

(-

(n/1)*?°h,

K2 (- by 1
( ) Z[( / )2 2b n3—3bjj

Inn+0(1)= )\o_[_l K (Z)d{(n(/lT_)zt_)Z:,h + (a

(7)) )
n2 th (n3-3b / “..]n)h1 n3> 3bh,

(L-byA,In n 1
o a4 o |

+O( 1 ]+O( L ]
(n** /Inn)h, n* *h,

By looking the largest quantity, the above equatio
becomes Eq. 37:

b)*A, Innj K(2)dz+

37)

1
0( n2-2°h j

k=1

For n— o For%< b<1 can be noted that Eq. 38:

i%l (zh, +s+ kO [o,n) = 0 (38)

For n-o So that the right side of (33) can b

written as Eq. 39:

2
nbh

j k (z)dzz = (@0, + s+ kO [O.n])

7.'. (z)d Z(( F 5t n2—2bj] 0(1)
71 2(){((1/ ;n) ngnoa)

:
4

(37)
also

(39)

1
2- 2bh J+o( n3-3bh-|]

1
nZ—thn

D

For n» o By taking the largest quantity of (35),

and (39) can be obtained the quantity of (@3ich
states the quantity of the first term of (3g

quantity is Eqg. 40:
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) @) EEn, +st koo
For n - o Furthermore, it can be considered the , a| (1- by 0[ 1 J (43)
second term of the right side of (30). By using [®ay hn n\> 2 nse
series expansion, we obtained: [?)
(y+s+kr) (j kzdzz ~I(zh, + s+ kO [0, n])j oh

=(s+ k) + b(s+ kY
1 In the same way, by looking at each case the &q. 4

+b(b-1)(s+ k2L + becomes Eq. 44:
2!

Because h! 0 for n — o a then the behavior gf al @- by 1Y |¢ s
is equal to h So the above equation can be written as™ h ﬁw[ —3b} I_lk (2)dz
Eq. 41: [;) (44)
=(s+kry +0(h,) (41) z(s+ K\ oh + s+ ke OO0, ]+ ({nz_ih ]
By using (41), the second term of (30) can be
written as Eq. 42: For n- o Can be noted that Eq. 45:
nt S+ kT)b
y . Z I(zh, +s+ ke [0,n])
o i ( JW+S+“) ) (45)
= —+—(zh_+s+ kO[0,n
I(y +s+ kt [0, n])dy 42) ;(kz k}( ; [0,n])
y b
(L bh Vi z J. ( n]((s+ k) By using Taylor series expansion we obtained:
+0(h, )I(y + s+ krIZI[O,n])dy (S T}b (Tjn b(T]b_l s b
—+—| == +=| = —+—
d k? k k 1 k k? 2!
With the replacement of variabl%:l,dz:—y b-2 2
h,” h, (b 1)(1) (izj
k

and because k satisfies (K.3) then (42) can béawrés:

a
I Zhnk k2b
+0(h, ))I(zh, + s+ k )3 [0,n])dz

Becausek—sz_.o for n - o, then the above

S K@+ kY

equation becomes:

s 1) _ (1) 11
Using (15) the above equation can be written as [p E) {d O(WPJ
Eq. 43: b
= 1 +0 i
’ k kb+1
_a 1 1
-[-ﬁo(mn
(n/ty n So that, Eq. 45 becomes:
Zkzbj k*(z)dz((s+ k ¥ (s
ket z[kz jl(zh +s+ ke O[0,n])

+0(h, ))I(zh, + s+ kO [0,n]) =1

_a( (@-by 1))t (1Y oL
_hn( (n /T)Z—ZDJ +0( n3-3bj]_|._lk (Z)dZ - k-l([k) +0( kb+1j]
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may be recalled that 3

(n/t)"®
anb Zk 1kb_ 1-b

be written as Eq. 46:

+0(1) so the above equation can

=10 ((”1’_T);_b + 0(1)] +0()

(n/.l.)l—b b
1-b

(46)
+0(1)

For n - By combining (46) into (44) we can
obtained Eq. 47:

=)
nZ—Zb

(47)

a( (1- by 1)k,
hn[ (n/tp® +0( n* SbB_‘._lk (z)dz
_a( (1~ by
1-b +0(1)]J._11k2 (z)dz+ ({
J-l k*(z)dz+ ({%)
o .
+0( 1 J+o( 1 ]+({ 1}
nghn n* 3bhn g

M"'O(l) + ({LJ
1-b ne2°
o))
hn (n /T)Z—Zb n3—3b
((n /1) brP
(1-by® vol 1
(n /T)l_b hn nZ—thq
KIS
n“=h, n”’h,
_a@-bx’ ¢, 1
- (n /T)l—bhn J‘-]_k (Z)dZ+ ((nz—zth
_a@l-by® ¢, 1
- (n /T)l—bhn J‘—lk (Z)dz+ { nZ—thqJ
Forn- oo,

varh,, (s)

- o( nz'gbhn J + j K?(2)dz

1 1
VN L ——

For n- o We considered that%=0(1) for n- o
n

a(l- by’
(n/t)°h,
a(l- by®
(n/T)F°h

(48)

then the right side of (48) becomes Eq. 49:
_a@l-by® 1, 1)1
T (n/T)"h, I‘lk )z ({ nl'th n®

_ a(-by" b)rJ- 2()dz{ 1m]

(n/1)"h,
For n— o Theorem 2 is proven.

(49)

Convergence of the estimator 1: From Eqg. 10, it can
be verified thatEQ., (s)) - A (s)for n—co in other

words A, (s)is an unbiased estimator fag (s). From
Eq. 25 it can be verified thatarA_, (s) -~ Ofor n—co

so that form these results we obtained M&E (s) for

N- oo,
DISCUSSION

The construction of the estimation for periodic
component of the intensity function of a periodic
Poisson process in the presence of power funatésdt
can give Mean Square Error of this estimator
asymptotically convergent to zero foro.

CONCLUSION

We have constructed an estimator for periodic
component of the intensity function of a periodic
Poisson process in the presence of power function
trend. In the estimation process, we do not use any
assumption, except N is a Poisson process observed
in bounded interval [0, n]. From the estimation we
get, Mean Square Error for the estimator convergent
to zero for n- co.

There are two things of the development for this
study. First, unlike the previous studies which the
intensity function estimation only for periodic
component with linear trend (b =1), this study uags
a power function trend (0<b<1), because of many

With combining (40) and (47) into (30), then we Phenomena when the rate of the event increases by a

obtained Eq. 48:

power function of time.
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Second, in this study also extended to the morélelmers, R., .LW. Mangku and R. Zitikis, 2007. Anro
general case, we no longer use a uniform kernel parametric estimator for the doubly periodic

function (when the probability density function fisr poisson intensity function. Stat. Meth., 4: 481-492
uniform distribution random variables) but in tkisidy DOI: 10.1016/j.stamet.2007.02.002
(K.1) is a probability density function for arbitya Mangku, I.W., 1999. Nearest Neighbor Estimation of
distribution. the Intensity Function of a Cyclic Poisson Process.
1st Edn., CWI, Amsterdam, pp: 11.
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