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Abstract: Our aim in the present study is to introduce and study new types of retractions of hyperhelix 
in Minkowski space. Types of the deformation retracts of hyperhelix in Minkowski space were 
discussed. The relations between the foldings and the deformation retracts of hyperhelix in Minkowski 
space were deduced. Types of minimal retractions of hyperhelix in Minkowski space were obtained. 
Also, the connection between retractions and T, N, B, K and τ, of hyperhelix in Minkowski space were 
presented. New types of the minimal retractions and the end of the limits of foldings of hyperhelix in 
Minkowski space are deduced. 
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INTRODUCTION 
 
 An n-dimensional topological manifold M is a 
Hausdorff topological space with a countable basis for 
the topology which is locally homeomorphic to. If h: 
U→U’ is a homeomorphism of U ⊆ M onto U⊆ , then 
h is called a chart of M and U is the associated chart 
domain. A collection hα, Uα is said to be an atlas for M 
if Uα∈A Uα= M. Given two charts hα and hβ such that 
Uαβ = Uα ∩ Uβ ≠ ∅, the transformation chart hβ O hα

−1 
between open sets of  is defined and  if all of these 
charts transformation are C∝-mappings, then the 
manifolds under consideration is a C∝-manifolds. A 
differentiable structure on M is a differentiable atlas 
and a differentiable manifold is a topological manifold 
with a differentiable structure (Catoni et al., 2008; 
Naber, 2011a; 2011b; Reid and Szendroi. 2005; Lopez, 
2008; Shick, 2007).  
 Most folding problems are attractive from a pure 
mathematical standpoint, for the beauty of the problems 
themselves. The folding problems have close connections 
to important industrial applications. Linkage folding has 
applications in robotics and hydraulic tube bending. Paper 
folding has applied in sheet-metal bending, packaging and 
air-bag folding (Demainel, 2001). Isometric folding 
between two Riemannian manifolds may be characterized 
as maps that send piecewise geodesic segments to a 
piecewise geodesic segment of the same length (El-
Ahmady, 2007a; El-Ahmady and Rafat, 2006; DI-
Francesco, 2000). For a topological folding the maps 

does not preserve lengths (El-Ahmady, 2004a; 2004b; 
2011; El-Ahmady and Al-Hesiny, 2011). A subset A of 
a topological space X is called a retract of X if there 
exists a continuous map r : X A→  such 
thatr(a) a a A= ∀ ∈ , where A is closed and X is open (El-
Ahmady, 2006; 1994; 2011; Michael, 2003; Baronti et 
al., 2003; Pellicer-Covarrubias, 2004). Also, a subset A 
of a topological space X is a deformation retracts of X if 
there exists a retraction r : X A→  and a homotopy 

: X I Xϕ × →  such that: 
 

(x,0) x
x X

(x,1) r(x)

(a, t) a, a A, t [0,1]

ϕ = 
∈

ϕ = 

ϕ = ∈ ∈

 

 
(El-Ahmady, 2004b; El-Ahmady and Shamara, 2001; 
El-Ahmady, 2011b; Naber, 2011b; Reid and Szendroi, 
2005). The helix is one of the most fascinating curves 
in science and nature. From the view of differential 
geometry, a helix is a geometrical curve with non-
vanishing constant curvature (or first curvature of the 
curve and denoted by K1) and non-vanishing constant 
torsion (or second curvature of the curve and denoted 
by K2. A curve of constant slope or general helix in 
Euclidean 3-space E3, is defined by the property that 
the tangent makes a constant angle with a fixed 
straight line (Yaliniz and Hacisalihoglu, 2007; 
Walrave, 1995; Kocayigit and Onder, 2007; Ilarslan 
and Boyacioglu, 2008). 
 The aim of this study is to describe the hyperhelix in 
Minkowski space geometrically, specifically concerned 
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with the study of the new types of retraction, deformation 
retract and the folding of hyperhelix in Minkowski space 
from viewpoint of the variation of the density function on 
chaotic spheres in chaotic space-like Minkowski space 
time, folding of fuzzyhypertori and their retractions, 
limits of fuzzy retractions of fuzzy hyperspheres and 
their foldings, fuzzy folding of fuzzy horocycle, fuzzy 
Lobachevski a space and its folding. The deformation 
retract and topological folding of Buchdahi space, 
retraction of chaotic Ricci space, a calculation of 
geodesics in chaotic flat space and its folding, fuzzy 
deformation retract of fuzzy horospheres, on fuzzy 
spheres in fuzzy Minkowski space, retraction of chaotic 
black hole, the topological folding of the hyperbola in 
Minkowski 3-space and The geodesic deformation 
retract of Klein Bottle and its folding as presented by (El-
Ahmady, 2007a; 2007b; El-Ahmady and Rafat, 2006; El-
Ahmady, 2004a; 2004b; El-Ahmady, 1994; El-Ahmady  
and Rafat, 2009; El-Ahmady and Shamara, 2001; El-
Ahmady and El-Araby, 2010; El-Ahmady, 2011a; 
2011b; El-Ahmady and Al-Hesiny, 2011). 
 
Main results: Now, we introduce types of retractions 
of the open helix {(accost, asint, bt − σ} = H1 with 
non 0-curvature and its velocity is:  
 

( ) ( ) ( )
' "
1 1H t   -asint,  acost,  b 0, H -acost,  -asint,0 ,= ≠ =  

 

( ) ( )
2 2

1
T  -asint,  acost,  b ,N -cost,  sin t,0 ,

a b
= = −

−
 

 

( ) 2 2 2 22 2

1 a b
B  -bsin t, bcos t, a ,K and .

a b a ba b

−= = τ =
− −−

 
 Since (H`1(t), H`1(t)) = a2−b2, then this helix is a 
space like curve if a2>b2, a time like curve if a2>b2 and 
a null like curve if a2 = b2. Let ri: H

1→ 1 1H , H ⊂ H1 be 
the retraction map of H1 such that: r1(H

1) = (a, 0, 0), t = 
0. In this case r`1(H

1) = 0 and (r1̀(H
1), r 1̀(H

1)) = 0 then 
this retraction is a space like curve: 
 

1 1
2 3

3 1 2 2
r (H ) a a b , t ,r (H ) a a b , t ,

2 2 6 6 2 2 4 4

   π π π π= = = =      
   

 

1 1
4 5

1 3
r (H ) a, a, b , t , r (H ) 0,a, b , t ,

2 2 3 3 2 2

 π π π π = = = =       
 

 

 1
6

1 3 2
r (H ) a, a, b , t

2 2 3 3

 − π π= =  
 

. In this case r6̀ 

(H1) = 0 and 
' '

1 1
6 6r (H )r (H ) 0

  = 
 

then this retraction is a 

space like curve. r7 (H
1) = 

2 2 3 3
a, a, b , t

2 2 4 4

 − π π=  
 

. In 

this retraction r7̀ (H
1) = 0 and̂r 7 (H

1)) = 0 then this 
retraction is a space like curve. r8 (H1) = 

3 1 5
a, a, b ,

2 2 6

 − π
  
 

 t = 
5

6

π
, r9 (H

1) = (−a, 0, πb), t = π. 

In this retraction 9̂r  (H
1) = 0 and ( 9̂r  (H

1), 9̂r  (H
1)) 

= 0, then this retraction is a space like curve: 
  

1 1
10 11

3 1 7 7 2 2 5
r (H ) ( a, a, b),t ,r (H ) ( a, a, b),

2 2 6 6 2 2 4

− − π π − − π= = =  

 

1 1
12 13

1
14

5 1 3 4 4
t ,r (H ) a, a, b ,t ,r (H )

4 2 2 3 3

3 3 1 3 5 5
0, a, b , t ,r (H ) a, a b ,t ,

2 2 2 2 3 3

 π − − π π= = =  
 

 π π − π π = − = = =       

 

 

1
15

1
16

1
17

1 3
r (H ) a, a, b ,

2 2 3

2 2 7
t ,r (H ) a, a, b ,

3 2 2 4

7 2 2
t ,r (H ) a, a b ,t ,

4 2 2 4 4

 − −π=   
 

 −π − π= =   
 

 π − −π −π= = =  
 

 

 

1 1
18 19

3 1 11 11 3 1
r (H) ( a, a, b),t ,r (H ) ( a, a, b),

2 2 6 6 2 2 6

− π π − −π= = =  

 

  T = 
6

−π
, r20 (H

1) = (− 0.1423a, 0.9898a,
6

11

π
). In 

this case r2̀0 (H
1) = 0 and (r2̀0 (H

1) r`20 (H
1)) = 0, then 

this retraction is a space like curve.  
 Hence, we can formulate the following theorems: 
 
Theorem 1: Let r (H1) be the retraction map of the 
helix H1⊂ E1

3. If dim r (H1) = 0, then T, N, B, K and τ 
of the retraction of the helix are unlimited. 
 
Theorem 2: Let r (H1) be the retraction map of the 
helix H1⊂ E1

3. If dim r (H1) = 0, then this retraction of 
the helix is a space like curve.  
 
Theorem 3: Under the retraction map a spacelike helix 
H1⊂ E1

3 has curvature identically zero if and only if r 
(H1) ⊂ E1

3 is a part of a straight line. 
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Theorem 4: Under the retraction map a space like helix 
H1 ⊂ E1

3 has torsion identically zero if and only if r (H1) 
⊂ E1

3 is a planar curve. 
 In this position, we present new types of retractions 
which preserve the dimension given by: r21(H

1) = 
(acost*, asint*, bt*), 0 < t* < n n ∈ . In this retraction 
r`21 (H

1) = (− asint*, accost*, b) and (r`21(H
1), r 2̀1(H

1)) = 
a2 − b2, then this retraction is a space like curve if a2 > b2, 
a time like curve if a2<b2, or a null like curve if a2 = b2. 
  

( ) ( )1
22r H   acost*,  asint*,  bt * , n t* 0,  n ,= − < ≤ ∈ℕ  

 

( ) ( )1 * 2
23r H   acost*,  asint*,  bt * ,c t c ,c ,= < ≤ ∈ℝ  

 

( ) ( )1 *
24

c
r H   acost*,  asint*,  bt * , t c,c ,n ,

n
= < < ∈ ∈ℝ ℕ  

 
 ( ) ( )1 *

25r H   acost*,  asint*,  bt * , n t n,n ,= − ≤ < ∈ℕ  

 

( ) ( )1 *
26r H   acost*,  asint*,  bt * , | c | t | c |,c ,= ≤ ≤ ∈ℝ  

 
( ) ( )1

27r H   acost,  asin|t|,  b|t| ,=  
 

( ) ( )1 *
28r H   acost*,  asint*,  bt * ,c t d,c,d ,c d,= < < ∈ <ℝ  

 
( ) ( )1

29r H   acost,  asint,  |bt| .=  
 
 This leads to the following theorems: 
 
Theorem 5: Under the retraction map a spacelike 
helix H1 ⊂ 3

1E  has torsion identically zero and 

curvature is bigger than zero if and only if r (H1) ⊂ 
3
1E is a part of a circle. 

 
Theorem 6: Let r (H1) is the retraction map of the 
helix H1⊂ 3

1E . If dim r (H1) = dim H1, then T, N, B, 

K and τ of r (H1) are the same as or different from T, 
N, B, K and τ of H1. 
 
Theorem 7: Let r (H1) be the retraction map of the 
helix H1⊂ 3

1E . If dim r (H1) = dim H1, then this 
retraction of the helix is a space like curve if a2>b2, a 
time like curve if a2<b2, or a null like curve if a2 = b2.  
 
Theorem 8: If the deformation retract of the helix H1 ⊂ 

3
1E  is D: H1×I→H1, where I is the closed interval [0, 1], 

the retraction of H1 ⊂ 3
1E   is r: H1→ H*1, H*1⊂ H1 and 

the folding of H1 into itself is f: H1→ H1. Then there 
induce deformation retract, retractions and foldings 
such that the following diagram is commutative. 
 
Proof: Let the deformation retract of H1 ⊂ 3

1E is D1: 

H1×I→H1, the folding of H1×I and D1 (H1×I) are 
defined by ƒ1: (H1×I)→ H1×I and ƒ2: D1 (H

1×I)→H1, 

D2: ƒ1(H
1×I)→H1 and the retractions of D2 (ƒ1 (H

1×I)) 
and ƒ2 (D1 (H

1×I)) are given by r1: D2 (ƒ1(H
1×I))→H0 

and r2: ƒ2 ((D1(H
1×I)))→H0 ,H0 is a 0-dimensional 

space. Hence, the following diagram is commutative: 
 

 
 
i.e., r1 o D2 o f1 (H

1×I) = r2 o f2 D1 (H
1×I)  

 
Theorem 9: Let H1⊂ 3

1E  be the helix in 3-
Minkowski space, then the relation between the 
retraction r: H1→H*1, H*1 ⊂ H1 and the limit of the 
foldings limm→∝ ƒm: H1→H0 discussed from the 
following commutative diagram.  
 
Proof: Let the retraction of helix r1: H1→H*1, the 
limit of the foldings of helix H1 is limm→∝ ƒm: 
H1→H0, limm→∝ ƒm+1: r1 (H

1)→H0 and r2: limm→∝ ƒm 
(H1) →H0, H0 is a 0-dimensional space, then the 
following diagram is commutative: 
 

 
 
i.e., limm→∝ ƒm+1 o r1 (H

1) = r2 o limm→∝ ƒm (H1).  
 
Theorem 10: The end of the limits of folding of H1 into 
itself coincides with the minimal retractions.  
 
Proof: Let ri be the retractions, ƒi are the foldings and 
σI are the homeomorphisms. Then: 
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Theorem 11: Given a deformation retract D: H1×I 
→H1, retraction r: H1×I→H*1, H*1 ⊂ H1 and the limit of 
the folding is limm→∝ ƒm: H×1→H0, then limm→∝ ƒm or1 

(H1×I) = r2 o D (H1×I).   
 
Proof: Let the retraction r1: H1 × I →H*1, the 
deformation retract of helix is D: H1×I→H1, the 
retraction of D (H1×I) is r2: D (H1×I)→H0 and the limit 
of the folding of r1 (H

1×I) is limm→∝ ƒm: r1 (H
1×I) →H0. 

Then from the following diagram, we have:  
  

 
 

1 1
m m 1 2lim f  o r (H I) r o D(H I)→∞ × = × . 

 
 Now, consider the open hyperhelix in Minkowski 
4-space H2⊂ 4

1E defined as: 
 

2 2 2 2 2 2

2

2 2 2 2 2 2

r r
a cos t , a sin t ,

a r b a r b

1 1
b cos t , b sin t H ,

a r b a r b

    
     + +   

    − σ = σ    + +     

 

 
 be a point in hyperhelix in Minkowski 4-space. The 
velocity is: 
 

'
2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

r r
H (t) a sin t ,

a r b a r b

r r 1
a cos t , b

a r b a r b a r b

1 1 1
sin t ,b cos t

a r b a r b a r b

  
= −  

+ +  

 
− 

+ + + 

   
    + + +    

 

 
 i.e., H2 is a regular curve in4

1E . Since: 
 

2"
2

2 2 2 2 2 2

2
*

2 2 22 2 2 2 2 2

* *
2 2 22 2 2 2 2 2

r r
H a cos t ,

a r b a r b

r r 1
a sin t , b

a r ba r b a r b

1 1 1
cos t , b sin t ,

a r ba r b a r b

  
= −  

+ +  

 
− −  ++ + 

   
−     ++ +    

 

 
 Then the curvature of the helix K ≠ 0. 
 Now, we discuss the retractions of the open 

hyperhelix H2. Let ri: H2 → 2H , 2H ⊂ H2 be the 
retraction map of H2 such that: r1 (H

2) = (a, 0, b, 0,), t = 
0. In this case r`1 (H2) = 0 and (r1̀,r`1) = 0 then this 
retraction is a space like curve:  

2 2 2 2
2

r r 3b b
r (H ) a cos ,a sin , , t a r b ,

6 6 2 2 6

 π π π   = = +         
 

  

2 2 2 2
3

3b a
r (H ) ,bcos ,bsin , t a r b ,

2 2 6r 6r 6

 π π π     = = +             
 

 

2 2 2 2
4

r r r 2b b
r (H ) acos ,a sin ,asin , , ,t a r b ,

4 4 4 2 2 4

 π π π π     = = +             
 

 

2 2 2 2
5

3a 2a
r (H ) ,bcos ,bsin , t a r b ,

2 2 4r 4r 6

 π π π   = = +         
 

 
2 2 2 2

6

r r b 3b
r (H ) a cos ,asin , , , t a r b ,

3 3 2 2

 π π   = = +         
 

 
2 2 2 2

7

a 3a
r (H ) , ,bcos ,bsin , t a r b ,

2 2 3r 3r 3r

 π π π   = = +         
 

 
2 2 2 2

8

r r r
r (H ) acos ,asin , ,0,b , t a r b ,

2 3 2 2

 π π π π   = = +         
 

 
2 2 2 2

9r (H ) 0,a,bcos ,bsin , t a r b ,
2 2 2r

 π π π   = = +    
    

 

 
2 2 2 2

10

5 r 5 r 3b b 5
r (H ) a cos ,asin , , ,t a r b ,

6 6 2 2 6

 π π π   = − = +         
 

 
2 2 2 2

11

3a a 5 5 5
r (H ) , ,b cos ,bsin ,t a r b ,

2 2 6r 6r 6r

 π π π   = − = +         
 

 
 ( ) ( )( )2 2 2 2

12r (H ) a cos r ,asin r , b,0 , t a r b .= π π − = π +  
In this retraction r1̀2 (H

2) = 0 and (r1̀2, r 1̀2) = 0, then 
this retraction is a space like curve. r13 (H

2) = (-a, 0,b 

cos (
r

π
), b sin (

r

π
)), t= 2 2 2a r b

r

π + . In this case r1̀3 

(H2) = 0 and (r1̀3, r 1̀3) = 0, then this retraction is a 
space like curve: 
 

2 2 2 2
14

5 r 5 r 2b b2 5
r (H ) acos ,asin , , ,t a r b ,

4 4 2 2 4

 π π π   = − − = +         
 

 
2 2 2 2

15

2a 2a 5 5 5
r (H ) , ,b cos ,b sin ,t a r b ,

2 2 4r 4r 4r

 π π π   = − = +         
 

 
2 2 2 2

16

4 r 4 r b 3b 4
r (H ) acos ,asin , , ,t a r b .

3 4 2 2 3

 π π π   = − − = +         
 

 
 In this retraction r1̀6 (H2) = 0 and (r1̀6, r 1̀6) = 0, 
then this retraction is a space like curve: 
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2
17

a 3a 4 4
r (H ) , ,b cos , b sin ,

2 2 3r 3

 π π   = − −         
 

 
2 2 2 2

18

4 3 r 3 r
t a r b ,r (H ) a cos a sin ,0, b ,

3r 2 2

 π π π   = + = −    
    

 

 

2 2 2 2
19

3 3 3
t a r b ,r (H ) 0, a ,b cos b sin ,

2 2r 2r

 π π π   = + = −    
    

 

 

( )2 2 2 2
20

3
t a r b ,r (H ) 0,0, b,0 ,a 0, t b ,

2r

π= + = − = = π  

 
2

21r (H ) ( a,0,0,0),b , t a ,= − = = π  
 

* *
2 *

22

t t
r (H ) a,0,b cos ,b sin ,r 0,c t c 1,c ,

b b

    
= = ≤ ≤ + ∈     

    
ℝ  

 
* *

2 * 2
23

t t
r (H ) a cos ,a sin ,0,0 ,b 0,| c | t c ,c ,

a a

    
= = ≤ ≤ ∈     

    
ℝ  

 

 In this case r2̀3 (H
2) = (− sin (

*t

a
), cos (

*t

a
), 0, 0) and 

(r`23, r 2̀3) = 1, then this retraction is a space like curve: 
 

2 *
24 2 2 2

2 * *

2 2 2 2 2 2

* *

2 2 2

r
r (H ) a cos t ,

a r b

r r
a sin t ,b cos t ,

a r b a r b

1 c
b sin t , t | c |,c R,n N

na r b

  
=    + 

   
   

+ +   

 
≤ ≤ ∈ ∈ + 

 

2 *
25 2 2 2

* *

2 2 2 2 2 2

* *

2 2 2

r
r (H ) a cos t ,

a r b

r r
a sin t ,b cos t ,

a r b a r b

1
b sin t ,c t n. | c |,c R,n N

a r b

  
=    + 

   
   

+ +   

 
≤ ≤ ∈ ∈ + 

 

2 *
26 2 2 2

* *

2 2 2 2 2 2

* *

2 2 2

r
r (H ) a cos t ,

a r b

r 1
a sin t ,b cos t ,

a r b a r b

1
b sin t ,c t d,c d,c,d R

a r b

  
=    + 

   
   

+ +   

 
≤ ≤ < ∈ + 

 

 
In this retraction: 

2 *
26 2 2 2 2 2 2

*

2 2 2 2 2 2 2 2 2

* *

2 2 2 2 2 2 2 2 2

r r
r (H ) a sin t ,

a r b a r b

r r 1
a cos t , b

a r b a r b a r b

1 1 1
sin t ,b cos t

a r b a r b a r b

  
′ = −   + + 

 
− 

+ + + 

   
   + + +   

 

 
And: 
 

2 2 2' '

26 26 2 2 2 2 2 2

2
2 * 2 *

2 2 22 2 2 2 2 2

a r b
r ,r

a r b a r b

1 b 1
sin t cos t .

a r ba r b a r b

  = +  + + 

   
−   ++ +   

 

 
 Then this retraction is a space like curve if: 
 

2 2 2

2 2 2 2 2 2

2
2 * 2 *

2 2 22 2 2 2 2 2

a r b

a r b a r b

1 b 1
sin t cos t ,

a r ba r b a r b

+
+ +
   

>   ++ +   

 

 
a time like curve if: 
 

2 2 2

2 2 2 2 2 2

2
2 * 2 *

2 2 22 2 2 2 2 2

a r b

a r b a r b

1 b 1
sin t cos t

a r ba r b a r b

+
+ +
   

<   ++ +   

 

 
 and a null like curve if: 
 

2 2 2

2 2 2 2 2 2

2
2 * 2 *

2 2 22 2 2 2 2 2

a r b

a r b a r b

1 b 1
sin t cos t .

a r ba r b a r b

+
+ +
   

=   ++ +   

 

 
 Hence, we can formulate the following theorems: 
 
Theorem 12: Let r (H2) be the retractions map of the 
hyperhelix H

2⊂ 4
1E . If dim r (H2) = 0, then T, N, B, K 

and τ of the retractions of hyperhelix are unlimited. If 
dim r (H2) = dim H2, then T, N, B, K and τ of r (H2) are 
the same as or different from T, N, B, K and τ of H2. 
 
Theorem 13: The retractions of the hyperhelix H

2⊂ 4
1E  

are retractions which preserve the dimension and 
retractions which do not preserve the dimension.  
 
Theorem 14: Let r (H2) be the retraction map of the 
hyperhelix H2⊂ 4

1E . If dim r (H2) = 0, then this 
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retraction of the hyperhelix is a space like curve. If dim 
r (H2) = dim H2, then this retraction of the hyperhelix is 
a space like curve if: 
 

2 2 2
2 *

2 2 2 2 2 2 2 2 2

2
2 *

2 2 2 2 2 2

a r b 1
sin t

a r b a r b a r b

b 1
cos t ,

a r b a r b

 
+  + + + 

 
>  + + 

 

 
a time like curve if: 
 

2 2 2
2 *

2 2 2 2 2 2 2 2 2

2
2 *

2 2 2 2 2 2

a r b 1
sin t

a r b a r b a r b

b 1
cos t ,

a r b a r b

 
+  + + + 

 
<  + + 

 

 
or a null like curve if: 
 

2 2 2
2 *

2 2 2 2 2 2 2 2 2

2
2 *

2 2 2 2 2 2

a r b 1
sin t

a r b a r b a r b

b 1
cos t

a r b a r b

 
+  + + + 

 
=  + + 

 

 
Theorem 15: If the deformations retract of the 
hyperhelix H2⊂ 4

1E is D: H2×I→H2 where I is the closed 

interval [0, 1], the retraction of H2⊂ 4
1E is r: H2→H1, 

H1⊂H2 and the limit of the folding of H2 is limm→∝ rm: 
H2→ H1. Then there induce deformation retract, 
retractions and the limit of the foldings such that the 
following diagram is commutative. 
 
Proof: Let the deformation retract of H2⊂ 4

1E is D1: 

H2×I→H2, the retraction of H2×I is defined by r1: 
(H2×I)→ H1×I, limm→∝ fm :D1 (H2×I)→H1, the 
deformation retract of r1 (H

2×I) isD2: r1 (H
2×I)→H1, the 

retraction of limm→∝ fm (D1((H
2×I))) is given by r2: 

limm→∝ fm (D1(H
2×I))→H0 and limm→∝ fm+1: D2 

(r1(H
2×I)→H0, H0 is a 0-dimensional space. Hence, the 

following diagram is commutative: 
 

 
 

i. e., limm→∝ ƒm+1 o D2 o r1 (H
2×I) = r2 o limm→∝ ƒm o 

D1 (H
1×I) 

Theorem 16: Let H2⊂ 4
1E be the hyperhelix in 4-

Minkowski space, then the relation between the folding f: 
H2→H2 and the limit of the retractions limm→∝ rm: H2→ 
H1, discussed from the following commutative diagram.  
 
Proof: Let the folding be ƒ1: H2→H2, the limit of the 
retractions of H2 and ƒ1 (H

2) are limm→∝ rm: H2→ H1 and 
limm→∝ rm+1: ƒ1 (H2)→H1 and ƒ2: (limm→∝ rm (H2))→H1. 
Then, the following commutative diagram exists: 
 

 
 
 i. e., limm→∝ rm+1 o ƒ1 (H

2) = ƒ2 o limm→∝ rm  (H2).  
 
Theorem 17: Let the retraction of H2 is r: H2→H1, H1⊂ 
H2 and the folding of H2 is ƒ: H2→H2, then  
 
• ƒ2 o r1 (H

2) = r2 o ƒ1 (H
2) 

• σn+1O (
i
lim
→∞

(ƒ2i
O r2i−1) (… (ƒ4 o r3 (ƒ2 o r1 

(H2)))…)) = (
i
lim
→∞

(ƒ2i
O r2i−1) (… (r4 o ƒ3 (r2 o ƒ1 

(H2)))…)) o σ1  
 
Proof: Let the retraction of the hyperhelix in 4-
Minkowski space H2 is r1: H2→H1, ƒ1: H2→H2, the 
retraction of ƒ1 (H

2) is r2: ƒ1 (H
2)→H1 and the folding of r1 

(H2) is ƒ2: r1 (H
2)→H1. Then ƒ2 o r1 (H

2) = r2 o ƒ1 (H
2). 

Let ƒ2i o r2i−1and r2i o f2i−1 are the compositions 
between the retractions of the hyperhelix in 4-
Minkowski space H2 and the foldings of H2 into itself. 
Also, σI are the homeomorphisms. Then: 
 

 
 
Theorem 18: Given the deformation retract of H2⊂ 

4
1E is D: H2×I→H2, the limit of the folding of H2×I is 

limm→∝ ƒm H2×I→H1×I. Then, the following diagram 
is commutative. 
 
Proof: Let the limit of the folding of (H2×I) is 
limm→∝ ƒm: H2×I→ H2×I, the deformation retract of 
H2⊂ 4

1E is D1: H2×I→H2, the limit of the folding of 
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D1 (H2×I) is limm→∝ ƒm+1: D1 (H2×I)→H1 and the 
deformation retract of limm→∝ fm (H2×I) is D2: 
limm→∝ ƒm (H2×I)→H1. Hence: 
 

 
 

i.e., D2 limm→∝ ƒm (H2×I) = limm→∝ ƒm+1 o D1 (H
2×I) . 

   
CONCLUSION 

 
 In this study we achieved the approval of the 
importance of the retractions of the hyperhelix in 
Minkowski space. The relations between foldings, 
retractions and deformation retract, limits of folding 
and the limits of retractions of hyperhelix in Minkowski 
space are discussed. A theorem which governs these 
relations is presented. 
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