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Abstract: Problem statement: Due to the long range nature of interactions of the N-body systems, 
direct computation of the Coulomb potential energy involves O(N2) operations. To decrease such 
complexity, a simple Multilevel Summation method has been developed. Approach: In the frame of the 
Multilevel Summation method, the two-body interaction is decomposed into two parts: a local part and a 
smooth part. The local part vanishes beyond some cut-off distance; hence, its contribution to the potential 
energy is calculated in O(N) operations. In contrast to some common fast summation methods, the 
smooth part is calculated in real space on a sequence of grids with increasing meshsize in O(N) 
operations. Results: The method is tested on the calculation of the Madelung constants of ionic crystals 
in one, two and three dimensional cases. For a cut-off distance equals three times the meshsize of the 
ionic crystal, an error less than 0.01% is obtained. Conclusion: In computing the coulomb lattice sums of 
charge systems consisting of N bodies, the Multilevel Summation method decreases the complexity to 
O(N) operations. 
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INTRODUCTION 

 
 Accurate and fast calculation of the long-range 
Coulombic interactions for a large system of charged 
particles is one of the challenging tasks facing the 
computer simulations. The purpose of this calculation 
may be Monte Carlo simulation, energy minimization, 
or molecular dynamics. The long-range interactions 
make the computational effort very intensive. 
However, these interactions are important and there is 
no way their presence can be neglected. Calculating 
such interactions is still of great interest and 
developing an efficient algorithms to reduce the 
computer demand for the calculations continues to 
receive considerable attention and has been the focus 
of numerous approaches during the last and the 
present centuries (Kolafa et al., 2008; Patra et al., 
2007; Yakub and Ronchi, 2003; Sagui and Darden, 
1999; Gronbech-Jensen, 1997; 1999; Darden et al., 
1997; Procacci et al., 1994).  
 The first effective summation methods for calculating 
the long-range part of the Coulomb potential energy had 
been worked out by Madelung (1918) and Ewald (1921) in 
the case of ionic crystals. Their papers do still remain 
important references. In the Madelung’s method, 

collections of ions are formed, each collection is a linear 
element within the crystal. The potential of each collection 
is calculated and the summation of all potentials gives the 
potential of the crystal. 
 The widely used Ewald summation technique was 
introduced in 1921 to sum the long-range electrostatic 
interactions of a crystalline lattice. Later, it was 
incorporated into Monte-Carlo and Molecular 
Dynamics simulations of N-body systems with periodic 
boundary conditions (Rappaport, 1997; Hockney and 
Eastwood, 1981). Actually, the complexity of the 
Ewald summation method in its traditional form for N-
body systems is O(N2). Many conventional methods 
have been proposed as improvements of the Ewald’s 
technique (Yakub and Ronchi, 2003; Lage and Bethe, 
1947; Nijboer and Wette, 1957; Brush et al., 1966; 
Sangester and Dixon, 1976; Perram et al., 1988; Rhee 
et al., 1989; Fincham, 1994; Yakub and Ronchi, 2005; 
Hunenburger and McCammon, 1999). Unfortunately 
the complexity of these methods is not less than O 
(N3/2). To reduce this complexity, several alternative 
approaches have been developed in the last and the 
present decades. These approaches are mainly based on 
the Particle-Mesh (PM) methods, the tree based 
methods and the multigrid methods. In the PM 
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methods, the Coulomb interaction is decomposed into 
two parts: a short-range part which is calculated directly 
within some cut-off distance and a long-range part 
which is handled in the reciprocal space through the 
Fast Fourier Transform (FFT) computed on a mesh. An 
efficient computation of long-range interaction without 
Fourier transform can be found in (Tsukerman, 2004). 
Examples of the PM methods are the Particle-particle-
Mesh (P2M) (Hockney and Eastwood, 1981), the 
Particle-particle-particle-Mesh (P3M) (Hockney and 
Eastwood, 1981; Pollock and Glosli, 1996; Ghasemi et 
al., 2007; Neelov et al., 2007; Beckers et al., 1998), the 
Particle-Mesh Ewald method (PME) (Darden et al., 
1993; Essmann et al., 1995) and the Fast-Fourier Poisson 
(FFP) method (York and Yang, 1994). The PM methods 
reduce the complexity to O (NlogN). The theory of 
Ewald summation is described in details by Tosi (1971) 

and  Kittle (1996). A survey of the Ewald summation 
techniques is presented by (Toukmaji and Board, 1996). 
 The tree method was first introduced by (Appel, 
1985; Barens and Hut, 1986) to calculate the energies 
and forces in a system of N particles using a 
hierarchical approach. The complexity of methods 
based on this approach are not worse than O (NlogN). 
The most effective tree based method is the Fast 
Multipole Method (FMM) (Greengard and Rokhlin, 
1987). The (FMM) provides an algorithm for the rapid 
evaluation of the long-range electrostatic interactions. 
In the FMM, the pair-wise interactions are divided 
into two components: the first of which is short-
ranged and is directly calculated. The second is due to 
the distant particles and approximated by their 
multipole expansions. Theoretically, the complexity of 
the FMM for the N-body systems is O (N). Ewald’s 
summation method and the FMM are combined to 
create the multipole based Ewald method (Schmidt 
and Lee, 1991).  This method is compared with the 
Ewald summation method; the number of particles N 
at which the two methods are equally fast is not clear. 
  Alternative approaches to the (FMM) are the 
multigrid methods. These methods were originally 
proposed to give numerical solutions to partial 
differential equations. They are considered as the fastest 
numerical methods for solving elliptic equations (e.g., 
Poisson’s equation) (Brandt, 1977) and one of the 
fastest methods for other types of partial differential 
equations. The conventional iterative relaxation 
methods (e.g., Gauss Seidel and Jacobi) are very slow 
because they do not take into account effects at very 
large length scale. The multigrid methods improve 
performance by using relaxation at many length scales. 
In 1973, a linear complexity was achieved by those 
methods (Brandt, 1972). Many applications in practice 

are demonstrated in many papers (Sagui and Darden, 
2000; Poplau et al., 2004; Zaslavsky and Schlick, 1998; 
Bernholc et al., 1997; Fattebert and Bernholc, 2000; 
Hirano and Hayash, 2000; Skeel et al., 2002; 
Hackbusch, 2010; Trotenberg et al., 2001). 
 For the N-body systems, direct calculation of the 
total potential energy involves O (N2) operations. To 
avoid the slow direct summations, a multilevel 
algorithm has been developed and presented in this 
study. The general Multilevel approach in the context 
of general transformation, many-body problem and 
matrix multiplication has been initially proposed by 
Brandt (1991). Performing the statics computational 
tasks in computing cost that rises only linearly with the 
number N in the N-body systems is one objective of the 
multilevel method. This goal is performed and is clearly 
presented in this study. Another main goal that may be 
verified using the multilevel algorithm is performing 
dynamics calculations in O (N) operations. This can be 
done by invoking this algorithm into the Monte-Carlo 
simulation method.  The method may also facilitates 
establishing computational tools for development, scale 
by scale, of material description at increasingly larger 
scales (Hardy et al., 2009; Brandt et al., 2006; Sandak, 
2001). In the frame of this method, for the N-body 
systems, the potential exerted on a particle due to all 
pair-wise interactions can be decomposed into two 
components: a local and a smooth part. The local part 
vanishes beyond some cut-off radius rcut and due to the 
nearby particles, it is computed directly. In contrast to 
some common fast summation methods, the smooth 
part is calculated in real space on a sequence of grids 
with increasing meshsize. The method has potential 
advantages over other O (N) and O (NlogN) techniques 
in the case of moving particles; it is also beneficial to 
large-scale problems such as molecular statics and 
Monte Carlo simulations.  Our topic is motivated in part 
by the celebrated problem of Madelung-Sum. More 
details about the multilevel approach in the case of N-
body systems are found in (Suwan, 2006). 
 

MATERIALS AND METHODS 
 
 The total Coulomb potential energy arising from a 
system of N particles in a cubic box of size L and their 
infinite replicas in periodic boundary conditions is 
given by Eq. 1: 
 

  
N ' i j

i, j 1 n
l j

q q1
u

2 r (r nL)=
=

− −∑ ∑ �

  (1) 
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where, qi   is the point charge of the particle i, lr
�

 is its 

position and n is integer vector. The prime symbol in 
the summation '

n( )∑   indicates that for n = 0, the 

interaction I = j is omitted. However, atoms do interact 
with their replica images. The summation in (1) is 
conditionally convergent (i.e., the result depends on the 
order of summation (Allen and Tildesley, 1989). For 
simplicity, we will use jn jr r nL= −� �

 throughout this 

study. 

    The kernel l jn

l jm

1
G( r r )

r r
− =

−
� �

� �

 is singular at the 

origin (i.e., when l jnr r r= −� �

equals zero); and its 

smoothness increases with the distance between 
particles. A ‘softening’ of such kernel can be obtained 
by splitting it into two parts Eq. 2: 
 

loc smoothG(r) G (r) G (r),= +   (2) 

 
where, the first (local) part of the kernel is short range, 
contains a singularity and it vanishes beyond some cut-
off radius r = rcut. This part is defined by Eq. 3: 
 

smooth cut
loc

cut

G(r) G (r),      r r
G (r) .

0,                                 r r

− ≤
=  >

  (3) 

 
 The second part is smooth and a suitable choice for 
it could be Eq. 4: 
 

    

m cut
smooth

cut

P (r),        r r
G (r) ,

G(r),          r r

≤
=  >

   (4) 

 

where, the function ( )m 2i

m ii 0
P (r) a r

=
= ⋅∑ is a polynomial 

of order 2 m. The function Gsmooth(r) and its first m 
derivatives are assumed to be continuous at r = rcut. So, the 
set of unknown coefficients {ai}  is obtained by solving a 
system of linear equations. Values of the coefficients {ai} 
can be universalized by changing the variable r into 
x=r/rcut; So, the values of the coefficients can be 
determined by the above continuity assumption, but this 
time, at x=1. This leads to solving the set of Eq. 5:  
 

   
m 2i

k
ik

i 0

.a ( 1)
=

  = − 
 

∑ ,  (5) 

 

where,  0≤k≤m and 
2i

k

 
 
 

is the binomial coefficient.  

The values of these coefficients for different values of 

m are shown in Table 1. For m=1 and rcut = 2, Gloc(r) 
and Gsmooth(r) are shown in Fig. 1. 
 Using (2), the energy in (1) can be also split into 
two parts Eq. 6: 
 

loc smoothU U U ,= +   (6) 

 
 Where the contribution to the potential energy of 
the local, short range interactions is defined by Eq. 7: 
  

N '

loc i loc l jn ji j n

1
U q ,G ( r r ).q

2 ≠
= −∑ ∑

� �

  (7) 

 
If rcut is chosen comparable to the average inter-particle 
distance, a direct summation in (7) costs O(N) 
operations. The purpose of our algorithm is calculating 
the second part of (6) with linear complexity.  
 The basic idea of the multilevel algorithm is 
performing recursively a sequence of sets of uniform 
grid points called coarse levels. By “uniform” we mean 
a rectangular grid, with constant meshsize in each grid 
direction. At each coarse level, a set of charges, called 
coarse-level charges,  are created by aggregating the 
located charges in the finer level into collections 
positioned at the grid  points at the coarse level. The 
number of grid points at each coarse level is less than 
these of the finer one. The smooth part of the potential 
function is also recursively split at each coarse level 
into local and smooth parts. Consequently, the potential 
energy is split into two parts. The recursion proceeds 
until the number of coarse charges is so small that the 
calculation of their potential at that coarse level is not 
expensive comparable with the whole algorithm.    
 The smooth part (4) is nonsingular at r = 0. 
Therefore, the self-interaction energy Uself can be 
added to and subtracted from the last term in (6). 
Hence Eq. 8-10: 
 
   s

smooth smooth selfU U U ,= +   (8) 

Where: 

( )N 's
smooth i smooth l jn ji, j n

1
U q .G r r .q

2
= −∑ ∑

� �

  (9) 

 
And: 
 

N
2

self 0 i
i 1

1
U a q

2 =

= − ∑   (10) 

 
 The self-interaction energy Uself is independent of 
particle locations and calculated once in the procedure. 
Thus, it is not computationally expensive. 
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Fig. 1: The Coulomb potential function, the local part and the smooth part 
 
Table 1: Coefficients {ai} in (5) 
m 1 2 3 4 5 6 
a0 3/2 15/8 35/16 315/128 693/256 3003/1024 
a1 -1/2 -5/4 -35/16 -105/32 -1155/256 -3003/512 
a2  3/8 21/16 189/64 693/128 9009/1024 
a3   -5/16 -45/32 -495/128 -2145/256 
a4    35/128 385/256 5005/1024 
a5     -63/256 -819/512 
a6      231/1024 

 
 In order to approximate the first term in (8), the 
smoothness property of the kernel is used in the 
framework of the Multilevel Summation. To perform 
the multilevel calculations, a coarse-level grid is 
introduced and defined by a set of gridpoints {RI}; the 
meshsize is H. The value of the smooth part of the 
kernel (2) for given locations of particles i and j can be 
interpolated from that grid Eq. 11: 

 

  
( )
( )

jn
smooth J JN l ll i j

smooth l Jn J Jn

G r r (r )

G R R . (r ) 0( )

∈σ ∈σ
− = ω

− ω + ∈

∑ ∑
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�

  (11) 

 

where, l J(r )ω �

 are the Lagrange interpolation 

coefficients, ε is the error of the interpolation and  σk is 
the set of indices of the neighborhoods of the point kr

�

. 

More details about the Lagrange interpolation method 
can be found in (Faires and Douglas, 1989). 
 Substitution of (11) in (9) and changing the order 
of the summation yield to Eq. 12: 

( )'s
smooth l smooth l Jn Jl,J n

1
U Q .G R R .Q

2
= −∑ ∑  (12) 

 
where, the set of  the coarse-level charges {QI} is 
defined at the coarse level gridpoints by Eq. 13: 
 

 l l l ii, l i
Q (r ).q

∈σ
= ω∑

�

 (13) 
 
 The fine-to-coarse transformation (13) is called the 
adjoint of interpolation, or the anterpolation.  
 The summation (12) can be carried out recursively 
using higher levels of coarse grids. Denoting G1=G for 
any coarse level l > 1, the potential function Gl (r) is 
split into a smooth part l

smoothG (r)  and a local part 
l
locG (r) , now on scale Hl = 2l-1 H and cut-off radius 
l l 1
cut cutR 2 r−=  Eq. 14 and 15: 

 

smooth

l lP (r),        r Rm cutlG (r) (l 2,3)
lG(r),          r Rcut

 ≤= =
 >

  (14) 

 
And: 
 

l 1 l l
smooth smooth cutl

loc l
cut

G (r) G (r),      r R
G (r) .

0,                                    r R

− − ≤= 
>

  (15) 

 
 The coefficients of the 2m-order polynomial 

l
mP (r) is calculated using the continuity of the function 
l
smoothG (r)  and its first m derivatives at the point l

cutr R= . 
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 Since the function Gl loc (r) is defined on a 
uniform grid, its values can be stored in a 
precalculated table. The charges at the gridpoints of 
level l are anterpolated from the finer-level grid. 
Continuing recursively splitting the smooth part at 
each level, we conclude Eq. 16: 
 

l

l

M
Ml

loc smooth
l 1

G G (r) G (r)
=

= +∑     (16) 

 
where, Ml is the maximum coarse level. 
 
 

RESULTS  

  
 For a periodic identical charge system where 
charges are placed at sites of some lattice, the Coulomb 
potential energy at any point i where a charge q is 
located can be defined by (Rappaport, 1997) Eq. 17:  
 

2

i M

q
U C

h
= − ,  (17) 

 
where, CM, which is called Madelung constant, is a 
summation over the lattice points and depends only on 
the geometry of the crystal. h is the minimum distance 
between neighboring charges and q is the charge of the 
ion. Evaluating U in (1) for the ionic crystal leads to 
evaluating CM in (17). The task is to evaluate CM in the 
case of lattices with charges of opposite signs, such 

their sum vanishes. To illustrate the multilevel method, 
the lattices shown in Fig. 2 are considered. 
 The exact analytical expression for CM can be 
obtained for the one-dimensional system in Fig. 2. In 
this case, an approximation of CM denoted by CMA  
can be defined by the following direct lattice sum 
Eq. 18:  
 

    
cut[r ] i

MA cut
i 1

( 1)
C (r ) 2

i=

−= − ∑                                             (18) 

 
where, […] denotes the integer part of a real number. 
The exact value of CM is 

cut
MA cut

r
lim C (r )

→∞
, which is 2ln(2) 

≈ 1.3862944. 
 The convergence of the naive summation (18) to CM 

is shown in Fig. 3 and the error versus rcut is presented in 
Fig. 4. The convergence of the multilevel approach is 
shown in Fig. 5 and the error versus rcut is demonstrated in 
Fig. 6.  
    As seen from Fig. 6, only a few neighbor charges 
should be taken into account in the local part of the 
potential. The same is true for more complicated 
lattices. The obtained Madelung constants for one, two 
and three-dimensional cases are shown in Table. 2. The 
convergence of the Multilevel approach for the 
Madelung constant in two and three-dimensional case 
are shown in Fig. 7 and 8, respectively.  

 

 
 

Fig. 2:  The lattices for which the Madelung constant is calculated 
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Fig. 3:  The naive summation of the Madelung constant 
 

 
 

Fig. 4:  The percentage error of the naive calculations 
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Fig. 5:  The Multilevel convergence for the one dimensional case 
 

 
 

Fig. 6: The error in the multilevel calculations in the one-dimensional case 
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Fig. 7: The Multilevel convergence for the two-dimensional case 
 

 
 

Fig. 8: The Multilevel convergence for the three-dimensional case 
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Table 2: Madelung constants obtained by the multilevel approach 
Charge location CM 

1D lattice (straight line shape) 1.3862944 
2D (square shape) 1.61554263 
3D (NaCl type shape) 1.74756460 

 
DISCUSSION 

 
 Knowing the value of CM is important in studying 
both the mechanical stability of the ionic crystals and 
the microscopic properties of the atoms consisting it. 
The more accurate the approximation of the Madelung 
constant, the more understanding of the ionic structure 
is expected.  
 It is necessary to define the coarse-level grid. For 
charge displacements, a suitable choice is a rectangular 
grid with meshsize H = 2h along the direction. It is 
convenient at first to anterpolate charges by (13). Then 
as we calculate the potential at a given point i, we will 
have to subtract, in accordance with (8), the 
contribution of the charge qi from the coarse-level 
background. It follows from the symmetry of the lattice 
that the anterpolation in the case under consideration 
leads to constants and hence zero charges at all coarse-
level gridpoints. This result is independent of the 
position of the coarse-level grid (as long as its meshsize 
in each direction is an integer multiple of the 
corresponding fine-level meshsize h). Therefore it is 
possible to shift the coarse-level grid so that 
calculations will be simplified. A convenient 
disposition of the coarse-level grid is so that a coarse 
gridpoint is placed at the charge for which the energy 
has to be calculated. The interpolation of the smooth 
part of the potential (12) is also done from this 
gridpoint with unity weight. 
 For the evaluation of the total potential energy (8), 
the coarse-level grid is defined as a first step. Then, the 
following entire algorithm is performed: calculating of 
the coarse-level charges {QI} by the anterpolation using 
(13); then, computing the lattice sums at the coarse-
level gridpoints using (12). Calculation of (12) can be 
carried out recursively for increasingly coarser grids. 
Each coarse grid is obtained by omitting every other 
gridpoints from the finer grid. The recursion proceeds 
until the number of coarse-level charges is so small that 
the direct calculation of their potential does not cost 
very much. The self potential (10) of any particle does 
not need any multilevel calculations; this potential is 
interpolated to the location of that particle and then 
subtracted from the potential of the system at that point. 
 Evaluating the Madelung constant CM for one, two 
and three-dimensional cases are carried out in order to 
illustrate the Multilevel method and to show its 

efficiency. In the one-dimensional case, a comparison 
between the multilevel results and the exact value of CM 

shows how the convergence is fast and how the 
obtained value of CM is close to the exact value of the 
Madelung constant.  
 

CONCLUSION 
 
Concluding notes: A Multilevel algorithm of fast 
summation of long range potential for N-body systems 
has been demonstrated in the present work. The method 
is tested on the calculation of lattice sums for charge 
systems with charges of opposite signs, such their sum 
is zero. The convergence of the method is tested; 
independently of the dimension, the convergence is 
obtained. This convergence becomes faster and the 
accuracy becomes better by increasing m. In this 
method, the two-body interaction is decomposed into 
two parts: the local part which vanishes beyond a 
distance rcut and the smooth part which is calculated on 
a sequence of grids (a coarse-level). For the estimation 
of the smooth part, it is necessary to calculate only 
anterpolated charges on these grids and interaction 
between them. If the dimension of the fine-level is more 
than one, higher-dimensional coarsening can be 
obtained by one-dimensional coarsening at a time, 
alternating the coarsening directions. The simple fast 
summation algorithm presented in this study allows 
calculating the energy in real space and a high accuracy 
is reached by using small values of the cut-off radius 
rcut. Hence, for the lattice sums, the complexity of the 
algorithm is O (N). To test the method, Madelung 
constant in one, two and three dimensional cases are 
calculated. At rcut ≥3h, an error less than 0.01% is 
obtained. 
 
Future prospects: The present approach is a first step 
towards a general and efficient scheme. The fast 
summation algorithm can be incorporated into the 
multiple ‘time step’ Monte Carlo algorithms (Hetenyi et 
al., 2002; Gelb, 2003). One sweep of this method 
consists of two steps: Monte Carlo sweeps with local part 
of the potential and the following acceptance, or rejection 
of the generated configuration in accordance with the 
long-range smooth part of the potential energy. The 
acceptance rate in this method decreases with increasing 
size of the periodicity cell. This obstacle is expected to 
be avoided by calculating the smooth part of the potential 
energy and checking the trial configurations several 
times during a sweep of the first step. This calculation 
can be done by applying the present algorithm.  
 A basic problem which is the incapability of the local 
simulations to move the system from a local minimum 
across large-scale energy barriers is expected to be solved 
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using the present fast summation algorithm. Moves of a 
more collective nature comparable with the scale of the 
energy landscape features can be used. For this purpose, a 
multilevel Monte Carlo algorithm can be developed and 
the anterpolated charges can be considered as the coarse-
level variables.  
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