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Application of Optimal Control tothe
Epidemiology of Fowl Pox Transmission Dynamicsin Poultry
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Abstract: Problem statement: In this study, we present the mathematical mofi¢he transmission
dynamics of fowl pox infection in poultryApproach: It describes the interaction between the
susceptible and the infected birds which resultsairsystem of ordinary differential equation.
Introducing the control which represents the effiortapplying chemoprophylaxis control &nd
treatment control uin birds with fowl pox, the system becomes a syst# ordinary differential
equations with controlResults: Our optimal control problem involves that in whitte number of
birds with latent and active fowl pox infectionsdate cost of treatment controlg(t) and y (t) were
minimized subject to the differential Eq. 5-8. Thsolves the number of birds with active and laten
fowl pox respectively as well as the cost of apmychemoprophylaxis control and treatmentsin
birds with fowl pox.Conclusion: Analysing the model using Pontryagin’s Maximumniiple and
optimality conditions, optimal effort necessary reduce the transmission rate of fowl pox in the
poultry has been determined. Hence, it is possibteduce to reduce the rate of transmission.

Key words: Optimal control, fowl pox, optimality condition, saous deposits, mosquitoes remain
infected, numerical solution setting, disease trassion

INTRODUCTION The virus can enter the blood stream through thee ey
] ] . skin wound, or respiratory tracts. Mosquitoes begom
Fowl pox, pox, or avian pox is a relatively slow- jnfected by feeding on birds with fowl pox in their
spreading viral disease characterized by skin fesio plood stream. There is some evidence that the
or plagues in the pharynx. It is prevalent amongmosquitoes remain infected for life. Mosquitoes e
chickens, turkey, pigeons, canaries, worldwide.primary reservoir and spreaders of fowl pox on pgul
Morbidity is 10-95% and mortality usually 0-50%. ranges. Several species of mosquito can transmit fo
Infection occurs through the skin abrasions andshit pox. Often mosquitoes winter-over in poultry hoyses
or by the respiratory route. so outbreak can occur during winter and early gpfrin
The virus persists in the environment for months http://msucares.com/poultry/disease/disviral.htm]
The duration of the disease is about 14days on Joshi (2002) in this study on Optimal cohtof
individual bird bases. The infected birds displayjne  HIV immunology model, illustrate the idea of optima
of the following symptoms: warty spreading eruption control on two types of disease model, the firsais
scabs on comb and wattles caseous deposits in mougRidemic model with two incidence forms, a percgata
throat and sometimes trachea, depression, poortigrowof the population are vaccinated to achive cordafdhe
and poor egg production. Because of its slow-spngad disease. The percentage as a function of timeés th
nature, it is possib|e to vaccinate to Stop arpOﬂth'. While the second one illustrate drug mesxit
outbreak. Flocks and individuals still unaffectedyn Strategy in an immunology model.
be vaccinated usually with chicken strain by wing  Hee-Dae (2005), presented a work on the
web vaccinating method. If there is evidence ofApplication of optimal control theory to mathematic

secondary bacterial infection, broad-spectrummodel of biological systems. In his study, he
antibiotics may be of some benefit. formulated a dynamic mathematical model for a

Fowl pox or avian pox is transmitted by direct vector-transmitted disease. He derived the comlitio
contact between infected and susceptible birdsyor bnecessary for optimality using lagrangian, optimal
mosquitoes. Virus-containing scabs also can beghlou prevention and treatment effort was derived by
from infected birds and serve as a source of iifact formulating and analysing an optimal control
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problem. It was shown that there are control effort2010) that when virulence decreases with age ttimalp
for treatment of host and prevention of host-vectobehaviours for individual will minimize disease
contact with minimal cost and side effect. transmission. Here we seek for optimal effort neaps
Ollerton (1989) in his study on the application of to reduce transmission rate of fowl pox in poultry.
optimal control theory to diabetes mellitus, uses
mathematical model and optimal control theory as-ow! pox
grid search techniques and discrete segmerfi€moprophylaxis:
approaches to derive a closed-loop insulin infusionf*SSUmptions.
algorithm for the metabolic control of hospitalised |
non-insulin producing subjects. .
Nandaet al. (2007), in their stduy on the Optimal _
Control of treatment in mathematical model of clicon
mylogenous leukaemia described the interaction
between naive T cell and leukemic cancer cells in a

hypothetical patient with a system of ordinary  The fowl pox transmission model divides the

differential equation. Optimal control theory wased  population of birds into the following sub-grougsat

to determine the treatment regimen that minimites t are Susceptible birds (S), those exposed to fowd po

cancer cell count and the deleterious effects ef thyjrys (E), those Infected with fowl pox and are

drugs for a given patient. Both analytical and ntea  displaying symptoms (I) and those that have been

solution setting were considered in determining theemoved or Recovered from infection (R).

optimal control regimen under various assumptions. Parameters/symbols:

Hattaf et al. (2009) in their study on Optimal

Control of tuberculosis with exogenous reinfection,g
E
[

transmission model with

Infected birds are treated

The exposed (latent) birds are treated

Recovered birds can join the susceptible population
class

Individuals die only by infection

Susceptible population of birds at time t
Exposed (Latent) population of birds at time t
Infected population of birds at time t

applied optimal control theory in the resulting ioaty
differential equation to minimize the infectiousogp
by the reduction of the contact between infectiod a R Removed population of birds at time t

the exposed individuals. Pontryagins Maximum Recruitment new birds that enter into the
Principle was used to characterize the optimal rodint susceptible population

optimality system was derived and solved numesicall A = Transmission rate of infection

Adekunle (2009), in their study on the applicatid 5 - The rate at which the susceptible join the
optimal control to the epidemiology of tuberculosis exposed pop ulation class

transmission Vi? the application .Of the Pontryagins“ = The rate at which the recovered birds join the
Maximum of optimal control theory incorporated trots susceptible population class

o a _sw_npled SEIR d|sea§e mﬁd?l Ofl t_ulg:rcuc;ossr: The rate at which the exposed birds are taken
trar_lsn|1|5_5|fon gr!ag?@j tol re u<|:e the latently ieteein care to avoid becoming infectious
actively infected individual populations. The rate at which the infected birds are treated

: : . r
Afshari et al. (2009), in their study on : :
Determination of Nonlinear Optimal Feedback Law forK E:;ilﬁo\r/:/hwh the exposed moves to infected

Satellite Injection Problem Using Neighbouring Death rate due to infection
Optimal Control investigated an optimal trajectory Death rate of the removed population

design of a nonlinear satellite injection probleor f . . .
transfer to a final target orbit by minimizing tkiene. The rate at which the susceptible birds are
According to their investigation, this design was a bought in the poultry . . _
exact solution to the nonlinear two-point boundary® = The rate at which susceptible birds are bora int

1
d
R

value problem which determined optimal control the poultry
history as well as optimal state trajectories ia tipen-
|oop form. The moddl:

In this study, we present the mathematical modeMode formulation: Our model describes the
for application of optimal control to the epidenagy  transmission dynamics of fowl pox infection based o
fowl pox transmission dynamics in poultry. Our gl two strains. Here we assume that birds which recove
to determine optimal effort needed for the preventéind  from one strain can become susceptible to the other
treatment of fowl pox in order to reduce inciderai in  strain. The susceptible population is increased by
poultry. As suggested by (Adekunle, 2009; Relegal.,  recruitment of birds either by birttd) or immigration
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(r) and the recovered bird (i) that become suddepti
This population is reduced by infection and by reitu
death or emigration 8f Using the

above 3= min, ,["f[K E+KJ+C 1%+ C gt

The objective function is defined as Eq. 9:

(9)

symbols/parameters and assumptions, we develop the

model as follows Eq. 1-4:

ds

—>=Bs-aSHuR-y ¢ 1
5 - Ps-askUR-y 1)
dE

—=yS-kE-[E 2
e 1 (2)
ﬂ=aSI+ KE-d -1l 3)
dt

SR - (e d)RB= 1+ ()

Introducing the controls representing the treatmen

of the exposed and that of the infected, the métlet
(4) becomes Eq. 5-8:

ds

—2=BS-aSHpR-y < (5)

dt

dE

CT:VS‘ KE-W, E (6)
t

dl

—=aSl+ kE-d I- y | (7)

dt

dR

7=U2|+H1E_(u+d2)RB= r+d (8)

dt

where, S (0) , E(0) , I(0) , R(0) are given, théirdgon
of the
control functions yt) and y(t) are bounded lebesgue
integrable functions. The control () the time
dependent effort on the treatment of latently itéfdc
birds practiced on the time interval [Q],tb reduce the
number of birds that may become fully infected. \&/hi
U (t) is the effort on actively infected birds to iease
the number of recovered birds

MATERIALSAND METHODS

Optimal control: Our optimal control problem
involves that in which the number of birds withelat
and active fowl pox infections and the cost of tmaant
controls y (t) and y (t) are minimized subject to the
differential Eq. 5-8. This involves the number aifds
with active and latent fowl pox respectively as Ivas
the cost of applying chemoprophylaxis contrgland
treatment win birds with fowl pox.
250

model parameters are as given above. The

where, {is the final time and the co-efficient; KKy,
C., G are balancing cost factors.

Our target is to minimize the objective functional
defined in Eq. 9 by minimizing the number of the
exposed and infectious classes. In order wordssee&

to find the optimal pairu; and u, such that:
‘](ulru;) = mln[‘](l]!! UZ)/Ul, W |:|U]
where, U = {ut), w(t)/ uy(t), w(t) are measurable,

a< (w) w@®)<b,=12101]} is the control set.
Here aand hare constant in [0, 1].

Theorem 1: There exist optimal control, , u, and

solutions § E I° R of the corresponding state
system (5-8) that minimizes J;(y ) over U.
Furthermore there exiat, Ag A4, Ag satisfying:

dAg _ OH
dt  as
d\. _oH
dt  9E
d\, _ oH
dt ~ al
d\, _oH
dt R

With transversality conditions:

A (t)=0,i=S,E,ILR
Moreover, the optimal control is given by:

U; = minfo,, maxfa, = 0=he)
1
And:
u; = min{b,, max[a, w I}
2

Proof: Corollary 4.1 of (Fleming and Rishel, 1975)
gives the existence of an optimal control pair tiuthe
convexity of the integrand of J in (9) with resptthe
control u and y, a priori boundedness of the state
solutions and the Lipschitz property of the statstesm
with respect to the state variables.
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The differential equations governing the adjoint Hence, we obtain:
variables are obtained by differentiation of the

Hamiltonian function, evaluated at the optimal = EAe—Aq)
control pair. ! 2C,
The adjoint system can be written as: 2102y
2 2C,
_% —aj As(t)=0
dt  os” " Then by standard control argument involving the
_dAe _0H (t,)=0 bounds on the controls, we conclude for control; u
dt 9" F' and u
d\, _ oH
-——L=""A\()=0 ) -
dt a1 " u = min{bl,M}
_dAR=ajA(t)=O 2C,
d R
And:
Where:
U, = mino, 2 ~Ae);
a—H=)\(B—aI— Y+ Ay +al G
a5 s Y eY 1
oH RESULTS
9E =Ky =Ag(k+py) +kA +A
OH Analysis of optimal control: Using Pontryagin’s
N k, =A @) +A, (@l=u,)+ AU, Maximum principle, we formulate the Hamiltonian
oH from the cost functional (9) and the governing dyiea
35 =AM -Ag(n+d,) Eq. 5-8 to obtain the optimality conditions Eq. 10:
Therefore: H=Kk,E+K,l +C,ui+C,
+As@BS- aSHu Ry S
D ) (@l+y-B)-Ay-ah . e : (10)
a0 B 1 +A.(YS—KE- U E}*+ A, @Sk kE ¢ +p, I
dA A (Ul +uE- +d,)R)
Tf:AE(k+“1)_klml_ARul e ’
A where, theh,, Ag, Ay, Ag are the associated adjoint for
|

H = s(al)_ kz_)‘|(al_ uz)_)\RUZ

We shall use the optimality conditions:

oH _

—=0
au,

where, i=1, 2:

OH _,0H _,
ou, Ou,
And:
oH .
aiul = 2C2u2_)\1|+)\R| =0
OH _ dA,

ale “dt =As(@l) -k, —A (@l-u,)-Aqu,

the epidemiological states S, E, I, R The systdm o
equation is found by taking the appropriate partial
derivative of the Hamiltonian with respect to the
associated state variable. Using the optimalitydéoom
and by standard control argument involving the lasun
on the controls, we obtain the solution of the i
control problem as control:

. . EMc-A
u; = mln{bl,i( ;(31 R)}
And:
T T/ V=D WO
u, = min{b,,—X—FR*}
2 2 2C2
DISCUSSION

Herd immunity describes a form of immunity that
occurs when the vaccination of a significant portad
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a population (or herd) provides a measure of ptatec Afshari, H.H., A.B. Novinzadeh and J. Roshanian,

for individuals who have not developed immunity doh 2009. Determination of nonlinear optimal feedback
and Samuel (2000). Herd immunity theory proposes |aw for satellite injection problem using
that, in contagious diseases that are transmitteh f neighboring optimal control. Am. J. Applied Sci.,
individual to individual, chains of infection ar&ély to 6: 430-438DOI: 10.3844/ajassp.2009.430.438

be disrupted when large numbers of a population argjeming, W.H. and R.W. Rishel, 1975. Deterministic
immune or less susceptible to the disease. Thaegrea  and Stochastic Optimal Control. 1st Edn., Springer-
the proportion of individuals who are resistante th Verlag, New York, ISBN-10: 0387901558, pp: 222.
smaller the probability that a susceptible indiabwill  ataf K., M. Rachik, S. Saadi, S. Tabit and N.
come into contact with an infectious individual eTéffort Yousfi, 2009. Optimal control of tuberculosis with
of applying chemoprophylaxis control and treatment exogenous reinfection. J. Applied Mathe. Sci., 3:
control y in birds with fowl pox is aimed toward 931-240 '
reducing the number of birds that are infected Vigthl '
pox. This will enable us achieve ‘herd immunity’ne
controling the rate of transmission of infection.

Hee-Dae, K., 2005. Application of optimal control
theory to mathematical model of biological
systems. Inha University, Incheon, Korea.

CONCLUSION John, T.J. and R. Samuel, 2000. Herd immunity and
herd effect: New insights and definitions. Eur. J.
In this study, we present the mathematical motiel o Epidemiol., 16: 601-606. PMID: 11078115

the transmission dynamics of fowl pox infection in Joshi, H.R., 2002. Optimal control of an HIV

poultry. It describes the interaction between the  immunology model. J. Optimal Control

susceptible and the infected birds which resultsaain Application Methods, 23: 199-213. DOI:

system of ordinary differential equation. Introchugi 10.1002/0ca.710

the control which represents the effort in applyingNanda, S., H. Moore and S. Lenhart, 2007. Optimal
chemoprophylaxis controk @and treatment controbin control of treatment in a mathematical model of
birds with fowl pox, the system becomes a system of chronic myelogenous leukemia. J. Math. Biosci.,
ordinary differential equation with control. Analyg 210: 143-156. PMID: 17599363

the model using Pontryagin’s Maximum Principle andOllerton, R.L., 1989. Application of optimal coaolr
optimality conditions, optimal effort necessary to theory to diabetes mellitus. Int. J. Control, 50:

reduce the transmission rate of fowl pox in thelpgu 2503-2523. DOI: 10.1080/00207178908953512
. . _EMAL-AR) Reluga, T.C., J. Medlock, E. Poolman and A.P.
has been determined to be, = ;Cl : and Galvani, 2010. Optimal timing of disease

I <\ transmission in an age-structured population. Bull.
U =% this effort is partially aimed at achieving Math Biol., 69: 2711-2722.

2
the herd immunity of the infection.
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